
Environmental Impacts of the Brightline West Project "Connecting Las Vegas to Southern California"

Group 10 Christina Tebbe (61727) Anna Zellmer (65551) Simon Kramer (65683) Lucas Linke (61448)

SEVEKS BUILT

brightline

Agenda

Brightline West Project Overview

Impact and Recommendation on Water

Impact and Recommendation on Earth

Impact and Recommendation on Air

Recommendation for Socio-economic Impacts

Impact and Mitigation at Glance

Brightline West Project Overview

Project

Brightline West is

constructing a high-speed

Las Vegas, Nevada, to

Rancho Cucamonga,

California, with additional

stations planned for Victor

Valley and Hesperia, which

connects to Los Angeles via

Regional Rail

Developer

-Ò

Spearheaded by Brightline West, notable as one of the electric rail line connecting first privately financed major high-speed rail systems in the United States, serving as as a potential test case for private investment in

> large-scale, sustainable transportation infrastructure

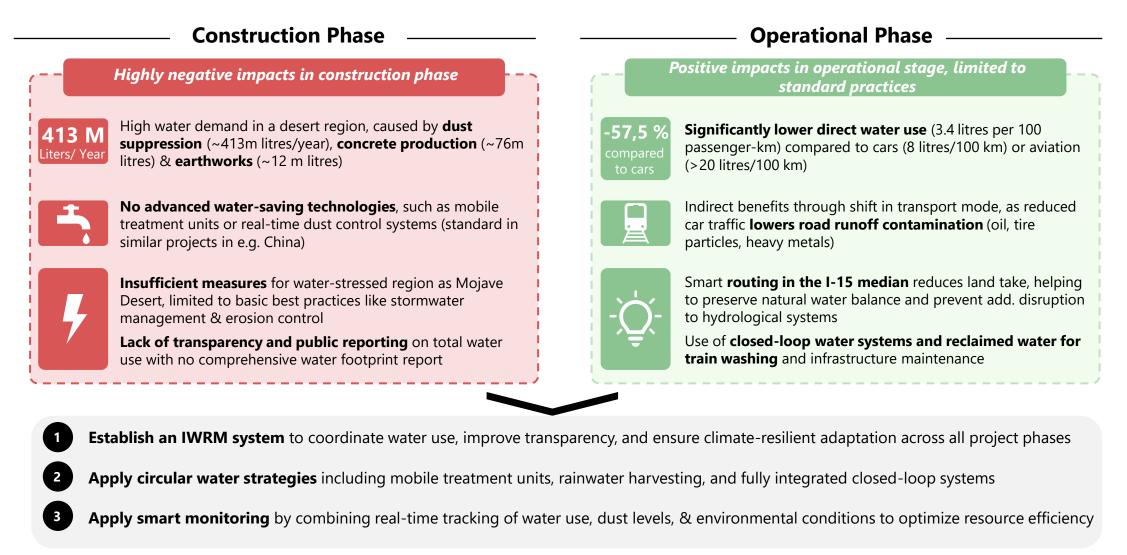
Route

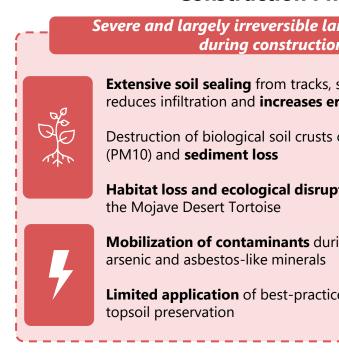
Strategically utilizes the existing Interstate 15 median for much of its alignment, aiming to minimize new land disruption through the ecologically sensitive Mojave Desert, but requires careful management of water resources, soil integrity, and wildlife habitats

Goal

To provide a **significantly** faster (~2 hours vs. 4+ driving) and more sustainable travel option between these major hubs, targeting the heavy traffic flow along the I-15 corridor Scale

