

NOVA SCHOOL OF BUSINESS & ECONOMICS

The Skbrudsplan (Cloudburst Plan) – A Sponge City Initiative in Copenhagen

Group 14 2652-Fundamentals on Environment and Sustainability Francisco Ferreira I Maria Godinho

. Q . Ab A. L. F.

MEET THE TEAM

Kathrin Biberger 63711 Master in Finance

Hannah Burth 63603 Master in Economics

Leonie Pfeifer 60460 Master in Finance

Hannah Tewes 57968 Master in Finance

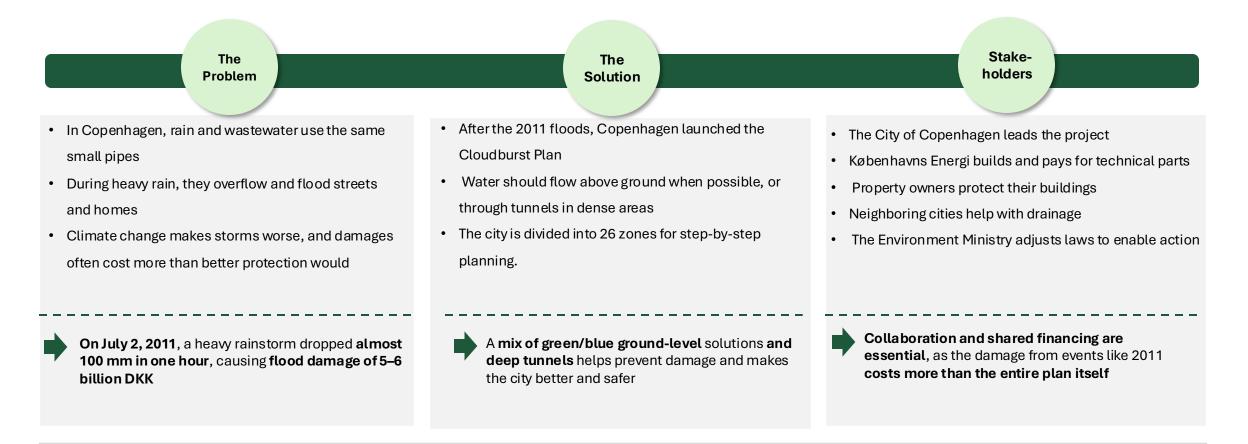
AGENDA

- 01 Project Background
- 02 Project Timeline
- 03 Environmental Impact Assessment
- 04 Tools Application
- 05 Recommendations

EXECUTIVE SUMMARY

Proving the Impact: How Copenhagen's Cloudburst Plan Delivers Value

Situation	Copenhagen faces increasing extreme rainfall due to climate change. To enhance resilience, it developed the Cloudburst Manage ment Plan based on nature- based and sponge city principles					
Complication	Scaling up green infrastructure requires proof of long-term benefits across environmental, social, and economic dimensions					
◯ _S Question	What are the measurable sustainability impacts of Copenhagen's Cloudburst Plan?					
Answer	Impact assessments show the plan delivers long-term environmental and socio-economic value, supporting climate adaptation goals					
	HOW		KEY FINDINGS			
	Environmental Impact Assessment → Improved water quality, reduced flooding, better land use		City-Level Improvements	Global Relevance		
Sustainability Highlights			Enhances urban resilience and climate adaptation	Reduces public infrastructure damage from floods		
	Life Cycle Assessment → Reduced emissions, efficient resource use in infrastructure		Promotes sustainable urban planning integration	Sets a replicable model for other global cities		
	Strategic Sustainability Assessment → Balanced socio-economic and ecological trade-offs		Improves stakeholder engagement and awareness	Attracts international recognitior and funding		


.

Project Background	Project Timeline	Environmental Impact	Tools Application
	As ses sment		

