
Factor Exercises

Question 1:
We want to forecast monthly in�ation, yt; and have at our disposal a data

set with many regressors xt = (x1t; :::; xNt)0 for each time 1 � t � T: The data

has been preprocessed to ensure that 1
T

TX
t=1

xt = 0 and 1
T

TX
t=1

xtx
0
t = �: We

are aware of the dangers of estimating large regression models and decided to
construct a factor model as follows:

ft = A
0xt:

The ith column of A is equal to ai; such that the ith row of this equation can
be written as

fit = a
0
ixt = ai1x1t + :::aiNxNt:

a) Assume that �ai = �iai for all 1 � i � N; where �i denotes the eigenvalue
corresponding to the eigenvector ai: Assume further that we have ordered
the eigenvectors such athat �1 � �2 � ::: � �N : Under suitable conditions
on the eigenvectors show that,

Cov(fit; fjt) =

�
�i i = j
0 i 6= j :

b) The �rst r factors explain most of the variance in our predictor variables,
so we decide to use only these r factors for predicting yT+1: First, we
estimate r univariate regressions by OLS as follows:

yt+1 = �i + �ifit + eit; 1 � i � r; 1 � t � T:

Our output contains b�i; b�i for all 1 � i � r as well as the prediction errorbeit for all 1 � i � r; 1 � t � T: Second we calculate the sample co-variance
of the prediction errors, that is

b
 = 1

T

TX
t=1

0B@ be1t
...bert
1CA� be1t � � � bert � :

A colleague argues that b
must be diagonal, because the factors are known
to be uncorrelated, is this true?

c) The �rst factor explains a larger part of the variance of the regressors
than any other factor. Does this imply that b
11 � b
22 � ::: � b
rr?
Prove or disprove this hypothesis. (Note that b
jj denotes the j � th
diagonal element of b
 for 1 � j � r:)
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Question 2:
Consider the problem of forecasting output growth yt using a large number

N of predictor variables Xt; where N is of comparable magnitude as the number
of time series observations T available for model estimation.
Suppose that (yt; Xt) has a factor representation with k common latent

facors Ft = (f1t; :::; fkt)0 :

Xt = �Ft + ext

yt = �0Ft + eyt

where � is an (N � k)�matrix of factor loadings, � is a (k�1)- vector and ext
and eyt are white noise processes. Assume furthermore that each of the factors
fjt; j = 1; :::; k follows a stationary �rst-order autoregressive process:

fjt = �jfjt�1 + "jt

with j�j j < 1 and the error processes "jt � NID(0; �2j ); for j = 1; :::; k (that is,
they are independent cross-sectionally and over time).
Suppose one wants to forecast output growth yT+h at tiem T for a given

horizon h > 0 using information that is available in the factors F; as follows:

yT+h = �
0
hFT + �T+h:

a) Express �h and �T+h in terms of the parameters and error processes in
(4) - (6).

b) What are the properties of �h (in particular as a function of the forecast
horizon h)?

c) What are the properties of �T+h? What do these imply for, for exam-
ple, the standard error of the OLS estimate of �h that is obtained from
regressing yt+h on (estimates of) Ft using observations t = 1; :::; T � h?
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Solutions Question 1:
a) The trick is simply to recall that the eigenvectors of a symmetric real-

valued positive semi-de�nite matrix are orthogonal and without loss of gen-
erality, normalized. Thus, a0iaj = 0; for i 6= j (orthogonal) and a0iai = 1
(normalized). Then it follows that

Cov(fit; fjt) = E(a
0
ixtx

0
taj) = a

0
i�aj = �ja

0
iaj :

and the desired result then follows by the orthogonality and the normalization
conditions mentioned above.
b) Suppose for the sake of illustration that all the �rst r factors are useless

for the prediction of yt+1: If we were very unlucky, this would happen when yt is
equal to the (r+1)-th factor. Because the factors are orthogonal by construction,

we would �nd that b�i = 0 for all 1 � i � r and b�1 = ::: = b�r = 1
T

TX
t=1

yt+1:

This implies the prediction errors beit = yt+1 � 1
T

TX
t=1

yt+1 for all i are identical,

hence perfectly correlated, and therefore b
 can in general not be diagonal.

A more standard argument is as follows. Notice that the factors fit sum to

zero (across time) because xit sum to zero (across time). OLS ensures
TX
t=1

beit =
0 from which it follows that b�i = b� for 1 � i � r; where b� = 1

T

TX
t=1

yt+1:

Consequently we have

TX
t=1

[beitbejt] =
TX
t=1

h�
yt+1 � b�� b�ifit��yt+1 � b�� b�jfjt�i

=

TX
t=1

(yt+1 � b�)2 � b�i TX
t=1

(yt+1 � b�)fit � b�j TX
t=1

(yt+1 � b�)fjt
where the fourth term disappears because the factors are uncorrelated. The

same calculation could equivalently be performed like this:

