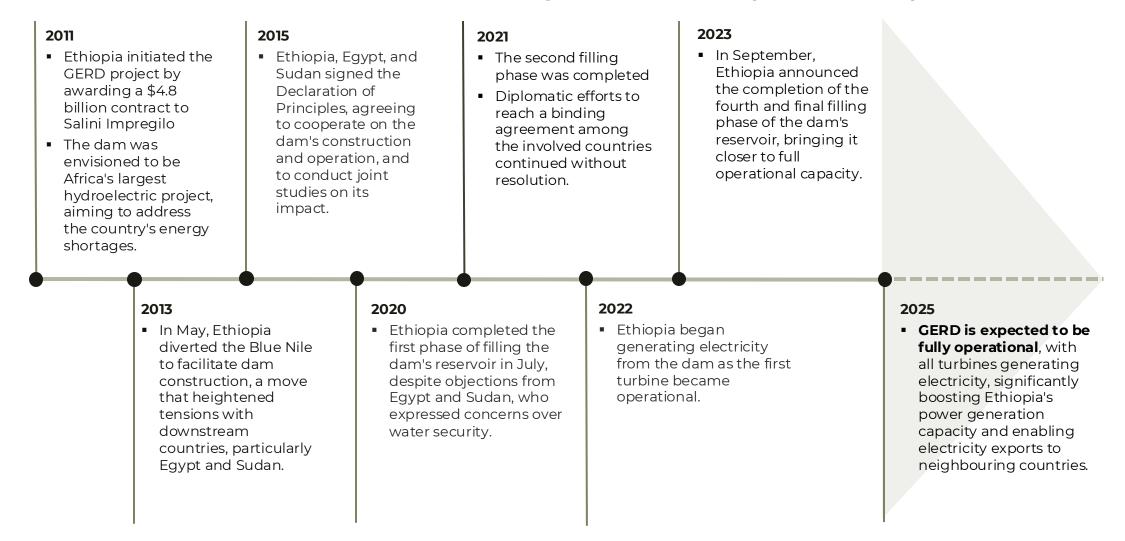
Fundamentals of Environment and Sustainability - GERD

Group 13

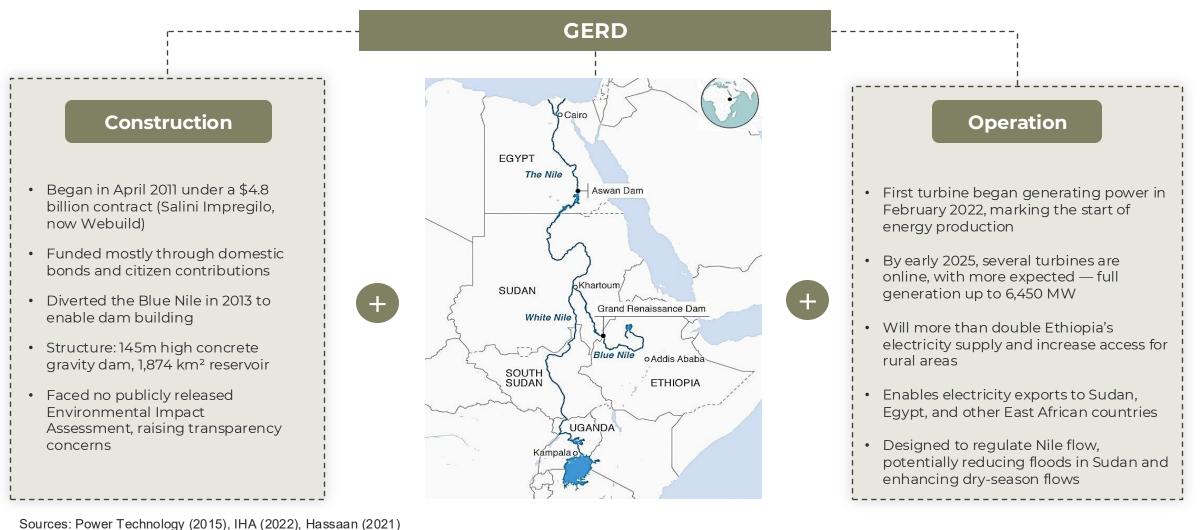
63581 Pascal Naumann 63847 Jonas Kreft 58176 Josefine Mahler 65344 Luna Schick


