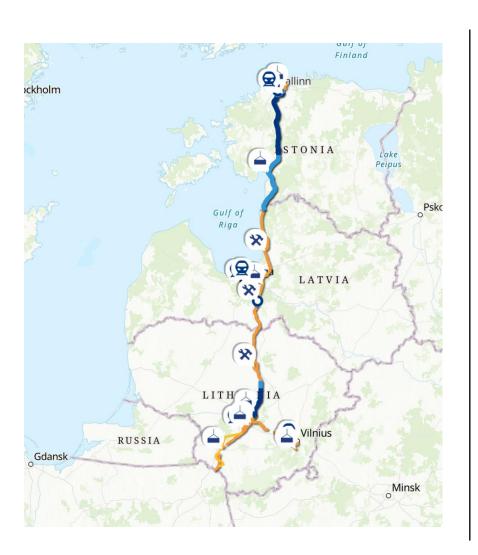
Rail Baltica Environmental Impact Assessment & Sustainability Impact Assessment

Table of Contents


1	Project Overview	3	
2	Environmental Impact Assessment	5	
	2.1 Earth	5	
	2.2 Air	6	
	2.3 Water	7	
	2.4 Life Cycle Assessment	8	
3	Socio-Economic Assessment	9	
4	Recommendation & Conclusion	10	

Rail Baltica

Project Overview

The infrastructure project of the century in the Baltics

Project Scope & Coverage

- High-speed rail transport infrastructure project (2010-2030)
- Links Baltics to broader European railway network, spanning 870km
- Aims to connect the cities of Helsinki, Tallinn, Pärnu, Riga, Panevežys, Kaunas, Vilnius, and Warsaw
- Three new large **multimodal terminals** in the Baltic countries: Estonia, Latvia and Lithuania
- **85%** from **EU funds** (linked to CEF and TEN-T) and up to **15%** from **state budgets**

Strategic Impact

- Connects regions previously weakly linked due to underdeveloped infrastructure, unlocking unrealized economic potential
- Integrates the **Baltics** into the **TEN-T** core network, improving access to EU markets and global competitiveness
- Supports low-emission transport and modal shift, supporting EU Green Deal goals

Earth Assessment

Decreased soil quality and threats to biodiversity and ecosystems expected for both stages

Construction Stage		Operational Stage				
Potential	y Significant Impacts:	Assessment*:	Potentially Significant Impacts:		Assessment*:	
	1. Soil Sealing & Compaction: Sealing leads to permanent soil degradation; compaction reduces infiltration			1. Biodiversity Stressors: Noise, light and vibrations continue to disturb fauna	• • •	
	2. Habitat Fragmentation: Linear infrastructure creates barriers to migration and gene flow	•••		2. Maintenance Effects: Mowing and vegetation control prevent natural succession	• • •	
**	3. Peatland Disturbance: Drainage of peat soils causes CO ₂ emissions and habitat loss			3. Microplastic & Litter: Operational waste enters soil ecosystems over time		
× +0 o ×	4. Invasive Species: Disturbed soils enable spread of species like Japanese knotweed (Fallopia japonica)	•••		4. Inadequate Wildlife Crossings: If not implemented, fragmentation remains a long-term issue	•••	

*Preliminary assessment based on existing reports and measurements

Legend:
Positive Impact
Moderately Negative Impact
Negative Impact

Water Assessment

Reduced water quality and heightened flood risks anticipated across both project stages

Construction Stage		Operational Stage				
Potentially Significant Impacts: Assess		Assessment*:	Potentially Significant Impacts:		Assessment*:	
	1. Groundwater Drawdown : Tunnel/bridge works lower groundwater levels; wetlands dry out	•••	0.	1. Sealing & Runoff: Less infiltration causes pluvial floods and reduces groundwater recharge	• • •	
Ċ	2. Water Pollution from Sites : Diesel, oil, concrete additives leak into watercourses		•	2. Heavy Metal Emissions: Rail abrasion releases copper, zinc etc. into water via runoff		
	3. Disruption of Small Streams : Bridge/dam construction alters flow dynamics and sedimentation			3. Drinking Water Risks: Shallow aquifers in rural areas threatened by long-term recharge decline	•••	
	4. Fine Particle Load : Sediments impair photosynthesis and oxygenation of aquatic vegetation	•••		4. Monitoring Gaps: Lack of integrated stormwater and governance systems across countries	•••	
				Legende - Desitive Impect - Mederately Negative Impe		

