
Item 1

Questions Data structures

You are tasked with developing a bike rental system. The bike rental service uses a system to track bikes as they are

rented and returned. The same bike can be rented multiple times a day, as long as it is available. The bike IDs to track

daily rentals are recorded in two Python lists: one for rentals and another for returns. The system should help manage

tasks like identifying which bikes are currently rented out, checking if a specific bike is available, and handling new

rentals and returns.

For the following exercises, consider the lists bikes_rented and bikes_returned , which store the IDs of the bikes

that have been rented and returned throughout the day, respectively. The bike IDs are stored in ascending order of

rental/return (i.e., the first bike to be rented/returned is the first element of the list). For example:

bikes_rented = ["B002", "B001", "B002", "B003"]

bikes_returned = ["B001", "B002"]

In this example, bike B001 was rented and returned (so it is available for renting); bike B002 was rented and returned

once, but is currently rented now; bike B003 is currently rented.

Given these lists, answer the following questions.

Which of the following answers the question "What was the first bike to be returned?"

A bikes_returned["B001"]

B bikes_returned[1]

C bikes_returned[0]

D bikes_returned[-1]

Which of the following answers the question "What was the last rented bike?"

A bikes_rented["B003"]

B bikes_rented[0]

C bikes_rented[-1]

D bikes_rented[1]

https://europe.wiseflow.net/legacy/author/preview/printActivity.php?activityId=ba7004b7-79dc-4628-94b9-b763a4bb59e3&type=new#
https://europe.wiseflow.net/legacy/author/preview/printActivity.php?activityId=ba7004b7-79dc-4628-94b9-b763a4bb59e3&type=new#
https://europe.wiseflow.net/legacy/author/preview/printActivity.php?activityId=ba7004b7-79dc-4628-94b9-b763a4bb59e3&type=new#
https://europe.wiseflow.net/legacy/author/preview/printActivity.php?activityId=ba7004b7-79dc-4628-94b9-b763a4bb59e3&type=new#

Which of the following answers the question "How many times have bikes been returned?"

A len(bikes_rented) - len(bikes_returned)

B len(bikes_returned)

C len(bikes_returned) - len(bikes_rented)

D len(bikes_rented)

Which of the following answers the question "Is there any bike currently rented"?

A len(bikes_rented) == len(bikes_returned)

B len(bikes_rented) - len(bikes_returned) == 1

C len(bikes_returned) - len(bikes_rented) < 0

D len(bikes_returned) - len(bikes_rented) > 0

Which of the following answers the question "Has anyone rented bike B010?":

A "B010" not in bikes_rented

B "B010" in bikes_rented

C bikes_rented["B010"] is not None

D "B010" in bikes_returned

Which of the following answers the question "Is bike B002 currently rented?"

Note: The function count returns how many times an element occurs in a list.

A "B002" not in bikes_returned

B "B002" in bikes_rented

C bikes_rented.count("B002") > bikes_returned.count("B002")

D "B002" in bikes_rented and "B002" not in bikes_returned

Item 2

Questions Data structures

Suppose you now store the duration, in minutes, of each rental in a dictionary. The keys in the dictionary are the bike

IDs, and the values are lists with the duration of rentals.

For the following exercises, consider the dictionary:

rentals = {

 "B001": [15],

 "B002": [45, 30],

 "B003": [],

 "B004": [],

 "B005": [],

}

In this example, bike B001 has been rented once for 15 minutes, bike B002 has been rented twice: once for 45

minutes, once for 30 minutes; and bikes B003-B005 have not been rented (or returned) yet.

The dictionary is updated whenever a bike is returned.

Which of the following answers the question "How many times has bike B002 been returned?"

