

Green Volt Floating Wind Project – A Critical Environmental Assessment Group 2

Carina Herrmann 65342

Florian Langohr 63759

- [01] Project Introduction
- [**02**] SEA & EIA
- [03] Impact on Earth
- [04] Impact on Water
- [05] Impact on Air
- [06] Socioeconomic Impact
- [07] Executive Summary

Luca Schäffer 64595

Ben Varzandeh 64106

Green Volt Offshore Development – Pushing Renewable Boundaries Amid Ecological Concerns

Green Volt – Advancing UK Floating Wind Development

Green Volt – Offshore Wind Network

Key Facts:

- Distance to Shore: ~80 km
- Power Output: 560 MW
- CO₂ Savings: ~39 MtCO₂e avoided over lifetime
- Budget: Estimated £3–4 billion

Project Overview

Phase 1 Phase 2 Phase 3 · Site surveys and lease 35 floating turbines and 560 MW power to O&G secured (2022) 35 km of cabling built and UK grid Offshore and onshore Installation of anchors, · Turbines recycled and cables, and substations seabed restored postconsents submitted (2023)(2025 - 2028)2063

- First commercial-scale floating offshore wind farm in the UK with 35 semi-submersible floating turbines
- Backed by Flotation Energy and Vårgrønn, combining UK-based and Norwegian offshore wind expertise
- Supplies direct clean power to offshore oil & gas platforms, cutting platform emissions by up to 70%
- Exports surplus energy to the UK National Grid, delivering up to 560 MW, enough to power ~800,000 homes over its 35-year lifetime

Alternative Considerations to Green Volt

Alternatives considered included fixed-bottom turbines, full grid electrification of oil & gas platforms, continued diesel/gas generator use, and delayed offshore transition for cost savings

Disregarded due to technical infeasibility in deep waters, high infrastructure costs, and net-zero goals

Aligning Offshore Innovation with Scotland's Strategic Marine Protections and Environmental Standards

Strategic and Environmental Assessments of Green Volt

Strategic Environmental Assessment

- Strategic Environmental Assessment (SEA) was conducted in 2021 under the Sectoral Marine Plan for Offshore Wind Energy (Scotland) to evaluate environmental risks across offshore wind areas.
 - - Identified E3 as a suitable zone with moderate seabird sensitivity and oil & gas interactions

Recommended biodiversity and peatland safeguards, which translated into mitigation targets in Green Volt's EIA

Environmental Impact Assessment

- **Environmental Impact Assessment (EIA)** was conducted in 2022–2023 to assess offshore and onshore impacts
 - Building on this, we carried out a detailed analysis of potential impact on soil, water, air, and socio-economic conditions

Current Measures Fall Short – Strengthening Mitigation Through Evidence-Based Recommendations

Earth Impacts – Disruption of Soil, Peatland, and Seabed Integrity

Expected Impact

Onshore

- Soil compaction reduces drainage and productivity
- Topsoil erosion along 35km cable route
- Class 1 peatland disturbed
- Agricultural land lost to substation

Offshore

- ~4.5 million m³ sediment disturbed
- Mooring and anchoring systems may cause long-term seabed trenching
- Scour protection creates artificial reefs

Recommendations

2

3

Low-Impact Mooring Systems

• Use semi-taut or tension-leg moorings to reduce longterm seabed abrasion and sediment disruption

Hydrological Modelling for Peat Stability

 Assess water flow and degradation risk in Class 1 peat to validate low-impact claims and guide routing

Long-Term Monitoring of Seabed Structures

 Track ecological changes around scour protection to detect invasive species and habitat shifts

Planned Mitigation Measures under EIA:

- HDD and rerouting to reduce surface and seabed disruption
- · Sediment modelling used to predict turbidity effects
- Soil reinstatement, erosion control mentioned, and peatland risk vaguely defined without hydrological data
- Current mitigation lacks specificity & modelling depth

Sources: Li et al., 2024, Dai et al., 2022, Halecki et al., 2018, Bonn et al., 2014, Scalenghe & Marsan, 2008, Taormina et al., Legend: Positive Impact — Moderately Negative Impact 2018, Maxwell et al. 2022, Carbon Trust, 2015, Langhamer, 2012, Degraer et al., 2020,

GREEN VOLT

Impact on Water

Managing Water Quality Requires More Than Baseline Protections and Generalised Modelling

Water Quality Impacts from Offshore Infrastructure

Expected Impact

Planned Mitigation Measures under EIA:

- Sediment modelling, target cable routing, & spill prevention measures aim to protect sensitive environments Use of Horizontal Directional Drilling (HDD) and water-based drilling fluids to reduce disturbance
- Burial of cables at depths of 0.6-1.5 m to minimize EMF exposure
- Current mitigation lacks specificity in monitoring, fluid handling, and EMF safeguards

Sediment disturbance from trenching & anchoring reduce water clarity & may release contaminants into the environment

- Disruption of water stratification & nutrient cycles lead to eutrophication & low-oxygen zones
- Electromagnetic fields (EMF) from subsea cables may interfere with electro-sensitive marine species
- Chemical pollution risks arise from potential spills of fuel, lubricants, or drilling fluids