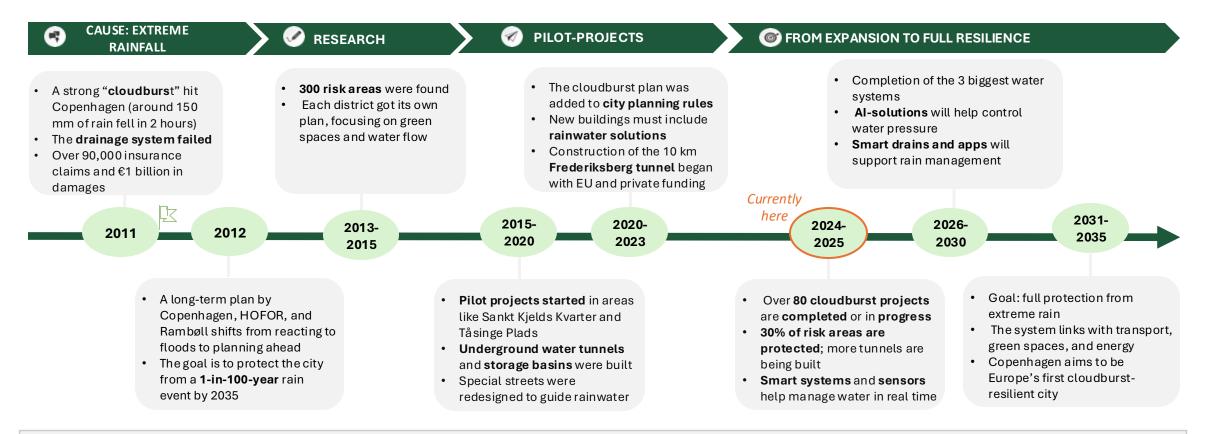
Recommendations

PROJECT BACKGROUND

Facing the Flood: How Copenhagen Responded to Growing Rainfall Threats

The Cloudburst Management Plan is a bold and forward looking strategy that brings together smart urban design, close cooperation between key stakeholders,

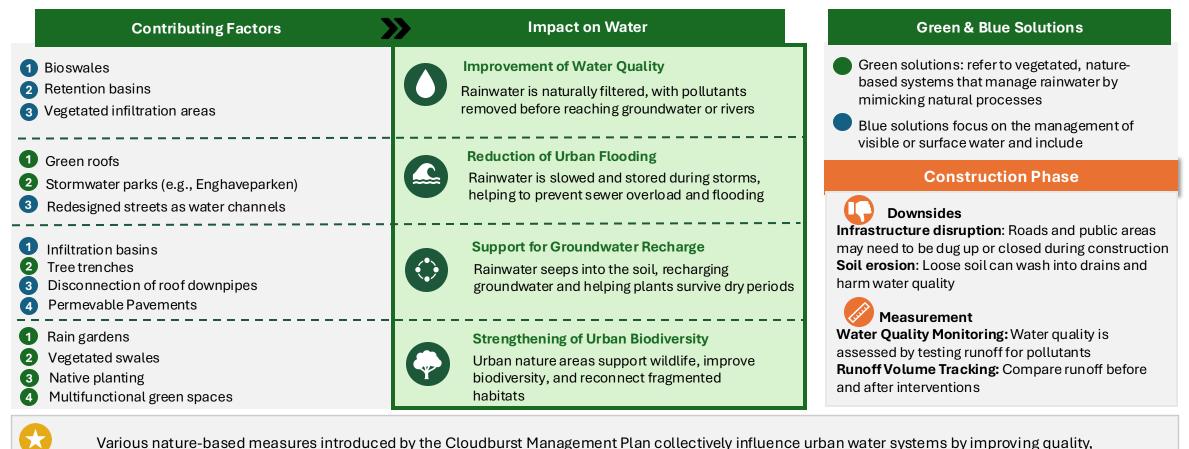
and long term investment with one clear goal: to make Copenhagen safer, greener, and better prepared for future extreme rainfall events


Environmental Impact Assessment Tools Application

Recommendations

PROJECT TIMELINE

From Disaster to Resilience: Copenhagen's Long-Term Path to Flood Protection



This timeline shows how one extreme rainfall event in Copenhagen led to a long and coordinated process of research, planning, and investment. Over time, this

has helped transform the city into a safer, more climate-resilient, and better-prepared place for the future

EIA-IMPACT ON WATER

Rethinking Rain: How Nature-Based Solutions Reshape Urban Water Management

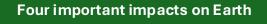
valious nature-based measures introduced by the Cloudburst Management Ptan collectively initidence urban water systems by improving d

reducing flooding and supporting ecological balance

Project Background	
--------------------	--

Project Timeline

Environmental Impact Assessment


Tools Application

Recommendations

EIA-IMPACT ON EARTH

Rethinking Urban Space: How Nature-Based Strategies Reshape Land Use and Ecosystems

Land use transformation

Urban spaces serve multiple functions:

- Parks and streets act as flood zones during heavy rain
- 300+ sites now combine social and environmental use

Boosted Urban Biodiversity Native plantings and green zones support habitats for animals

- Rain gardens and bioswales attract birds and insects
- Green corridors reconnect fragmented ecosystems