A rentals["B002"]

B len(rentals["B002"])

C rentals["B002"][0]

D rentals["B002"] != []

https://europe.wiseflow.net/legacy/author/preview/printActivity.php?activityId=ba7004b7-79dc-4628-94b9-b763a4bb59e3&type=new#
https://europe.wiseflow.net/legacy/author/preview/printActivity.php?activityId=ba7004b7-79dc-4628-94b9-b763a4bb59e3&type=new#
https://europe.wiseflow.net/legacy/author/preview/printActivity.php?activityId=ba7004b7-79dc-4628-94b9-b763a4bb59e3&type=new#
https://europe.wiseflow.net/legacy/author/preview/printActivity.php?activityId=ba7004b7-79dc-4628-94b9-b763a4bb59e3&type=new#

What is the output of the following code?

if "B001" in rentals:

 print("Found")

else:

 print("Not found")

if "B002" in rentals:

 print("Found")

elif "B010" in rentals:

 print("Found")

elif "B006" not in rentals:

 print("Not found")

else:

 print("Found")

A Found

Found

Not found


B Found

Found

C Not found

Found

Found

Not found

D Not found

Found

Found

Found

What is the output of the following code?

for bike, durations in rentals.items():

 if len(durations) > 0 and durations[0] > 15:

 print(bike)

A B001

B002

B003

B B002

C B001

B002

D Nothing

What is the output of the following code?

i = 0

durations = list(rentals.values())

while i < len(durations):

 if durations[i] != []:

 print(durations[i][0])

 i = i + 1

A
It enters an infinite loop printing 45 (after printing 15 once):

15

45

45

45

...


B 15

45

C [15]

[15]

[15]

[15]

[15]

D B001

B002

Which of the following answers the question "How many times were bikes returned?"

A count = 0

while count < len(rentals):

 if len(rentals[count]) > 0:

 count += 1

print(count)

B count = 0

for bike in rentals:

 count += len(bike)

print(count)

C count = 0

for durations in rentals.values():

 if durations != []:

 count += 1

print(count)



D count = 0

for durations in rentals.values():

 count += len(durations)

print(count)

Which of the following correctly answers the question "Of the bikes that have been returned, what

was the duration of the last rental"?

A for bike in rentals:

 if rentals[bike] != []:

 print(bike)

B for bike in rentals:

 if rentals[bike] != []:

 print(len(rentals[bike]))

C for bike in rentals:

 if rentals[bike] != []:

 print(rentals[bike][0])



D for bike in rentals:

 if rentals[bike] != []:

 print(rentals[bike][-1])

count = 0

for bike in rentals:

 if :

 count += 1

print(count)

Correct answers:

Fill in the blanks to answer the question "How many bikes have had at least two rentals with the last

one being shorter than 15 minutes?":

1 2 3

len(rentals[bike]) >= 2 and rentals[bike][-1] < 15

count = 0

for bike in rentals:

 times =

 if :

 for time in :

 if :

 print()

 break

Correct answers:

Fill in the blanks to answer the question "Which bikes have been returned more than once, with at

least one rental duration being longer than 20 minutes?"

1

2

3

4

5

rentals[bike] len(times) > 1 times time > 20 bike

1 2 3

1 2 3 4 5

Item 3

Questions Data structures

Given the following function for counting how many bikes have had rentals longer than some duration:

def rented_longer_than(time):

 ...

Which of the following options does not throw an error when calling the function?

A rented_longer_than(time=10)

B rented_longer_than(20, 30)

C rented_longer_than(interval=10)

D rented_longer_than()

def rental_price():

 total_price = 0

 if duration 15:

 total_price += 0.1 * duration

 else:

 total_price += 0.1 *

 total_price += 0.2 *

 if :

 total_price += 5

 return total_price

Correct answers:

The rental price per minute changes depending on the time of rental, according to the following rules:

 - For the first 15 minutes, the price is 0.1EUR/min

 - After that, the price is 0.2EUR/min

 - For rentals longer than 45 minutes, on top of the rental price, there is an additional fixed charge of 5EUR.

Fill in the blanks to complete the definition of a function named rental_price that takes one argument, duration ,

and computes the rental price of the bike for a given duration according to the rules described above.

1

2

3

4

5

duration <= 15 (duration - 15) duration > 451 2 3 4 5

https://europe.wiseflow.net/legacy/author/preview/printActivity.php?activityId=ba7004b7-79dc-4628-94b9-b763a4bb59e3&type=new#
https://europe.wiseflow.net/legacy/author/preview/printActivity.php?activityId=ba7004b7-79dc-4628-94b9-b763a4bb59e3&type=new#
https://europe.wiseflow.net/legacy/author/preview/printActivity.php?activityId=ba7004b7-79dc-4628-94b9-b763a4bb59e3&type=new#
https://europe.wiseflow.net/legacy/author/preview/printActivity.php?activityId=ba7004b7-79dc-4628-94b9-b763a4bb59e3&type=new#