*Preliminary assessment based on existing reports and measurements

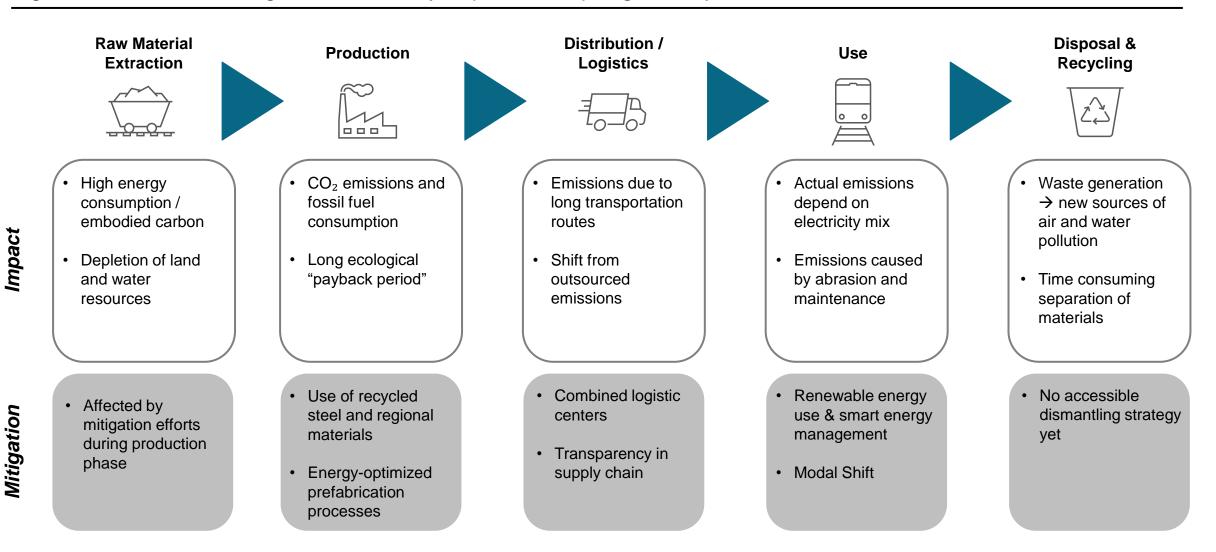
Legend: Positive Impact OModerately Negative Impact Negative Impact

Air Assessment

Air pollution threatens human health and environmental integrity despite sustainability measures

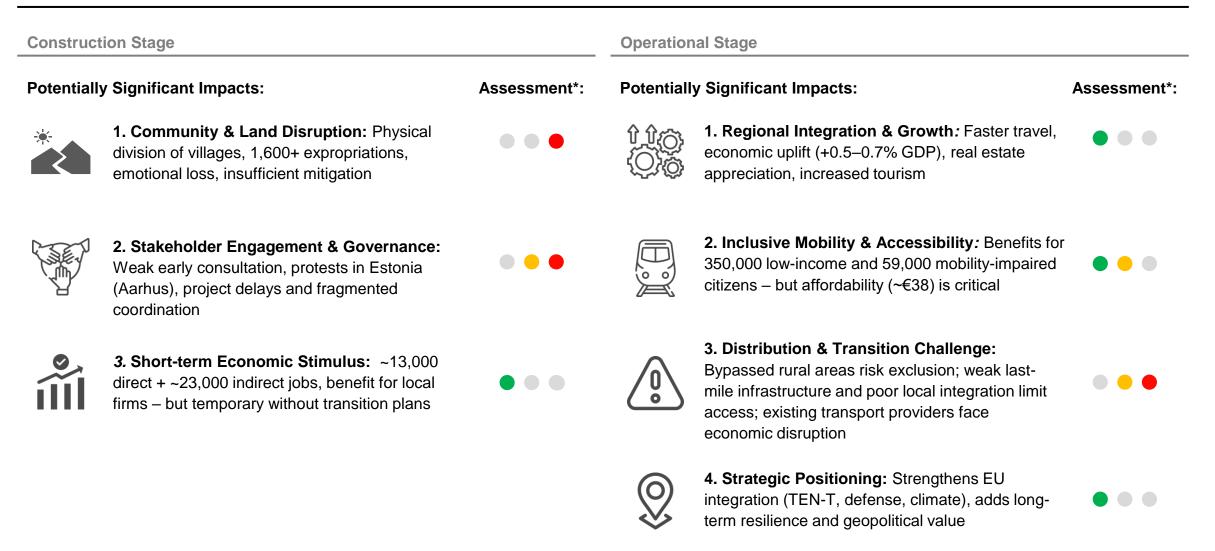
Construction Stage		Operational Stage				
Potentially Significant Impacts: Asses		Assessment*:	Potentially Significant Impacts:		Assessment*:	
	1. GHG & Pollutants: High emissions from cement/steel production, logistics and machinery	•••		1. Electrified Transport: If powered by renewables, CO_2 reduction possible	•••	
	2. Particulate Matter (PM): Dust from site work and dry materials affects health	•••	••••	2. Rail Abrasion Emissions: Copper and zinc enter the air and adjacent ecosystems	•••	
0.	3. VOC & NO_x from Diesel: Cause smog and ground-level ozone under sunlight	•••	898	3. Lifecycle/Upstream Emissions: Embedded CO ₂ in materials and imports affects climate balance	•••	
	4. Dust & Air Quality : Exceeds WHO thresholds near construction zones			4. Dependence on Grid: Estonia's fossil-based electricity mix poses risk for green reputation	•••	