Leaend

Recommendations

HDD Contingency Protocols

 Develop site-specific emergency plans to address potential fluid release events and protect benthic ecosystems

Adaptive Habitat Monitoring

 Implement seasonal water sampling and cable route reassessment to adapt to dynamic marine environments

Chemical Transparency

 Publicly disclose the chemical makeup of drilling fluids and assess environmental risks through toxicity testing

Sources: Galparsoro Iza et al., 2022, Taormina et al. 2018, GreenVolt, 2023a, Lian et al. 2022, Van Hal et al. 2017, Wilson and Elliott , 2009, Hermans et al., 2023, Łazuga, 2024, GreenVolt, 2023b, CrownEstate-Scotland, 2024,

Positive Impact 🥚

2

3

GHG Gains Must Be Matched by Monitoring and Circular Design Commitments

Air and Wildlife Pressures from Floating Wind Deployment

Expected Impact

Planned Mitigation Measures under EIA:

- · Use of recycled steel and low-clinker cement to reduce embodied emissions
- · Decommissioning plan includes turbine recycling and material recovery
- Bird protection via SPA safeguards, habitat restoration, and funding schemes
- Gaps remain in lifecycle emissions benchmarking, rare-earth material planning, and monitoring

Chemical Emission arise mainly (70%) during construction due to steel and cement production as well as maintenance vessels

 Turbine noise create Ornithological Disturbance that impairs bird communication and anti-predator behaviour

Recommendations

Lifecycle Emissions Benchmarking

• Provide comparative carbon metrics against fossil fuel baselines to validate climate benefit

Rare-Earth Material Recovery Strategy

• Define clear recycling routes for turbine magnets and composite components at end-of-life

Avian Monitoring Program

 Implement real-time tracking and post-installation surveys to assess flight behaviour, disturbance, and species displacement

Sources: Environments, 2024, Green Volt, 2023, Thomson & Harrison, 2015, Department for Transport, 2019, United Nations Legend: Economic Commission for Europe [UNECE], 2022, Kikuchi, 2000, Petersen & Fox, 2007, Danish Energy Agency [DEA], 2013

Positive Impact

2

3

Maximizing Regional Gains While Proactively Mitigating Uneven Social and Economic Outcomes

Unlocking Regional Growth and Community Value

Expected Impact

Planned Mitigation Measures under EIA:

- · Stakeholder engagement with fishing communities and councils
- · Intention to support regional development and local infrastructure use
- Indirect benefits through offshore wind strategy alignment no defined local reinvestment plan
- · Community benefits remain undefined: long-term equity and impact tracking are missing in EIA

Significant economic boost during construction and operation phases

- Strengthening of regional supply chains and job creation, especially in Aberdeenshire
- Social risks include uncertain port siting, which can impact fisheries, tourism, local services, and community infrastructure
- Absence of a defined community benefit scheme raises concerns about long-term equity and reinvestment in local areas

Recommendations

Community Benefit Fund

• Launch a dedicated program supporting local housing, job retraining, and promotional tourism campaigns

Local Procurement Commitment

 Secure Scottish SME involvement in supply chains to maximize regional economic retention

Long-Term Impact Monitoring

Create a transparent framework to track, report, and adapt socioeconomic outcomes over time

2

3

Executive Summary of the Green Volt Floating Offshore Wind Project and its Environmental Implications

Unlocking Regional Growth and Community Value

	Impacts on Earth		Impacts on Water		ts on Air	Impacts on Socio-economy
Soil compaction, peatland disturbance, and seabed disruption during cable and mooring installation		, d	Turbidity from seabed works, altered stratification, and potential EMF and contamination effects	High GHG en manufacturing p emissions during disruption is	nissions during hase with minimal operation - Seabird acknowledged	Strong job and supply chain potential with, however, unclear port use, absent community benefit scheme, and no socioeconomic monitoring
	Impact Dimension A	ssessm	nent* Recommended Prevention & Mi	tigation Measures	Feasibility of Reco	mmended Measures
During Complete Lifecycle	Earth	••	 HDD, erosion control, anchor rerouting – lacks peat modelling and soil restoration strategy 		 Measures like HDD and erosion control are standard; peat modelling can be added with minimal route adjustments 	
	Water	••	 Sediment modelling, cable buria adaptive water monitoring and l 	al, spill control – lacks HDD contingency	 Core methods already planned; while monitoring and HDD backup require only procedural updates 	
	Air	••	 Low-carbon materials, habitat p monitoring or rare-earth recover 	rotection – no bird ry plan	 Material choices and habitat steps are supplier-ready; bird tracking and recycling need operational planning 	
	Socio-Economic	• •	 Stakeholder engagement – nee procurement policy, impact trac 	ds benefit scheme, king	 Schemes and pol without changing 	icies are administratively easy to adopt project design

The Green Volt project demonstrates strong potential for clean energy and economic value, but to ensure long-term sustainability, targeted improvements in environmental safeguards, community benefit strategies, and adaptive monitoring are essential

We Appreciate Your Time and Interest! Group 2