Which of the following correctly defines the function profit that takes no arguments and computes

the profit of the rentals. This value is obtained by adding the rental price, for the length of each rental,

of all the rentals registered in the system.

def profit():

 total = 0

 for bike in rentals:

 total += rental_price(bike)

 return total



def profit():

 total = 0

 for bike in rentals:

 for duration in rentals[bike]:

 total += rental_price(duration)

 return total

def profit():

 total = 0

 for bike in rentals:

 for duration in rentals[bike]:

 total += rental_price(duration)

 return total

def profit():

 total = 0

 for bike in rentals:

 for duration in rentals[bike]:

 total += rental_price(duration)

 return total

Considering the following function

def bike_label(name, reverse=True):

 for bike in rentals:

 if reverse:

 return(f"{bike}: {name}")

 else:

 return(f"{name}: {bike}")

 return "No bikes"

What is the output of the following code?

bike_label(reverse=False)

A No bikes

B name: B001

name: B002

name: B003

name: B004

name: B005

C B001: name

B002: name

B003: name

B004: name

B005: name

D It throws an error

Item 4

Questions Data structures

class BikeShare:

 def __init__():

 for bike in bike_ids:

[bike] = []

Correct answers:

Consider the following class to a bike with its ID:

class Bike:

 def __init__(self, bike_id):

 self.bike_id = bike_id

Implement the BikeShare class to represent a bike rental system as described earlier.

The class attributes are:

- rentals : A dictionary with the rental duration of each bike, as described earlier.

- maintenance : A list with bike IDs that are currently unavailable due to maintenance.

Fill in the blanks to implement the class constructor. The constructor takes one argument, bike_ids , a list with the

IDs of bikes in the system, which is used to initialize the rentals attribute. All bike ids are added to the dictionary

with their value being an empty list (i.e. no rentals yet). The attribute maintenance is initialized as empty list.

1

2

3

4

self, bike_ids self.maintenance = [] self.rentals = {} self.rentals

Which of the following answers the question "Create a new bike rental system with bikes A001-

A004"?

A bikes = BikeShare(self, ["A001", "A002", "A003", "A004"])

B bikes = BikeShare("A001", "A002", "A003", "A004")

C bikes = BikeShare(bikes=["A001", "A002", "A003", "A004"])

D bikes = BikeShare(["A001", "A002", "A003", "A004"])

1 2 3 4

https://europe.wiseflow.net/legacy/author/preview/printActivity.php?activityId=ba7004b7-79dc-4628-94b9-b763a4bb59e3&type=new#
https://europe.wiseflow.net/legacy/author/preview/printActivity.php?activityId=ba7004b7-79dc-4628-94b9-b763a4bb59e3&type=new#
https://europe.wiseflow.net/legacy/author/preview/printActivity.php?activityId=ba7004b7-79dc-4628-94b9-b763a4bb59e3&type=new#
https://europe.wiseflow.net/legacy/author/preview/printActivity.php?activityId=ba7004b7-79dc-4628-94b9-b763a4bb59e3&type=new#

Which of the following correctly defines the method bike_unavailable that takes one argument,

bike (an object of the Bike class), and adds the bike ID to the maintenance attribute?


A def bike_unavailable(self, bike):

 self.maintenance.append(bike.bike_id)

B def bike_unavailable(self, bike):

 self.maintenance.append(bike)

C def bike_unavailable(self, bike):

 maintenance.append(bike.bike_id)

D def bike_unavailable(bike):

 self.maintenance.append(bike.bike_id)

class BikeShare:

 ...

 def working_bikes():

 available = []

 for bike in :

 if bike :

 return

Correct answers:

Fill in the blanks to complete the definition of method working_bikes in the BikeShare class, to

return a list with the IDs of available bikes (i.e those that are not out for maintenance). This method

takes no arguments.

1

2

3

4

5

self self.rentals not in self.maintenance available.append(bike)

available

1 2 3 4

5

What is the output of the following code?

bike = Bike("A001")

share = BikeShare(["A001", "A002"])

share.bike_unavailable(bike)

print(share.working_bikes(), share.maintenance()])

A ["A002"] ["A001"]

B ["A001"] ["A002"]

C [] []

D It throws an error

