Problem Set 2
Solution topics

a) If type is observable, I solve:
max By(zo) —cr(zy) i=T,U

T1,To

s.t. Bo(mj) = Co(l‘o,ei) 2 0

Each type will get the net benefit of 0 (in order to satisfy the participation
constraint).

£ = Bi(xo) — cr(zr) + X [Bo(z1) — co(xo, 0;)]

FOC
Bi(zo) _ crlzn) - Br(zo) _ colo,6:)
co(zo,0:)  Bolzr) cr(zr) Bo(zr)
(my marginal benefit, corrected by the price I have to pay, equals the other s
marginal cost, corrected by the price he receives)

b) If type is not observable, the first best contracts can not be offered -
otherwise the true type would want to take the untrue type’s contract.
The problem is:

o A [Br(ey) —eer)] + (1= A) [Br(zg) — exle)]

0
0
Bo(zf) - co(zg , 0r)
By(«T) — co(xd ,00)

IRy Bo(zT) — co(z{, 07)
IRy Bo(zf) — co(zg , v)
ICT Bg(ﬂ:;)—cU(mﬂ,ﬂT)
ICy  By(xf) — co(xg , 0v)

A AV AVARAY)



- IRt is not binding at the optimum:
Bo(x) — co(z§,07) > Bo(zY) — o2l ,07) > Bo(zY) — co(xf, ) >0

-IRy; is binding at the optimum

Otherwise, I could decrease z¥ and zT so that dBy(zf) = dBy(zV) = ¢
small enough so that IR constraints are still satisfied (and IC constraints do not
change) and my net benefit would increase.

-ICr is binding at the optimum

Otherwise, I could decrease .’3}1 by an £ small enough that IR and IC are
still met (clearly ICy will be met as well and IRy does not change) and increase
my net benefit

- ICy is not binding at the optimum

Using IRy and IC7 in IC; yields 0 > ¢, (:BE, GU) —c, (:BE, HU) — [c0 (:rg, BT) —c, (:rg, HT)}
The RHS is approximately:

Co' (w HU) (:Bg o mg) _CO,(“: HT) ('Tg o 9:31) = [CO’(':' GU) e '30’(*: QT)] (mg o '1331) =

(=)
Graphically:

The optimal U contract must be on the reservation utility indifference curve
and the optimal T contract must be on the indifference curve for type 61 that
goes through the U contract. Although ¥ < z¥* and z¥ < zU* (if 2V = 2¥*
and ¥ = zU* I could decrease them slightly getting a second order decrease in
my net benefit but getting a first order increase in the net benefit I derive from
type Or), we are not sure whether 1 = z1* because the tangency between my
indifference curve and type 01 ‘s indifference curve is not always at the same
level of xy (or z,, for that matters). Also, clearly, ICy is not binding at the
optimum.




Analytically, we have:

. X [Br(ag) —er(z1)] + (1 = A) [Bi(a§) — er(af)]

a By(Y)—co(zV,0y) = 0
v Bo(z) —co(zg,07) = Bola}) —colzg,0r)
FOC:
1) ABr(zj ) — veo(ag,07) = 0
2) —Xer(z]) +vBo(zf) = 0
3) (1—X)Br(zg) + veolzg ,0r) — aco(ag ,0u) = 0
4) — (L= XNer(zf) =vBo(z]) + aBo(af) = 0
Brizl) _ ei(=l) 2 :
1)+2) = (el ) — BoaT) — Same condition as in the observable case
0° I

which is why we have efficiency at the top
We make the terms of the U contract worse and give the true type an infor-
mational rent so that we can convince the agent to reveal his feelings.



a) The first best optimal levels can be found by solving:

max 2x — ot
z,t

st.t—0z>>0

It is easy to see that the constraint must be satisfied with equality. Other-
wise, the social planner could increase x, the constraint would still be satisfied,
and the government’s objective function would yield a higher value. Hence, the
problem becomes:

max 2z — afx?

z,t

The FOC yields:

1
* f) = —
z'(0) = —
Implying a transfer of:
1
t*(0) = —
() 20

b) In this situation, the government will maximize the expected value of
its objective function (over ) subject to the truth-telling and participation
constraints. Hence, the problem becomes:

max f 122(0) — at(8)] d6

s.t.  t(0) —0z(0)*> >0, V0 € [1,2]
t(0) — 6z(0)2 > t(6) — 6z(6)2, V0,6 € [1,2]

Now, let 7(0,60) = t() — 0z(0)?. Differentiating w.r.t. 6 yields:



dm dt

Which becomes, after applying the envelope theorem (or incorporating the

FOC):

(6) — z(0)* — 295,»(9)%

dm 5
@(9,9) =—z(0)° <0

Hence, the "worst type" is 6. Since ﬁ—g = —20z and ‘é—": = 1, we have that
4 (ifr/;;f) = —2z < 0, and CS~ holds. This condition implies that any imple-

mentable contract must have x be a non-increasing function of type.
Integrating both sides of the previous equation from € to 8, we obtain:

2
T =T 0 T 0)2d6
(6) = 7(8) + / (6)%dd
2 — o
& t(0) = 0z(0)% + f z(6)2d0
2]

Where we used the fact that the IR is binding for the "worst type", i.e.,

m(0) = 0.

