Factor Exercises

Question 1:
We want to forecast monthly inflation, y;, and have at our disposal a data

set with many regressors x; = (x1¢, ...,xn¢)’ for each time 1 <t < T. The data
T T

has been preprocessed to ensure that % th = 0 and % thxé = 3. We
t=1 t=1

are aware of the dangers of estimating large regression models and decided to

construct a factor model as follows:

ft = A/Xt .

The i*” column of A is equal to a;, such that the i** row of this equation can
be written as
fir = aix¢ = any; + .. aiNT Ny

a) Assume that Ya; = \;a; for all 1 <4 < N, where )\; denotes the eigenvalue
corresponding to the eigenvector a;. Assume further that we have ordered
the eigenvectors such athat A\; > Ao > ... > Ay. Under suitable conditions
on the eigenvectors show that,

Cov(fit, fjt) = { )(\)z z;;

b) The first r factors explain most of the variance in our predictor variables,
so we decide to use only these r factors for predicting yr41. First, we
estimate r univariate regressions by OLS as follows:

Yer1 =+ Bifi ey, 1<i<r, 1<t <T.

Our output contains o, BZ for all 1 < i < r as well as the prediction error
ey foralll <i<r 1<t<T.Second we calculate the sample co-variance
of the prediction errors, that is

1 €1t
Q:fz (€w - & ).
=1 /e\rt

A colleague argues that © must be diagonal, because the factors are known
to be uncorrelated, is this true?

¢) The first factor explains a larger part of the variance of the regressors
than any other factor. Does this imply that ﬁl,l < ﬁgg < ... < (AZM?
Prove or disprove this hypothesis. (Note that €;; denotes the j — th
diagonal element of Q for 1 <j<r)



Question 2:

Consider the problem of forecasting output growth y; using a large number
N of predictor variables X;, where N is of comparable magnitude as the number
of time series observations T available for model estimation.

Suppose that (y;, X;) has a factor representation with k common latent

facors Fy = (f1t, .., fxt):

Xt = AFt + Cort
ye = BFi+ey

where A is an (N x k) — matriz of factor loadings, 8 is a (kx1)- vector and e,
and ey, are white noise processes. Assume furthermore that each of the factors
fit, 3 =1,..., k follows a stationary first-order autoregressive process:

fit = ¢;fit—1 + €t

with |¢;| < 1 and the error processes €;; ~ NI1D(0, 0'?), for j =1,...,k (that is,
they are independent cross-sectionally and over time).

Suppose one wants to forecast output growth yr,p, at tiem T for a given
horizon h > 0 using information that is available in the factors F, as follows:

yr+n = BuFr + Ny

a) Express 3, and 1, in terms of the parameters and error processes in
(4) - (6).

b) What are the properties of 3, (in particular as a function of the forecast
horizon h)?

c) What are the properties of 1, ,? What do these imply for, for exam-
ple, the standard error of the OLS estimate of (3, that is obtained from
regressing y;+p on (estimates of) F} using observations t = 1,...,T — h?



Solutions Question 1:

a) The trick is simply to recall that the eigenvectors of a symmetric real-
valued positive semi-definite matrix are orthogonal and without loss of gen-
erality, normalized. Thus, aja; = 0, for ¢ # j (orthogonal) and aja, = 1
(normalized). Then it follows that

COU(fit, fjt) = E(a;xtx;aj) = aQEaj = )\jagaj.

and the desired result then follows by the orthogonality and the normalization
conditions mentioned above.

b) Suppose for the sake of illustration that all the first r factors are useless
for the prediction of y;11. If we were very unlucky, this would happen when y; is
equal to the (r41)-th factor. Because the factors are orthogonal by construction,

T
we would find that Ei =0foralll<i<randa; =..=a, = %Zyt+1.
t=1

T

This implies the prediction errors €;; = Y11 — % Z Y41 for all ¢ are identical,
t=1

hence perfectly correlated, and therefore €2 can in general not be diagonal.

