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Censoring and Truncation Examples

Examples of Censored Variables

Censored

Evaluation of public programs to fight poverty (top-coding)

Unemployment duration

Corner Solutions

Number of hours worked by married women

Private pension contributions

Expenditures of durable goods

Charity contributions
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Censoring and Truncation Examples

Censoring

With censoring we always observe the regressors x, completely observe y∗

for a subset of possible values of y∗, and incompletely observe y for the
remaining possible values of y∗

If censoring is from below (or from the left) we observe

y =

{
y∗ if y∗ > L
L if y∗ ≤ L

Example: consumers may be sampled with positive expenditures in
durable goods (y∗ > 0) and others having zero expenditures (y∗ ≤ 0)

If censoring is from above (or from the right) we observe

y =

{
y∗ if y∗ < U
U if y∗ ≥ U

Example: top-coded annual income
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Censoring and Truncation Examples

Truncation

Truncation implies that all observations at the bound are lost.

With truncation from below we observe only

y = y∗ if y∗ > L

Example: only consumers who purchased durable goods may be sampled

(L=0)

With truncation from above we observe only

y = y∗ if y∗ < U

Example: only low-income individuals may be sampled
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Censoring and Truncation Examples

Truncated Moments of the Standard Normal

Proposition

Suppose z ∼ N [0, 1]. Then the left-truncated moments of z are

E [z |z > c] =
ϕ(c)

1− Φ(c)
and E [z |z > −c] =

ϕ(c)

Φ(c)

E [z2|z > c] = 1 +
cϕ(c)

1− Φ(c)
, and

V [z |z > c] = 1 +
cϕ(c)

1− Φ(c)
− ϕ(c)2

[1− Φ(c)]2
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Censoring and Truncation Examples

Truncated Moments of the Standard Normal

Suppose u ∼ N [0, σ2]. Then

E [u|u > c] = σ

[
ϕ(c/σ)

1− Φ(c/σ)

]
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Censoring and Truncation Tobit Model

Tobit Model

The censored normal regression model, or Tobit model, is one
with censoring from below at zero where the latent variable is linear in
regressors wit additive error that is normally distributed and
homoskedastic

Thus

y∗ = x′β + ε

where ε ∼ N [0, σ2] has variance σ2 constant across observations

This implies that y∗ ∼ N [x′β, σ2]

y is defined as

y =

{
y∗ if y∗ > 0
− if y∗ ≤ 0
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Censoring and Truncation Tobit Model

Tobit Model

For left-truncation at zero we only observe y if y∗ > 0. Then the
left-truncated mean becomes

E [y ] = E [y∗|y∗ > 0]

= E [x′β + ε|x′β + ε > 0]

= E [x′β|x′β + ε > 0] + E [ε|x′β + ε > 0]

= x′β + E [ε|x′β + ε > 0]

assuming that ε is independent of x
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Censoring and Truncation Tobit Model

Tobit Model

For left-censored at zero suppose we observe y = 0, and not only
y∗ ≤ 0

E [y ] = Pr [d = 0]× E [y |d = 0] + Pr [d = 1]× E [y |d = 1]

= 0× Pr [y∗ ≤ 0] + Pr [y∗ > 0]× E [y∗|y∗ > 0]

= Pr [y∗ > 0]× E [y∗|y∗ > 0]

where

Pr [y∗ > 0] = 1− Pr [y∗ ≤ 0] = Pr [ε > −x′β]

E [y∗|y∗ > 0] is the truncated mean, and

d is an indicator variable d=1 if y > 0 and d=0 if y = 0
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Censoring and Truncation Tobit Model

Tobit Model

Therefore the error term has truncated mean

E [ε|ε > −x′β] = σE

[
ε

σ

∣∣∣∣ εσ > −x′β

σ

]
= σ

ϕ

(
− x′β

σ

)
1− Φ

(
− x′β

σ

)

= σ

ϕ

(
x′β
σ

)
Φ

(
x′β
σ

) = σλ

(
x′β

σ

)

given symmetry about zero of ϕ(z) and where λ(z) = ϕ(z)/Φ(z) is
the Inverse Mills Ratio
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Censoring and Truncation Tobit Model

Tobit Model

Also,

Pr [ε > −x′β] = Pr [−ε < x′β] = Pr

[
− ε

σ
<

x′β

σ

]
= Φ

(
x′β

σ

)
Then the conditional means given in the proposition specialize to

Latent variable: E [y∗|x] = x′β

Left-truncated (at 0): E [y |x, y > 0] = x′β + σλ

(
x′β
σ

)

Left-censored (at 0): E [y |x] = Φ

(
x′β
σ

)
x′β + σϕ

(
x′β
σ

)
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Censoring and Truncation Tobit Model

Marginal Effects in the Tobit Model

Differentiating with respect to x yields

Latent variable:

∂E [y∗|x]
∂x

= β

Left-truncated (at 0)

∂E [y |x, y > 0]

∂x
=

{
1− x′β

σ
λ

(
x′β

σ

)
− λ

(
x′β

σ

)2}
β

=

{
1− λ

(
x′β

σ

)[
x′β

σ
+ λ

(
x′β

σ

)]}
β

Left-censored (at 0)