We can write the principal’s problem as:

max 12 [23:(9) —a (9:1:(9)2-0- /9 Qm(ﬁ)gdﬁ)] do

z(0),t(6)

Let us now compute f12 fgz a:(g)zdgdt?. Integration by parts yields:

fj /: z(6)%d0ds = [(0—1)/::;:(9)2(39] +/12(9_1)$(9)2d9:

= 0+ fQ(B —1)z(8)%d8 =

2
1

_ /2(9 ~ 1)a(6)2d

And so our problem becomes:

2

max 22(6) — (20 — 1)z(0)?] d6
max [ [22(0) - a2 - 1)a(0)’

Pointwise differentiation yields:

1

"0 =@

Hence, the transfer is:



1) = 60x(0)%+ f Zm('é)zd'éz
[

. ]2;({5—
2@0-12 " )y a2@i—1)2

0 1 1
= 22012 2a2(4—1)  2a2(20-1) _
0 1 1

a?(20—1)2  6aZ " 2a2(20—1)

c) In this case, the government solves:

7
max 2x(0) — at(0)| do
x| [2000) — at(0)

s.t.  t(0) —0z(0)® >0, VO € [1,0]
£(6) — 6z(0)* > t(9) — 6z(6)2, V6,8 € [1,6]

Using the same steps as in b), it is easy to see that this problem can be
re-written as:

0
max 22(0) — (20 — 1)z(0)?] db, 6 € [1,2
max [ [20(0) — (20~ 1a(6)") a0, T € [1,2

Pointwise differentiation yields:

And the transfer is:

t(6) = 0x(6)%+ / gm(’é)Qd =

0 1 1
a?(20 —1)2 B 202(20 — 1) - 2a%(20 — 1)

The utility of the government is:

_ d 2 0 1 L
B(6) :/1 [0(29 1) a1z " 20(20 — 1) 2020 — 1)] @

The derivative of this function is positive and so the optimum is at 6 = 2.



. a) Let p denote the n-dimensional vector of the agents’ valuations where
each p, follows a distribution F' on [0,1]. Let T;(x) denote the (always non-
negative) amount of time that agent ¢ will need to invest when the vector of
types is p and let P;(u) denote the decision function (probability of the funding
going to agent 7).

Let pi(si) = B (P(w)) and t:(u;) = Eu_,(Ti(w).

The (interim) utility of an agent i is then u; = p;u, — t;

(i) IC

For agent i’s IC, from U;(i;, ;) = —t:(i;) + p;pi(i;) we can write the value
function U;(p;) = Ui (i, pt;)- Using the value function and applying the envelope

theorem (or just incorporating the FOC), we have that %(#i) = g—i:}(,u,i) and

au;
7 (1) = pip;)-
Buy
Since % (—§%—) = 1 > 0, CS™* holds. (Notice that t; enters the agent’s

Hi (—t;

utility function (wit)h a negative sign and therefore we need to take the derivative
with respect to —t; in order to apply the theorems directly).

Therefore, we need p;(u;) to be nondecreasing in any implementable con-
tract.

Jio) = { 3,[_{: (1) = pipe;)

pi(p;) nondecreasing
We can now rewrite the utility of agent ¢ as the sum of the utility of the

"worst type" and an integral. Integrating fﬁg‘f (1;) = pi(p;) from p; = 0 to p,

yields U; (u;) = Ui (0) + foﬂi pi(B;)dp;. Since Us(p;) = —ti(w;) + pipi (1;), we can
write 2;(p;) = pypi(p;) — Ui(0) — [ pi (1) dfi;.

b) IR just requires that U;(0) > 0. Notice however that because time is
non-negative, there is an upper bound of 0 for the utility of an agent with a
valuation of 0. Therefore, the Ministry must set the contract for type 0 such
that U;(0) = 0.

The Ministry wants to maximize Y-, B, [[." p; (i;)df;] (subject to the monotonic-
ity constraints).