Construction Phase

Soil Disruption: Machinery can compact or erode soil, reducing infiltration Vegetation Loss: Trees and greenery may be cleared during works Landscape Alteration: Reshaping terrain for infiltration zones or basins changes the natural topography and soil structure

Improved Soil Health

Permeable surfaces improve infiltration and reduce erosion

• Porous pavements and green roofs support water absorption

• Less surface runoff helps stabilize urban soils

Spatial Trade-Offs

Green infrastructure reduces land for housing/commercial use

- Limited space in dense areas leads to landuse conflicts
- Gentrification risk in upgraded, greened neighborhoods

Measurements:

Soil Tests: Check how well water soaks into the soil Plant Monitoring: Track growth of new vegetation Biodiversity Checks: Count species to assess habitat recovery

Together, these nature-based transformations reshape the urban landscape, improve soil and biodiversity, but require careful planning and long-

term monitoring to manage trade-offs and construction impacts

Project Background

Project Timeline

Environmental Impact Assessment

Indirect Effects

leads to less NO_x, CO₂, and fine dust

energy use (e.g. for air conditioning).

Human-friendly cities lead to healthier

Esig

(PM₂,) in the air.

air quality.

environments.

Traffic calming & active mobility: More bike

lanes and walkways mean fewer cars, which

Cooler microclimates: Green areas reduce

city heat, which leads to less ozone and lower

Behavior change: Over time, people use cars

less - leading to long-term improvements in

Tools Application

Recommendations

EIA-IMPACT ON AIR

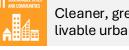
Skybrudsplan cuts air pollution with green space and fewer cars

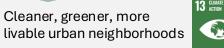
 $(\mathbf{s}_{0}^{\mathbf{e}})$

Direct Effects

Urban greenery - such as trees, green roofs, and parks - helps clean the air by filtering fine dust (PM2.5) and binding nitrogen dioxide (NO₂). This leads to better air quality, especially in densely built-up areas.

Open water surfaces - like retention areas and canals - cool the air through evaporation, which helps to lower temperatures and reduce ozone formation on hot days.


CO₂ storage: Plants take in CO₂ and store it in their leaves, roots, and soil. This helps Copenhagen reach its goal of becoming CO₂ neutral


Urban greenery cleans the air and cools the city

SDG contribution

Reduced air pollutants → fewer respiratory and cardiovascular diseases

CO₂ sequestration, reduced ozone formation, climateresilient urban planning

Construction Phase

Fine dust & diesel: Construction sites produce PM2.5, NO2, and CO2 from excavators, trucks, and earthworks.

Health risk: The WHO says that fine dust and diesel smoke are bad for your health and can even cause cancer.

Countermeasures: Particle filters, dust control sprays, and low-emission construction machines help reduce pollution.

Short-term impact – but technically manageable.

Project Timeline

Environmental Impact Assessment Tools Application

Recommendations

EIA-SOCIO-ECONOMIC IMPACT

The Cloudburst Plan as a Catalyst for Equity and Innovation

Category		Benefit	Challenge
	Economic Resilience	 Avoids over DKK 16 billion in potential flood damages through proactive adaptation More cost-effective than traditional sewer system 	 Requires around DKK 11-12 billion in upfront investment and has a long payback horizon
8	Jobs and Innovation	 Creates 13,000–15,000+ jobs in construction, design & maintenance Builds local expertise in blue-green infrastructur 	• Risk that benefits concentrate in already skilled sectors, so an inclusive access to training is needed
	Housing and Real Estate	 Property values increasing near upgraded areas leads to more tax revenue for Copenhagen 	 Green gentrification risk: low-income households could be displaced if rents rise Requires affordable housing policies to ensure inclusive outcomes
	Public Space and Urban Quality	 Converts grey spaces into parks, plazas & green boulevards Improves mental health, recreation and social cohesion 	Construction causes short-term disruption: noise, dust, traffic issues, access barriers
9 9-9	Social Accessibility	 Strong emphasis on co-creation with citizens; broad public support Prioritizes projects by flood risk, not income → citywide distribution 	 Fairness and inclusion are not as strong as the technical parts, so they might need more attention

Fhe Skybrudsplan proves that climate adaptation can deliver economic value, public benefits, and urban transformation — but only if social equity and inclusion are built into