May 7th 2025

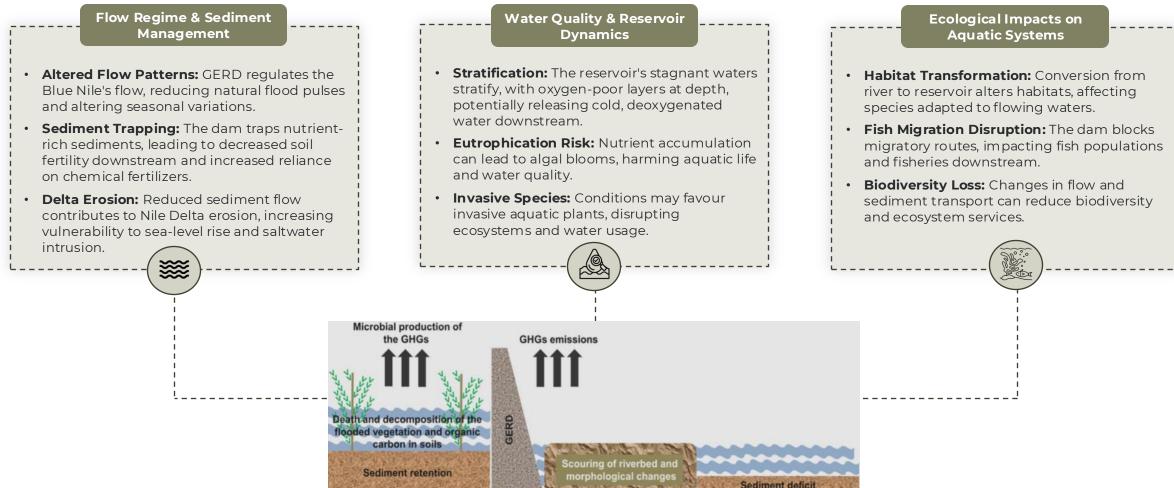
AGENDA

01 Introduction

- 02 Impacts on the water domain
- 03 Impacts on the air domain
- 04 Impacts on the earth domain
- 05 Socio-Economic Impacts
- 06 Application of Tools
- 07 Recommendations
- 08 Conclusion


From blueprint to power: GERD's key milestones (2011-2025)

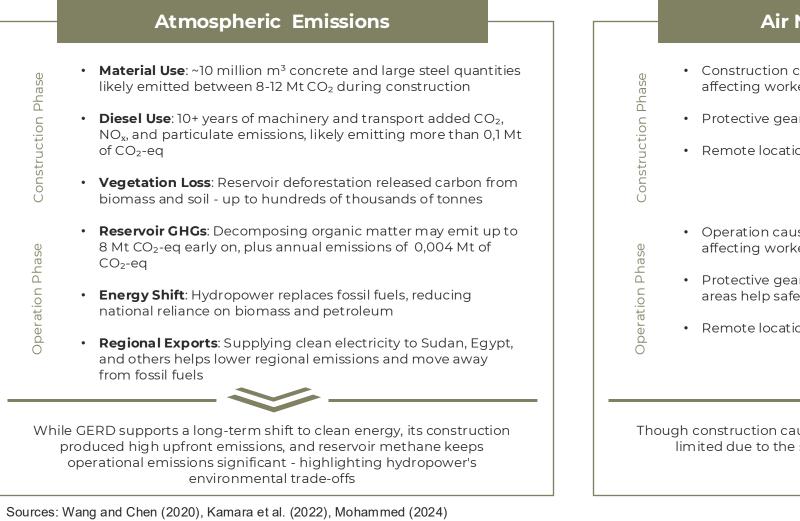
Sources: Kamara et al. (2022), Power Technology (2015), Wikipedia contributors (n.d.)