Expected to serve over 9 million annual passengers, aiming to eliminate over 700 million annual vehicle miles traveled (VMT) and reduce significant CO₂ emissions compared to car and air travel





Fundamentals of Environment and Sustainability - Brightline West Project

Impact on Water: Improved Impacts on Water During Operational Stage are Still Limited to Standard Practices

Impact on Earth: Improved Mitigation During Operation, but Long-term Land **Degradation Risks Remain**

Construction Phase Severe and largely irreversible land degradation during construction

Extensive soil sealing from tracks, stations, and roads reduces infiltration and increases erosion

Destruction of biological soil crusts causes dust emissions

Habitat loss and ecological disruption for species such as

Mobilization of contaminants during grading, including

Limited application of best-practice erosion control and

Operational Phase

Persistent fragmentation and soil risks despite partial mitigation

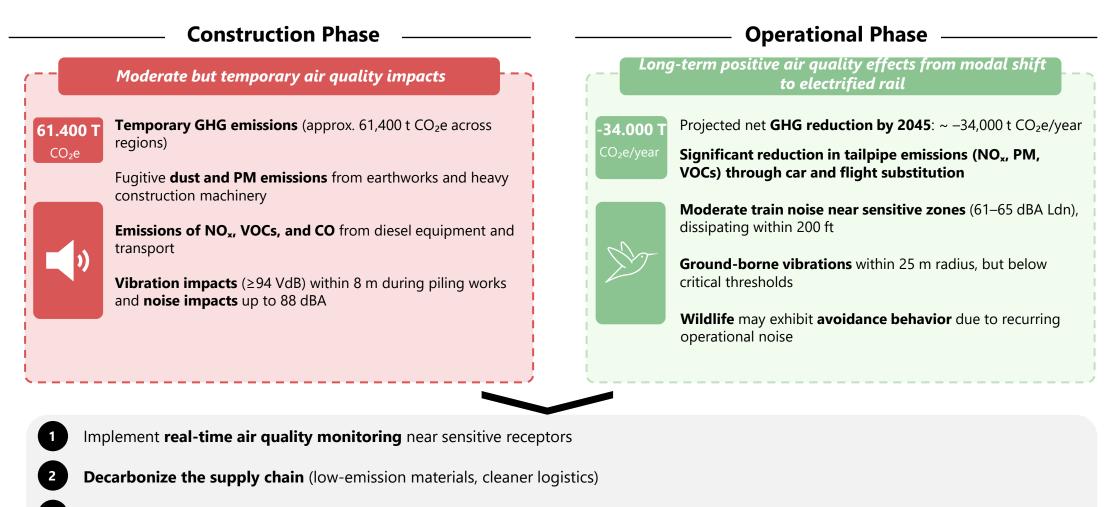
Continued soil sealing from permanent infrastructure leads to long-term land take

Habitat fragmentation remains, with underpasses only partially restoring connectivity

Soil contamination risks from herbicide use, lubricants, and chemical leaks during maintenance