∂E [y |x]
∂x

= Φ

(
x′β

σ

)
β
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Censoring and Truncation Tobit Model

Maximum Likelihood Estimation

Consider ML estimation given censoring from below

For y > 0 the density of y is the same as that for y∗, so
f (y |x) = f ∗(y |x) (where f(.) is the pdf)

For y = 0 the density is discrete with mass equal to the probability of
observing y∗ ≤ 0, F ∗(0|x) (where F(.) is the cdf)

Then the conditional density given censoring from below can be written as:

f (y |x) = f ∗(y |x)dF ∗(0|x)1−d

where d is an indicator variable equal to 1 if y > 0 and equal to 0 if y = 0
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Censoring and Truncation Tobit Model

Maximum Likelihood Estimation

Then the censored MLE maximizes

ln LN(β, σ) =
N∑
i=1

1[yi = 0] ln

[
1− Φ

(
x′iβ

σ

)]
+

+ 1[yi > 0]

{
ln

[
ϕ

(
yi − x′iβ

σ

)]
− lnσ

}
given

F ∗(0) = Pr [y∗ ≤ 0]

= Pr [x′β + ε ≤ 0]

= Φ(−x′β/σ)

= 1− Φ(x′β/σ)

where Φ(.) is the standard normal cdf and f ∗(y) is the N [x′β, σ2] density
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Censoring and Truncation Tobit Model

R-squared

The coefficient of determination, R2 can be written as the squared
correlation coefficient between the actual yi and the fitted values ŷi

R2 = [ρ(ŷi , yi )]
2

where

ŷi = Φ

(
x′i β̂

σ̂

)
x′i β̂ + σ̂ϕ

(
x′i β̂

σ̂

)
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Censoring and Truncation Tobit Model

James Tobin (Nobel Prize 1981)
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Censoring and Truncation Tobit Model

Budget constraints facing a single parent before and after child support assurance program

adopted
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Censoring and Truncation Tobit Model

A single parent who joins the labor force after child support assurance program adopted
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Censoring and Truncation Tobit Model

Hurdle Model

More generally consider the latent model y∗ = x′β + ε with variable
censoring threshold L = x′γ

This model is observationally equivalent to the latent model
y∗ = x′(β − γ) + ε with fixed threshold L = 0

Then
Pr [y = 0|x] = 1− Φ(x′γ)

where
y |(x, y > 0) ∼ N (x′β, σ2)

The log-likelihood function for the hurdle model is given by

ln LN(β, σ) =
N∑
i=1

1[yi = 0] ln[1− Φ(x′iγ)] + 1[yi > 0]

{
ln Φ(x′iγ)+

+ lnϕ

(
yi − x′iβ

σ

)
− ln(σ)

}
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Censoring and Truncation Tobit Model

Choice of Reservation Wage in a Model of Job Search
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Censoring and Truncation Tobit Model

Truncated Regression Model

Consider the latent model

y∗ = x′β + ε

where ε ∼ N [0, σ2] has variance σ2 constant across observations

Then

y = x′β + ε if y∗ > 0

For truncation from below at zero the conditional density of the observed
y is

f (y) = f ∗(y |y > 0)

= f ∗(y)/Pr [y |y > 0]

= f ∗(y)/[1− F ∗(0)]

Pedro Portugal (NOVA SBE) Microeconometrics Carcavelos, April 2025 21 / 25



Censoring and Truncation Tobit Model

Truncated MLE

The truncated MLE maximizes

ln LN(β, σ
2) =

N∑
i=1

{
ln f ∗(yi |xi , β)− ln[1− F ∗(0|xi , β)]

}
Therefore

ln LN(β, σ) =
N∑
i=1

lnϕ

(
yi − x′iβ

σ

)
− ln(σ)− ln Φ

(
x′iβ

σ

)
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Censoring and Truncation Example

Equilibrium in the internal labor market

E

E’

A

B 

S*V0

V1

W

f

S*

S**

S**

V0

V1
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Censoring and Truncation Example

Example

Consider an empirical model defined by two equations which specifies both
the probability of closure and wages as endogenous

Then, the reduced form of the equation system in the latent variables is:

π∗
ijt = Π1Kijt−1 + ε1ijt , Yijt = 1(π∗

ijt < 0)

W ∗
ijt−1 = Π2Kijt−1 + ε2ijt−1, Wijt−1 = max(WMit−1,W

∗
ijt−1)

where K includes all exogenous variables in X , Z and U

ηc
LL = ϕ̄

[
W̄

(
dϕ

dw

)
EE ′

]−1

where ηc
LL gives the percentage change in the probability that a plant closes in response

to a 1% increase in the wage rate, holding product-market shocks constant
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Censoring and Truncation Example

Estimated Elasticities

Quasi-elasticity of firm closure
with respect to wages

0.460

Quasi-elasticity of firm closure
with respect to minimum wage
incidence

0.029

Elasticity of wages with respect
to the probability of firm
closure

-0.029
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