01 Introduction

GERD's construction and operation reflect Ethiopia's pursuit of energy independence, regional leadership, and long-term development

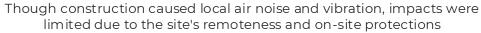
4 | Fundamentals of Environment and Sustainability – Grand Ethiopian Renaissance Dam

The water domain is severely impacted by altered flow patterns, degraded water quality, and harmed aquatic ecosystems.


Downstream of dam

Sources: Morsy et al. (2021), IHA (2022), Abdelhady et al. (2015)

5 | Fundamentals of Environment and Sustainability – Grand Ethiopian Renaissance Dam


Upstream reservoir of dam

Massive Construction and Operational Emissions Undermine GERD's Clean Energy Gains

Air Noise and Vibration

- Construction caused localized noise and vibration, primarily affecting workers
- Protective gear areas help safeguard workers
- Remote location of GERD minimizes community exposure
- Operation causes localized noise and vibration, mainly affecting workers
- Protective gear and restricted exposure time in high-noise areas help safeguard workers
- Remote location of GERD minimizes community exposure

The GERD has caused extensive land transformation, vegetation loss, and biodiversity disruption, with lasting climate and ecological consequences

Land Use Change & Infrastructure Development

- 1,650.9 km² flooded, incl. 1,300 km² of savannahs, grasslands, and riparian forests
- Extensive **land cleared** for camps, cement plants, and storage areas
- **100+ km of roads** built → fragmentation, erosion, long-term soil degradation

Vegetation Loss & Climate Implications

- Loss of carbon sinks → 18,700-32,500 t
 CO₂/year in foregone sequestration
- Methane emissions from submerged biomass (CH₄ = 25× CO₂ warming potential)
- Land-use change is a major indirect driver of **climate change**

Biodiversity Loss & Habitat Fragmentation

- Submerged habitats eliminate niches for native flora/fauna → loss of endemic species
- Wildlife corridors cut → reduced gene flow, migration, increased extinction risk
- No public **ESIA** or **biodiversity offset plan** implemented

Sources: Hassaan (2021), Grace et al. (2006), Devic (2015)

7 | Fundamentals of Environment and Sustainability – Grand Ethiopian Renaissance Dam

These land-based impacts highlight the urgent need for restoration, climate mitigation, and biodiversity offset measures to ensure GERD's sustainability.

GERD's Uneven Socio-Economic Impacts: Growth for Ethiopia, Risk for **Egypt and Trade-Offs for Sudan**

Vo Cairo	Impact on Ethiopia	
EGYPT	Energy access & development: GERD more than dou and regional exports.	ubles electricity output, powering industrial growth
The Nile Aswan Dam	Agriculture improvement: Reliable irrigation support jobs.	ts food production and creates more stable farming
	Employment generation: Many jobs created during construction phase, but also long-term employment opportunities in energy, infrastructure and power-dependent industries.	
T M	Social Disruption: Displacement of 20.000+ people, r adequate resettlement support.	nainly from the Gumuz community, without
SUDAN White Nile Grand Renaissance Dam	Impact on Egypt Threat to agriculture: Up to 25% water loss could shrink farmland, cut food production	Impact on Sudan Impact on Sudan Initial disruption: Early reservoir filling affected flood-recession farming and water
Blue Nile o Addis Ababa	and cost Egypt \$15.7B annually.	availability in some regions.
SUDAN	Job and livelihood risks: Agriculture and fisheries could face major job losses, especially among rural and female workers.	Long-term benefits: Better flow control could reduce flooding, trap sediment and expand irrigation by 500,000 hectares.
UGANDA Kāmpala ok	Strained water security: GERD adds to Egypt's already existing water challenges alongside climate change and population growth.	Severe risk potential: A dam failure could cause catastrophic flooding, destroying downstream dams and cities, including Khartoum.
Sources: Kamara et al. (2022), Minority Rights Group Internation	al (2023), Elbelasy et al. (2024)	