A more standard argument is as follows. Notice that the factors f;; sum to
T

zero (across time) because x;; sum to zero (across time). OLS ensures Z’e\it =
t=1
T
. . 3 ~ o~ . ~ 1
0 from which it follows that a; = a for 1 < ¢ < r, where @ = sztﬂ'
=1

Consequently we have

T T
Z[a‘t/@\jt] = Z [(yt+1 —a-— Bifit) (yt+1 —a-— ijjt)]
t=1 t=1
T T T
= Z (Y41 — a)2 — Bi Z(ytJrl —a)fi — B, Z(ytJrl — ) fje
t=1 t=1 t=1

where the fourth term disappears because the factors are uncorrelated. The
same calculation could equivalently be performed like this:

Covle; 1.7€j1.7] Cov (y2:T+1 —a—fifirTy2re1 — 0 — 5jfj,1:T)

= Var (yars1) — Bicov(yQ:T-i-l; fiar) — Bjcov(yz;mrl; fir),

where we have used Var (y2.741) to indicate the sample variance of ya, ..., yr4+1
and similarly for the other terms. Proceeding with this notation the use of OLS
implies that 3; can be written as

i Cov(ya:r+1; firr) _ Cov(ya:r+1; firr)
! Var(fir) Aq

1< <.



Substituting this into the expression above gives

Cov(ya.ry1; finr)? _ Cov(ya.ry1; finr)?
i Aj '

Covle; 1.7€j1.7) = Var (yari1) —

This is not in general equal to zero. This expression may be simplified even fur-
ther by using the definition of the correlation coefficient, defined as Cor(ya.741; fi1.r) =

Cov(ya.r+1; finr)//Var (y2.r+1) Ai- Then we obtain,
Covl€;1.7€5,1:7] = Var (yari1) [1 — Cov(yairst; finr)? — Cov(yarins fir)?] -

Indeed, when both factors ¢ and j are uncorrelated with y,11, we find that
Cov (€;1.7€j,1.7) = Var (Ya.r4+1) . On the otherhand, Cov (€; 1.7€;,1.7) goes to
zero when one factor is perfectly correlated with y;,1 in which case the other
factor must be useless.

c) First, using Var(€; 1.7) to denote the sample variance of €;; through e;r,
we have

Qy; Var(ei.r)
= Var (yZ:T+1 —a— Bifm:T)
-2 —~
= Var (y2.r+1) + B, Var (firr) — 28;Cov (ya:r41; fi1r)

where we have used the simple rule Var(A+B) = Var(A)+Var(B)+2Cov(A, B).
Second, recall that using OLS implies that

5 Cov(ya:r41; firr) _ Cov(yari1; finr)
' Var(fi,l:T) )\i

This can be substituted into the above expression to give,

1< <.

Cov(yari1; finr)? 9 Cov(yzr1; firer)?
A Ai
Cov(ya.r41; finir)?
Ai

Qu = Var(yari1) +

Var (ya:r41) —

By recalling the definition of the correlation coefficient that is Cor(ye.ry1; fi:r) =

Cov(yo.r41; firr)/ /' Var (Ya.r41) Ai we can conclude that
Qi = Var (yar+1) [1 = Cor(yairsas finr)?] -

The conclusion, perhaps unsurprising, is that the factor ¢ with the highest ab-
solute correlation with the data yo.7+1 has the lowest diagonal elements €2;;.
Conversely, any facor that is uncorrelated with the y’s will produce diagonal
element in Q) that is equal to the variance of y;. Clearly, it is not necessary for
first factor to have the highest correlation with the y;s since the factors were
constructed of the variable y; to begin with.



Solution for Question 2:
a) To relate the value of output growth y at t + h to the value of the factors
F at ¢, start from (?) and recursively substitute the factors using equation ():

Yirn = B'Fn+ €y t+h
= B(®PFin-1+ €ft+n) T €ytth
= B(®(PFiin—2+epirn1)+erirn) +eyiin

h—1

= Bo"F, + Z B'®esin_i+eyisn
=0

where ® is a (k x k)-diagonal matrix with the AR-coefficients ¢, in the models
for the factors on the diagonal, and ey = (€14, ..., €x¢)’. Hence,

ﬁh = ﬁlq)h
and
h—1
Nr+n = Z B'Oes i+ eyiin
i=0

b) To interprete the coefficients (3, take the single-factor case where k = 1.
Then ® is just a scalar, where we should have |®| < 1 such that the factor is
stationary. Then |8,| < |8),_1]| for all h > 1, that is the predictive power of the
current factor for future values of y decreases with the forecast horizon h. This
generalises directly to the multi-factor case with k& > 1 given that all factors fj;,
j=1,2,...,k follow a univariate AR(1) process.

c) Due to the summation of h ’factor shocks’ ef;ipn—s, ¢ = 0,1,...,h — 1,
N¢1p, Will be serially correlated up to the order h — 1 for A > 1, unless § = 0
or ® = 0. Hence, when f3,, is estimated using OLS by regressing v+, on F; we
should preferably use Newey-West standar errors which correct for the rpesence
of autocorrelation in the residuals.

Also, the variance of the errors 7, ,; increases with horizon h.