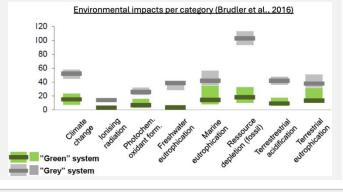
Project Background

Project Timeline

Environmental Impact Assessment Tools Application

Recommendations

TOOLS APPLICATION


Applying Assessment Tools for Sustainable Urban Planning

Environmental Impact Assessment

- **No formal EIA** conducted under EU Directive 2014/52/EU
- Environmental impacts addressed through integrated planning
- Includes blue-green infrastructure (e.g. rain gardens, retention basins)
- Continuous monitoring enables adaptive management
- Environmental risks identified and managed without formal EIA procedure
- A formal EIA might be recommended to enhance environmental accountability

Life Cycle Assessment

- Assesses environmental impacts of green vs. grey infrastructure
- Shows lower impacts for green solutions
 overall
- Material production is key contributor to impacts
- Extreme rain events → higher impacts in green systems

Strategic Sustainability Assessment

- Aligns the project with UN Sustainable Development Goals (SDGs)
- Key SDGs:

- Assesses broader sustainability contributions
 beyond the environment
- Supports long-term, integrated urban planning and decision-making

The Cloudburst Plan integrates principles from EIA, LCA, and SSA to assess environmental and sustainability impacts: While no formal EIA or SSA was conducted, key environmental risks, lifecycle effects, and contributions to UN SDGs were addressed through integrated planning, monitoring, and sustainable design choices.

Project Background	
--------------------	--

Project Timeline

Environmental Impact Assessment Tools Application

Recommendations

RECOMMENDATIONS

Recommendations for a resilient, green, and inclusive Cloudburst Plan

These recommendations propose decentralized blue-green infrastructure, ecological corridors, urban vegetation, and inclusive implementation to enhance flood resilience, biodiversity, air quality, and social equity.

REFERENCES (1/2)

- Air Quality, Energy and Health (AQE). (2021, September 22). WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. https://www.who.int/publications/i/item/9789240034228
- Akbari, H. (2005). Energy Saving Potentials and Air Quality Benefits of Urban Heat Island Mitigation1. Lawrence Berkeley National Laboratory. <u>https://escholarship.org/content/qt4qs5f42s/qt4qs5f42s.pdf</u>
- Brudler, S., Arnbjerg-Nielsen, K., & Rygaard, M. (2016). Life Cycle Assessment of Cloudburst Management Plans in Adaptation to Climate Change in Copenhagen, Denmark. Poster session presented at the IWA World Water Congress & Exhibition 2016, Brisbane, Queensland, Australia. Retrieved from https://backend.orbit.dtu.dk/ws/portalfiles/portal/127571005/160928_IWA_WWCE_sabr_v2.pdf
- City of Copenhagen. (2012). Cloudburst Management Plan. Retrieved April 30, 2025, from https://climate-adapt.eea.europa.eu/en/metadata/case-studies/the-economics-of-managingheavy-rains-and-stormwater-in-copenhagen-2013-the-cloudburst-management-plan/cloudburst_management_plan_2012.pdf
- Copenhagen Climate Adaption Plan. (2011). In www.kk.dk/klima. Retrieved May 4, 2025, from https://international.kk.dk/sites/default/files/2021-09/Copenhagen%20Climate%20Adaptation%20Plan%20-%202011%20-%20short%20version.pdf
- Copenhagen Municipality, 2011. Copenhagen Climate Change Adaptation Plan https://international.kk.dk/sites/default/files/2021-09/Copenhagen%20Climate%20Adaptation%20Plan%20-%202011%20-%20short%20version.pdf
- Deutsche Umwelthilfe. (2014). Belastung durch dieselbetriebene Baustellengeräte und -maschinen in Deutschland (Hintergrundpapier). Berlin: DUH.
 https://www.duh.de/fileadmin/user_upload/download/Projektinformation/Verkehr/Baumaschinen/Stellungnahme_Baden-Württemberg_2014.pdf
- Dr. Küchel, L. et al, (2024). Mobilität in Wohnquartieren Die Wirkung von zukunftsfähigen Mobilitätsangeboten auf Stellplatzb edarf, Nutzerverhalten und Wohnumfeld in Neubauquartieren. In BBSR. Retrieved May 4, 2025, from https://www.bbsr.bund.de/BBSR/DE/veroeffentlichungen/bbsr-online/2024/bbsr-online-27-2024dl.pdf;jsessionid=5566B2D3276345066457FB1F06575954.live11313?__blob=publicationFile&v=3
- European Commission. (2017). Environmental Impact Assessment of Projects: Guidance on the preparation of the Environmental Impact Assessment Report. Retrieved April 28, 2025, from https://ec.europa.eu/environment/eia/pdf/EIA_guidance_EIA_report_final.pdf
- European Environment Agency. (2012). Economics of cloudburst and stormwater management in Copenhagen. https://climate-adapt.eea.europa.eu/metadata/publications/economics-ofcloudburst-and-stormwater-management-in-copenhagen/11258638/@@download/file/11258638.pdf
- European Environment Agency. (2012). Economics of cloudburst and stormwater management in Copenhagen. Retrieved April 30, 2025, from https://climate-adapt.eea.europa.eu/metadata/publications/economics-of-cloudburst-and-stormwater-management-in-copenhagen/11258638
- European Environment Agency. (2023). Scaling nature-based solutions for climate resilience and nature restoration. <u>https://www.eea.europa.eu/publications/scaling-nature-based-solutions</u>
- Finnveden, G., Hauschild, M. Z., Ekvall, T., Guinee, J., Heijungs, R., Hellweg, S., ... & Suh, S. (2009). Recent developments in life cycle assessment. Journal of Environmental Management, 91(1), 1–21. <u>https://doi.org/10.1016/j.jenvman.2009.06.018</u>