8 | Fundamentals of Environment and Sustainability – Grand Ethiopian Renaissance Dam

The GERD Project Lacks Comprehensive Environmental and Sustainability Assessments

Environmental Impact Assessment	Life Cycle Assessment	Strategic Sustainability Assessment
 An EIA is legally required in Ethiopia (Proclamation No. 299/2002), but enforcement is weak due to limited capacity and political influence GERD moved forward without a public EIA, raising concerns over transparency and accountability Challenges: Lack of public consultation, exclusion of regional stakeholders, and insufficient assessment of (cross-border) ecological and social impacts Recommendation: Conduct a rigorous retroactive EIA with stakeholder input to assess cumulative environmental and social effects 	 No LCA has been conducted despite GERD's scale and environmental impact Major emissions result from materials (concrete, steel), diesel use and biomass flooding throughout different stages of the life cycle Challenges: Renewable energy offsets expected, but carbon payback timeline unclear due to absence of baseline data Recommendation: Carry out a post-construction LCA to quantify emissions and plan for sustainability and eventual decommissioning 	<text><image/><image/><image/><image/><list-item></list-item></text>
Enhances governance through transparent, inclusive, and accountable environmental oversight	Provides a full picture of GERD's footprint and helps track and reduce emissions over time	Supports SDG alignment and long-term cooperation in the Nile Basin

9 | Fundamentals of Environment and Sustainability – Grand Ethiopian Renaissance Dam

Sources: Ebissa et al. (2022), Dejenie and Kakiso (2023)

To ensure the projects long-term responsibility, we recommend four forwardlooking and feasible measures

Mandate and Publish a Full Environmental and Social Impact Assessment (ESIA)

- Commission a comprehensive and transparent ESIA to evaluate GERD's environmental and social impacts
- Include biodiversity impacts, methane emissions, community displacement, and water quality changes
- Conduct the process in collaboration with neutral international institutions (e.g., UNEP, AU) for credibility
- Creates a scientific basis for adaptive dam management and fulfills international norms

Develop a Biodiversity Offset and Ecosystem Reforestation Program

- Establish and legally protect new conservation areas to compensate for the 1,300 km² of flooded ecosystems
- Prioritize ecologically equivalent areas (e.g., savannahs, riparian forests) and design wildlife corridors to maintain connectivity
- Involve local communities in restoration through jobs, agroforestry, and land stewardship programs
- Secure long-term funding through a dedicated environmental trust funded by GERD revenues

Implement Sediment Management and Watershed Conservation Programs

- Introduce sediment flushing mechanisms at GERD to prevent reservoir siltation and extend operational life
- Launch upstream watershed restoration projects, including reforestation and erosion control in the Ethiopian Highlands
- Helps preserve downstream soil fertility in Sudan and Egypt, which depends on sediment-rich seasonal flows
- Builds environmental resilience while supporting local livelihoods in degraded catchments

Establish a Cooperative Transboundary Water Management Framework

- Develop a legally binding, trilateral water management agreement among Ethiopia, Sudan, and Egypt
- Establish guaranteed minimum flows and drought-sharing protocols to protect downstream agriculture and human security
- Set up a basin-wide real-time data-sharing and early warning system to build transparency and operational trust
- Reinforces long-term regional stability while ensuring equitable access to Nile waters

Sources: BBOP (2012), Global Infrastructure Hub (2020), Right for Education (2023)

The Grand Ethiopian Renaissance Dams Future: Balancing Progress, Sustainability and Cooperation

GERD is a transformative project with vast energy and development potential for Ethiopia, but its impacts are regionally complex.

Environmental costs are significant, including habitat loss, altered river flow and greenhouse gas emissions from the reservoir.