Cov[bei;1:T bej;1:T ] = Cov
�
y2:T+1 � b�� b�ifi;1:T ; y2:T+1 � b�� b�jfj;1:T�

= V ar (y2:T+1)� b�iCov(y2:T+1; fi;1:T )� b�jCov(y2:T+1; fj;1:T );
where we have used V ar (y2:T+1) to indicate the sample variance of y2; :::; yT+1
and similarly for the other terms. Proceeding with this notation the use of OLS
implies that b�i can be written as

b�i = Cov(y2:T+1; fi;1:T )

V ar(fi;1:T )
=
Cov(y2:T+1; fi;1:T )

�i
; 1 � i � r:
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Substituting this into the expression above gives

Cov[bei;1:T bej;1:T ] = V ar (y2:T+1)� Cov(y2:T+1; fi;1:T )2
�i

� Cov(y2:T+1; fj;1:T )
2

�j
:

This is not in general equal to zero. This expression may be simpli�ed even fur-
ther by using the de�nition of the correlation coe¢ cient, de�ned as Cor(y2:T+1; fi;1:T ) =
Cov(y2:T+1; fi;1:T )=

p
V ar (y2:T+1)�i: Then we obtain,

Cov[bei;1:T bej;1:T ] = V ar (y2:T+1) �1� Cov(y2:T+1; fi;1:T )2 � Cov(y2:T+1; fj;1:T )2� :
Indeed, when both factors i and j are uncorrelated with yt+1; we �nd that
Cov (bei;1:T bej;1:T ) = V ar (y2:T+1) : On the otherhand, Cov (bei;1:T bej;1:T ) goes to
zero when one factor is perfectly correlated with yt+1 in which case the other
factor must be useless.

c) First, using V ar(bei;1:T ) to denote the sample variance of bei1 through beiT ;
we have


ii = V ar(bei;1:T )
= V ar

�
y2:T+1 � b�� b�ifi;1:T�

= V ar (y2:T+1) + b�2iV ar (fi;1:T )� 2b�iCov (y2:T+1; fi;1:T )
where we have used the simple rule V ar(A+B) = V ar(A)+V ar(B)+2Cov(A;B):
Second, recall that using OLS implies that

b�i = Cov(y2:T+1; fi;1:T )

V ar(fi;1:T )
=
Cov(y2:T+1; fi;1:T )

�i
; 1 � i � r:

This can be substituted into the above expression to give,


ii = V ar (y2:T+1) +
Cov(y2:T+1; fi;1:T )

2

�i
� 2Cov(y2:T+1; fi;1:T )

2

�i

= V ar (y2:T+1)�
Cov(y2:T+1; fi;1:T )

2

�i

By recalling the de�nition of the correlation coe¢ cient that is Cor(y2:T+1; fi;1:T ) =
Cov(y2:T+1; fi;1:T )=

p
V ar (y2:T+1)�i we can conclude that


ii = V ar (y2:T+1)
�
1� Cor(y2:T+1; fi;1:T )2

�
:

The conclusion, perhaps unsurprising, is that the factor i with the highest ab-
solute correlation with the data y2:T+1 has the lowest diagonal elements 
ii:
Conversely, any facor that is uncorrelated with the y�s will produce diagonal
element in 
 that is equal to the variance of yt: Clearly, it is not necessary for
�rst factor to have the highest correlation with the y0ts since the factors were
constructed of the variable yt to begin with.
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Solution for Question 2:
a) To relate the value of output growth y at t+ h to the value of the factors

F at t; start from (?) and recursively substitute the factors using equation ():

yt+h = �0Ft+h + ey;t+h

= �0(�Ft+h�1 + ef;t+h) + ey;t+h

= �0(�(�Ft+h�2 + ef;t+h�1) + ef;t+h) + ey;t+h
...

= �0�hFt +
h�1X
i=0

�0�ief;t+h�i + ey;t+h

where � is a (k � k)-diagonal matrix with the AR-coe¢ cients �j in the models
for the factors on the diagonal, and eft = ("1t; :::; "kt)0: Hence,

�h = �
0�h

and

�T+h =
h�1X
i=0

�0�ief;t+h�i + ey;t+h

b) To interprete the coe¢ cients �h take the single-factor case where k = 1:
Then � is just a scalar, where we should have j�j < 1 such that the factor is
stationary. Then j�hj < j�h�1j for all h > 1; that is the predictive power of the
current factor for future values of y decreases with the forecast horizon h. This
generalises directly to the multi-factor case with k > 1 given that all factors fjt;
j = 1; 2; :::; k follow a univariate AR(1) process.

c) Due to the summation of h �factor shocks� ef;t+h�i; i = 0; 1; :::; h � 1;
�t+h will be serially correlated up to the order h � 1 for h > 1; unless � = 0
or � = 0: Hence, when �h is estimated using OLS by regressing yt+h on Ft we
should preferably use Newey-West standar errors which correct for the rpesence
of autocorrelation in the residuals.

Also, the variance of the errors �t+h increases with horizon h:
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