REFERENCES (2/2)

- Get on your bike: Study shows walking, cycling and e-biking make a significant impact on carbon emissions. (2021). University of Harvard. Retrieved May 4, 2025, from https://www.ox.ac.uk/news/2021-02-02-get-your-bike-study-shows-walking-cycling-and-e-biking-make-significant-impact
- Glasson, J., & Therivel, R. (2013). Introduction to environmental impact assessment. Routledge.
- Good Practice Guide: Climate change adaptation in Delta Cities. (2016). In C40 CITIES. Retrieved May 4, 2025, from <u>https://www.c40.org/wp-content/static/good_practice_briefings/images/5_C40_GPG_CDC.original.pdf</u>?1456788885
- Google car measures air pollution in Copenhagen. (2018, October 9). State of Green. Retrieved May 4, 2025, from https://stateofgreen.com/en/news/google-car-measures-air-pollution-in-copenhagen/#:~:text=From%20today%20until%20the%20end,air%20quality%20in%20the%20city.
- Hellweg, S., & Milà i Canals, L. (2014). Emerging approaches, challenges and opportunities in life cycle assessment. Science, 344(6188), 1109–1113. <u>https://doi.org/10.1126/science.1248361</u>
- Interlace Hub. (2023). Cloudburst Management Plan Copenhagen. Retrieved April 30, 2025, from https://interlace-hub.com/cloudburst-management-plan-copenhagen
- International Agency for Research on Cancer. (2012). Diesel engine exhaust carcinogenic (IARC Press Release No. 213, 12. Juni 2012). Lyon: World Health Organization.
 <u>https://www.iarc.who.int/wp-content/uploads/2018/07/pr213_E.pdf</u>
- Lopes, H. S., Vidal, D. G., Cherif, N., Silva, L., & Remoaldo, P. C. (2025). Green infrastructure and its influence on urban heat island, heat risk, and air pollution: A case study of Porto (Portugal). Journal of Environmental Management, 376, 124446. https://doi.org/10.1016/j.jenvman.2025.124446
- Sankt Kjelds Square and Bryggervangen « Landezine International Landscape Award LILA. (n.d.). https://landezine-award.com/sankt-kjelds-square-and-bryggervangen/
- Santamouris, A. (2023). Green infrastructure: Building resilient cities with nature. Ukrainian Journal of Ecology. 13: 16-18.
- Tabari, H. (2020). Climate change impact on flood and extreme precipitation increases with water availability. Scientific Reports, 10, 13768. https://doi.org/10.1038/s41598-020-70816-2
- Umweltbundesamt. (2014). [Press release]. Retrieved from https://www.umweltbundesamt.de/sites/default/files/medien/newsletter/newsletter_uba_aktuell_2014_2_0.pdf
- Water Utility Climate Alliance. (2017). Copenhagen: A case study in climate adaptation engineering [Case study]. <u>https://www.wucaonline.org/assets/pdf/engineering-case-study-copenhagen.pdf</u>
- Wu, Y., Wang, Y., Zhou, Y., Liu, X., Tang, Y., Wang, Y., ... & Li, Z. (2022). The wet scavenging of air pollutants through artificial precipitation enhancement: A case study in the Yangtze River Delta. Frontiers in Environmental Science, 10, 1027902
- Ziersen, Julie & Clauson-Kaas, J. & Rasmussen, J.. (2017). The role of Greater Copenhagen Utility in implementing the city's Cloudburst Management Plan. Water Practice and Technology. 12. 338-343. 10.2166/wpt.2017.039.