*Preliminary assessment based on existing reports and measurements


Legend:
Positive Impact
Moderately Negative Impact
Negative Impact

Life Cycle Assessment

7


Significant emissions emerge across all lifecycle phases despite green objectives

Socio-Economic Assessment

Positive long-term regional impact, but localized burdens during construction

*Preliminary assessment based on existing reports and measurements

Legend: • Positive Impact • Moderately Negative Impact • Negative Impact

Integrating sustainable planning practices, optimizing resource use, and collaborating with local authorities

Earth		Water	
Potentially	y Significant Recommendations:	Potentially	y Significant Recommendations:
$\langle \cdot \cdot \rangle$	Integrate ITLU-LCA: Combine Life Cycle Assessment with transportation planning to assess environmental impacts	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Water-Saving Technologies: Use low-water equipment and efficient management systems
	Develop transit-oriented neighborhoods: To reduce emissions and enhance green spaces		Source Water-Efficient Materials: Prioritize materials produced with water-efficient processes
	Protect Biodiversity: Use wildlife overpasses, underpasses, and fencing to prevent habitat fragmentation		Optimize Water Use: Minimize consumption in high-water infrastructure components
	Restore Ecosystems: Replant indigenous vegetation in areas affected by construction		Collaborate with Local Authorities: Ensure sustainable water management in affected areas
Rail Balti	ca	Sources: Jehanno et	al. (2011); Chester et al. (2013); Kimball et al. (2013); Cheng et al. (2020) 9

Recommendations Air & Socio-Economic

Focusing on energy use, emissions reduction, risk management, and cross-border cooperation.

	=	
Δ		r
	L.	ι.

Potentially Significant Recommendations:

Use Renewable Energy Mix: Prioritize renewable energy sources (solar, wind, hydro) to power the rail network

Electric-only Trains: Powered by renewable energy to reduce emissions

Reduce Construction Emissions: Use low-carbon materials and improve construction efficiency to cut emissions

Monitor and Report Emissions: Use real-time emissions monitoring and public dashboards for transparency Socio-Economic

Potentially Significant Recommendations:

Implement Unified Risk Management: Integrate a system to monitor risks effectively and provide clear descriptions for actionable decision-making

Improve Communication: Ensure better coordination between project stakeholders

Develop Change Management System: Establish a framework to manage project alterations

Enhance Cross-Border Cooperation: Avoid duplication and resolve conflicts efficiently

Final Impact Overview: Challenges & Opportunities across Project Phases

From disruption to integration: How Rail Baltica can turn environmental and social challenges into long-term resilience

	Impact Dimensions	Potentially Significant Impacts	Assessment*	Recommendations
Construction Stage	EARTH	 Sealing and compaction of peatlands Habitat fragmentation Barrier effects on species migration 		Integrate ITLU-LCATransit orientated neighborhoods
	WATER	Groundwater DrawdownWater Pollution from Sites (contamination from runoff)	• • •	Source water efficient materialsCollaborate with local authorities
	AIR	 High GHG Emissions (cement, diesel) Dust and Air Quality (exceeds WHO thresholds) 		 Reduce construction emissions
	SOCIO-ECONOMIC	 Expropriations (1600+); village division Temporary Job Gains Stakeholder Mistrust 		Implement unified risk managementImprove communication
Operational Stage	EARTH	 Biodiversity Stressors (noise, light and vibrations) Inadequate Wildlife Crossings 		 Protect Biodiversity (wildlife passes ,) Restore ecosystems (replant)
	WATER	Drinking water risksSealing & Runoff (pluvial floods)		 Water efficient management system
	AIR	 Lifecycle Emissions (embedded CO₂ in materials) Electrified Transport 	• • •	Monitor and report emissionsUse renewable energy mix
	SOCIO-ECONOMIC	 Regional growth: GDP +0,5 – 0,7% (tourism, real estate Accessibility for low-income and mobility-impaired users Strategic value: EU integration (TEN-T, climate resilience) 		

*Preliminary assessment based on existing reports and measurements

Thank you for your attention!

NOVA SCHOOL OF BUSINESS & ECONOM