Since

B, [ / p@-(m)dﬁi} - [ : I " puae) e £ (s s,

integration by parts yields

E,, U: Pi(ﬁi)dﬁz} = By, [pi(ﬂi)'%;y]

Ignoring the monotonicity constraint, the simplified problem is then:

i o L= F )
(Piu)) & e [pi(“‘)' Fha) }_{Pz-m)}ZE’“ [PZ(“)' Fpa) }

i



Let J(u;) = .%ﬁﬁ)ﬁ.(}iven the assumption, J(.) is strictly decreasing (and it is

always non-negative). Ignoring the monotonicity constraint, the optimal mech-
1 if Hi =min{:u’17"",u'n}
0 otherwise

However, the monotonicity constraint is not satisfied by this mechanism.
Incorporating the monotonicity constraint, we have that (i) it is always optimal
to set the sum of the probabilities equal to 1; (ii) P;(p) > Pj(p) whenever p, >
;- The optimal mechanism (that maximizes the Ministry’s expected utility)
must then set P;(u) = Pj(u) whenever p; > p; and therefore P;(u) = Pj(u) for
all 7, j.

The optimal mechanism will then set Pi(u) = + for all i and ti(u;) =

Ki — [ %dfi; = 0 (and the grants will be allocated randomly).

anism would be the one that sets: P;(u) =

a) A single firm; government has coercive power (i.e. we do not need to
worry about IR).

Show that the socially optimal amount of pollution z* (f) can be obtained
by giving the firm a transfer k — D ().

The social welfare function is, up to a constant, —D (x) — C (z,0) (i.e.,
the government cares about the damages to society and also about the firm s
profits)

The socially optimal z* (#) comes from the government problem:

max —D (z) - C(z,0)

FOC:
D'(z) = —-C'(z,0) (1)

which implicity defines z* (6).

(The SOC is also satisfied since —D'(z) — Cyz (.,.) < 0)

If the government gives the firm a transfer ¢ (z) = k — D (z) ,the firm solves
the problem:

mfxt(m) - C (z,0) =mf.xk—D(:L‘) - C (z,0)

FOC:
D(z) = —C'(z,0)

where clearly z = z* (0) is the solution.

Therefore, the firm will internalize the externality and choose the socially
optimal level of pollution (just like in the Groves case, the government induces
the firm to solve the social welfare problem)



b)

In an A-G-V scheme, each agent is paid the expected value of the other
agent s surplus, conditional on his own report. In this example, since there
is an additional element in the social welfare function (the damages caused by
pollution), we need to include that as well in the transfer so that each agent
will internalize the social surplus and choose the socially optimal z].

So we set

t-; (@) = Eg_t. Z —Cj (m;‘ (é:i,ﬂ_i) ,6'3') - D (11’.'* (é:_, 9_5)) + 7 (g_-,.;)
JF
where 7; (g_i) is constant in g; and is chosen so that the budject is balanced.

Clearly f; = 6; maximizes

[0 (5 30-0) ) -2 (v (3.0-) 01 (o1 (3.0-) o)

i

and the mechanism is incentive compatible.
For budget balance, we share the expected externality we give to each agent
among all other agents, i.e.,

1) - (£ 06000 - < (0-)
So

t(0) = Bo. D -C;(s;(86-).6,) - D (o (8:.6-))

JFt

_%Zﬂg_j > -G (m;; (é},a_j) ,5;:) -D (m (é} 5_5,-))

iFd k#j



(a) Player i’s payoff function is:

_f 6i —b; isubmits winning bid
wi(bi, b, 0:,0-) = { —b; 1 submits losing bid

The set of strategies (b; (f;) Vj = 1,...,I) constitutes a BNE here, if for each v; € [0,1],
b (v;) solves:

max (8; — bi) Pr b > b; (6;)]" ™" + (=bi) [1 = Pr [bi > b, (6,))" "]
& max—b; +0;Prb > b, @)
To solve for a BNE, suppose that player j adopts the strategy b(.) and assume that b(.) is
strictly increasing and differentiable. Then for a given realization of 6; , player is optimal bid

solves:
n-iax —b; + 0, Pr [bi > bj (gj)]r_l

Let b; ' (b;) = b~'(b(6,)) = 6; the valuation that player j must have in order to be bidding
b;. Since 6; ~ U [0, 1] we have:
—bi + 6; Pr[b; > b; (9_;.’)]1_1
—bi+0;Pr [~} (b)) > b7 (b(0,))]" "

b1 (b)) "
—bi + 0; [ﬁ]

Thus, the first order condition for player s optimization problem is:

—146,(I-1) [db_dl—b(b‘)] [b'l (bi)]f—z -0

The first order condition (III) is an implicit equation for bidder 7 best response to the strategy
b(.) played by bidder j, given that bidder is valuation has been realized as 6; . If we are looking
for a symmetric BNE, we require that both bidders play the same strategy in equilibrium. Since,
therefore, bidder j plays the strategy b(.), this must be also playedby bidder 4, in equilibrium.
Hence, we require that b(.) is player is best response to b(.) by player j. In other words, b (;)
must satisfy the first order condition (II): that is, for each of bidder s positive valuations, she
does not wish to deviate from bidding according to the schedule b(.) , given that player j bids

according to the same schedule.
To impose this requirement, we substitute b; = b(6;) into (iii):