Socio-economic gains come with trade-offs, such as displacement in Ethiopia and water insecurity in Egypt and Sudan.

Sustainability tools like EIA and LCA remain essential to assess and manage the dam's long-term effects, even without a formal ESIA at the current point in time.

Regional cooperation is key to turning GERD into a model of shared progress, peace and ecological responsibility in the Nile basin.

Thank you!

References

- BBOP (2012). Standard on Biodiversity Offsets. Business and Biodiversity Offsets Programme. https://www.forest-trends.org/publications/bbop-standard-on-biodiversity-offsets/
- Devic, G. (2015). Environmental impacts of reservoirs. In R. H. Armon & O. Hänninen (Eds.), Environmental Indicators (pp. 561–575). Springer.
- Dejenie, T., & Kakiso, T. (2023). Development and environmental policies of Ethiopia: Policy review from view point of development-environment sustainability linkage. Heliyon, 9(6), e16608.
 <u>https://www.researchgate.net/publication/371140545_Development_and_environmental_policies_of_Ethiopia_Policy_review_from_view_point_of_development-environment-environment_sustainability_linkage
 </u>
- Ebissa, G., Debebe, U., Worku, H., & Fetene, A. (2022). Evaluation of the quality of environmental impact statements in Ethiopia. Heliyon, 8(12), e12438. https://doi.org/10.1016/j.heliyon.2022.e12438
- Elbelasy, A.M., Khater, A.H.M., Hassan, E.H. et al. (2024). Numerical assessment of the risk of GERD break on the downstream countries. Appl Water Sci 14, 58 (2024). https://doi.org/10.1007/s13201-024-02111-8
- Grace, J., San Jose, J., Meir, P., Miranda, H. S., & Montes, R. A. (2006). Productivity and carbon fluxes of tropical savannas. Journal of Biogeography, 33(3), 387–400.
- Global Infrastructure Hub. (2020). Itaipu Hydroelectric Dam Case Study. https://www.gihub.org/connectivity-across-borders/case-studies/itaipu-hydroelectric-dam
- Hassaan, M. A. (2021). Geomatics-based framework for assessing environmental impacts of GERD. Journal of Geoscience and Environment Protection, 9(12), 72– 83. https://doi.org/10.4236/gep.2021.912005
- IHA (International Hydropower Association). (2022). Ethiopia Grand Ethiopian Renaissance Dam (GERD).
- Kamara, A., Ahmed, M., & Benavides, A. (2022). Environmental and Economic Impacts of the Grand Ethiopian Renaissance Dam in Africa. Water, 14(3)
- Minority Rights Group International. (2023). Ethiopia: The GERD dam, the Gumuz community and the escalation of conflict in Metekel. In Minority and Indigenous Trends 2023 Focus on water. <u>https://minorityrights.org/resources/trends2023-water-justice-and-the-struggles-of-minorities-and-indigenous-peoples-for-water-rights-a-planetary-perspective-26/</u>
- Mohammed, A. A. (2024). The strategic significance of Ethiopia's hydroelectric energy exports on Horn of Africa regional integration. International Journal of River Basin Management, 1–14. https://www.tandfonline.com/doi/epdf/10.1080/15715124.2024.2308205?needAccess=true
- Power Technology. (2015, September 3). Grand Ethiopian Renaissance Dam Project, Benishangul-Gumuz.
- Right for Education. (2023). Ethiopia's Green Legacy Initiative. https://rightforeducation.org/2023/09/20/ethiopias-green-legacy-initiative/
- Wikipedia contributors. (n.d.). Grand Ethiopian Renaissance Dam. Wikipedia, The Free Encyclopedia. Retrieved April 5, 2025,
- Wang, Y., & Chen, J. (2020). Environmental impacts of large-scale hydropower projects: A review. Renewable and Sustainable Energy Reviews, 132, 110070. https://doi.org/10.1016/j.rser.2020.110070