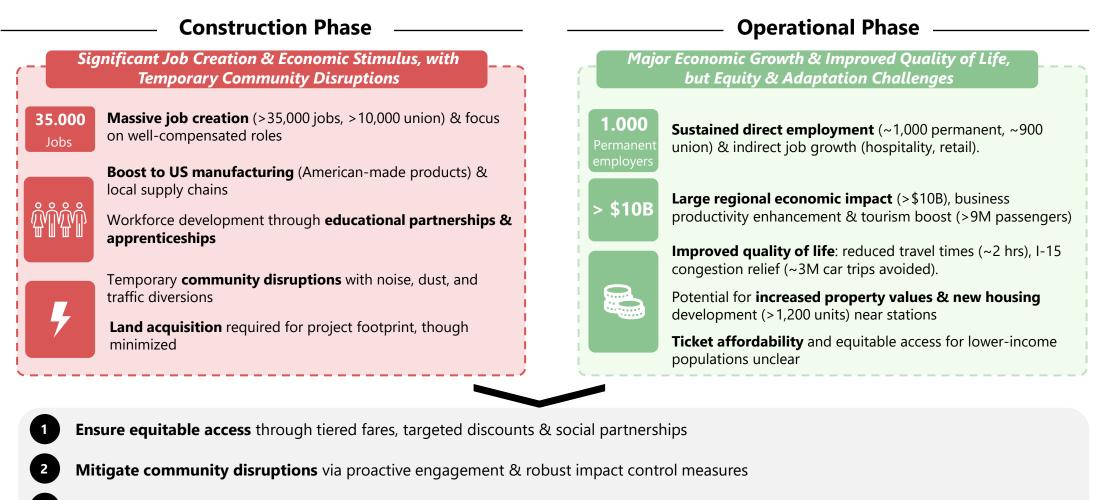
Visual and thermal disruption from paved surfaces alters local desert conditions

Wildlife movement remains restricted due to fencing and linear barrier effects


Minimize soil disturbance through topsoil reuse, erosion control, and controlled site access

Enhance habitat connectivity with additional wildlife crossings and adaptive fencing

Monitor soil quality long-term via Environmental Management Systems and LCA-based tracking



Impact on Air: Moderate but temporary air quality impacts due to dust, equipment emissions, and vibration-related disturbances

Evaluate feasibility of DAC (Direct Air Capture) at terminal locations

Socioeconomic Impact: Negative Construction Impacts Balanced by Significant Economic and Social Development Opportunities

Maximize local economic benefits with equitable workforce training & targeted hiring

Impacts at Glance: Negative impacts in the construction phase are outweighed by positives in operation

	Impact Dimension	Main Impacts	Assessment	Prevention & Mitigation
Construction phase	Earth	 Soil sealing 		 Erosion control and topsoil reuse
		 Dust and erosion 		 Wildlife relocation and exclusion fencing
		 Habitat loss and fragmentation 		 Spill prevention and soil monitoring protocols
	Air	 Temporary GHG emissions 		 Real-time air quality monitoring
		 Dust, PM, NO_x, VOCs, CO emission 	• • •	 Apply low-noise machinery
Ct		 Vibration impacts 	• • •	 Dust control (water spraying, covers, debris removal)
itru	Water	 High water demand 		 Biodegradable dust suppressants to reduce spraying needs
SU		 Depletion of groundwater res. 	$\bullet \bullet \bullet$	 Mobile water treatment units to recycle process water on-site
S		 Contamination f. constr. runoff 		 Sedimentation basins & oil separators for runoff treatment
		 Job creation 		 Prioritize union labor & local workforce partnerships
	Socio-Economic	 Temp. community disruptions 		 Implement construction mitigation & communication plans
		 Relocation impacts 		 Minimize project footprint & fair compensation/relocation
ase	Earth	 Permanent soil sealing 		 Long-term soil quality and habitat monitoring
		 Fragmentation of habitats 		 Wildlife crossings and adaptive fencing
		 Soil contamination 		 Integrated vegetation and contamination management
ů d	Air	 Net GHG emissions reduction 		 Evaluate feasibility of Direct Air Capture (DAC) at terminals
a		 Reduced NO_x, PM, and VOCs 		 Noise-optimized train design and track maintenance
Operational phase		 Moderate train noise 	• • •	
	Water	 Efficient Train washing 		 Expansion of closed-loop water recycling systems
		 Road-related water pollution 		 Drainage channels w. filtration systems along railway corridor
		 Integration of water reuse strat. 	• • •	 Large-scale rainwater harvesting at stations and depots
		 Sustained job creation 	•••	 Foster long-term local employment
	Socio-Economic	 Improved quality of life 		 Explore tiered fares/discounts to ensure equitable access NOVA

8

NOVA SCHOOL OF BUSINESS & ECONOMICS