—146,(I-1) [%] [b—l (b,-)]'—2

g4I -1j [‘”’"] =1

0&6,(I-1) [%]0{4:1

do;

Our last equation must be viewed as a first-order differential equation that the function b(.)
must satisfy. Clearly, however, if this is to be satisfy for any values of 6; Vi, it should be so for

6; = 0 Vi. We now have:

O I— 1) =1e50) =T -1)0" o b@) =11
m - =1 )— —) =4 )—T +c

To eliminate ¢ we need a boundary condition. Fortunately, simple economic reasoning pro-
vides us with one: no player should bid more than his/her valuation. Thus, we require b (6;) < 6;
V0; € [0,1]. In particular, we require b(0) < 0. Since bids are constrained to be non-negative,
this implies that b(0) = 0. Hence, ¢ = 0 and our proposed BNE solution is that each bidder

submits a bid according to the schedule:

b(6) = 0!



(b) Using the Revenue-Equivalence theorem, we note that:

1. Both auctions can be viewed as incentive-compatible, direct-selling mechanisms.

2. In both auctions, the probability assignment function is the same since the object is
assigned, in equilibrium, to the player with the highest valuation.

This is due the fact that, in both auctions, the players. equilibrium bidding strategies
are strictly increasing in the players own valuations.

3. In both auctions, a bidder with zero valuation receives an equilibrium expected payoff
of zero. Therefore, he is clearly indifferent between the two

auction mechanisms.

(1)-(3) suffice for the theorem to apply. Consequently, the expected revenue to the seller
ought to be the same between the sealed-bid second price auction and the first-price all-pay
auction.

(c) Optimal asymmetric auction
- risk neutrality and independent private values
6,"U[0,10];6,"U[0,1]; 85~ U0, 1]

We can apply the same steps as in the lecture notes to get the expected revenue to seller:

o 001 [, 982 [, 963[P1(61,02,05)J1(81) + Pa(61,02,05)J2(62) + Ps(81,02,03) J3(63)] 35
where the virtual valuations are:
J1(01) = 26, — 10; Ja(02) = 26, — 1; J3(03) = 203 — 1;
All these are increasing in 6; so the problem is regular — the optimal auction is characterized
by:

Which gives:

P1(01,02,93) =1iff #; >5and 6; > 4.5+ 6, and ; > 4.5+ 63

P2(01,92,93) =1iff # > 0.5 and 03 > 03 and 05 > 0, — 4.5

P3(01,02,93) =1iff #3 > 0.5 and 03 > 0, and 05 > 0; — 4.5

We know from class that

T:(6:) = Ui(6;) + f;; Xi(6:)do; — 6;X;(6:)

Rewriting it with the notation of the exercise (p; = X; and P; = z;) and using the fact that
the utility of the worst type must be zero, we get (using integration by parts):

Ti(0:) = fy. pi(8:)d0; — 0:p:(6:) = — [, 0:dp(:)

So the agent expects to pay t;(0;) = fog.-i Eidp(ai)

(where p;(6;) = Eq_,[P;(6))).

One way to replicate this optimal auction by a standard-like auction:

- consider a Vickrey second price auction with a reserve price of 5 but where bidders 2 and 3
get a rebate of 4.5 if they win (this means that bidder 1 end up paying more than 5 if he wins).
In this auction it is a dominant strategy to bid one’s valuation (+4.5 for bidders 2 and 3) —
probabilities of winning and expected payment correspond to the ones found above.

Notice: An assumption all along is that the auctioners knows the distributions of types across
bidders and who is who Bidders 2 and 3 receive preferential treatment here. This policy has a
cost: sometimes the object will be awarded to someone else than the highest valuation bidder
(non-efficiency) and the auctioneer will receive a relatively low payment in those cases.

However this bias against 1 forces him to bid higher than otherwise. The optimal auction
strikes the best compromise between these two effects.

(d) 6,"U[1,11]

As above, we get:

J1(61) =260, — 11; J5(02) = 202 — 1; J3(03) = 2605 — 1

Which gives:

P1(01,92,93) =1iff 6 >5.5and 6; >5+6, and 6, > 5+ 03

P2(01,02,03) =1iff 02 > 0.5 and 0, > 03 and 6, > 01 -5

P3(01,92,03) =1iff 63 > 0.5 and 3 >0, and 03 >0, — 5

A similar 2nd price auction with minimum bid of 5.5 and rebate of 5 for bidders 2 and 3 is
optimal

And this even though the auctioneer a priori knows that bidder 1’s valuation is always greater
than bidders 2 and 3’s valuations.



