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Multinomial Choices Theory

Basic Framework and Notation

i = {1, 2, ...,N} denotes a set of decision makers

j = {0, 1, 2, 3, ...,H} denotes a finite set of mutually exclusive and
exhaustive possible choices

Uij = Xijβj + εij

represents the utility of the decision maker i if the choice is j and is a
function of:

a systematic component Xijβj where

Xij is a row vector of observed characteristics of the decision maker and
of the choices
βj is a column vector of unknown parameters which may change across
choices

a random unobservable component εij
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Multinomial Choices Theory

Basic Framework and Notation

Let Yi denote the indicator function that denotes which option has
been chosen by the decision maker

Yi = j if i chooses j

Decision makers are assumed to maximize utility. Therefore:

Yi = j if Uij > Uis ∀s ̸= j in the choice set

Since we observe only the systematic component of utility, we cannot
predict with certainty the choice of each decision maker. We can only
try to assess the probability that each decision maker will choose each
alternative
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Multinomial Choices Multinomial Logit Model

Multinomial Logit Model

Pij = Pr(Yi = j)

= Pr(Uij > Uis ,∀s ̸= j)

= Pr(Xijβj + εij > Xisβs + εis ,∀s ̸= j)

= Pr(εis − εij < Xijβj − Xisβs ,∀s ̸= j)

If each εij is independently distributed according to the extreme value
cumulative distribution

exp(−e−εij )

Then, the probability that the alternative j is chosen is given by the
logit distribution

Pij =
eXijβj∑H
s=0 e

Xisβs
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Multinomial Choices Multinomial Logit Model

Independence from Irrelevant Alternatives

Implies that the odds of two alternatives j and s do not depend on
the other existing alternatives:

Pij

Pis
=

eXijβj

eXisβs

which depends only on j and s

This property may not be desirable. Consider the following classic example:

Initially there are only 2 options: j =”car” and s =”red bus”

Suppose
Pij

Pis
= 1

Then a new option is added: t =”blue bus”
Suppose that decision makers who choose a bus are indifferent with respect to the
color. Then we would expect the model to predict: Pij = 0.5 and Pis = Pit = 0.25

However the logit model would continue to imply
Pij

Pis
= 1

In order for this to be compatible with Pis = Pit , the estimated probabilities must
be Pij = Pis = Pit = 1/3
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Multinomial Choices Multinomial Logit Model

Identification

Consider as an example the problem of a consumer i who has to choose
between Japanese (j = 0) or European (j = 1) cars

The vector of attributes Xij includes:

factors Zij that change across both individuals and choices (e.g. the
price or the number of dealers of each car in the city where i lives

factors Wi that change only across individuals (e.g. gender, age or
income of the consumer)

a choice specific constants αj capturing factors that change across
choices but not across individuals

The vector of parameters to be estimated is β′
j = {αj , γ, δ}, which

differs across choices because there is a different constant for each
choice

The parameters γ and δ are assumed to be identical across choices
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Multinomial Choices Multinomial Logit Model

Identification

Under these assumptions the probability of the european choice would be

Pi1 = Pr(Yi = 1) =
eα1+Zi1γ+Wiδ

eα0+Zi0γ+Wiδ + eα1+Zi1γ+Wiδ

=
1

1 + e(α0−α1)+(Zi0−Zi1)γ

This example highlights some identification problems in the logit model:

if δ is identical across choices, this model cannot identify the effect of
the decision maker’s attributes (Wiδ cancels out)

the model cannot identify the choice-specific constants but only the
difference between them α0 − α1

the model can identify the effects γ of the choice-specific attributes
also if they are identical across choices
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Multinomial Choices Multinomial Logit Model

Multinomial Logit Model

Conventional name for a multiple choice problem in which the
representative utility of each choice depends only on the attributes of
the decision maker

Uij = Xiβj + εij

To achieve identification the attributes are allowed to have different
effects on the utility of the different choices
In this case, the probability of a choice is given by:

Pij =
eXiβj∑H
s=0 e

Xiβs

=
1∑H

s=0 e
Xi (βs−βj )

therefore only differences between parameters can be identified
It is convenient to impose the normalization with respect to a
reference choice, for example j = 0
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Multinomial Choices Multinomial Logit Model

Multinomial Logit Model

Taking j = 0 as the reference choice means to impose the normalization
β0 = 0, which implies eXiβ0 = 1 and therefore

Pij = Pr(Yi = j)

=
eXiβj

1 +
∑H

s=1 e
Xiβs

Pi0 = Pr(Yi = 0)

=
1

1 +
∑H

s=1 e
Xiβs
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Multinomial Choices Multinomial Logit Model

Maximum Likelihood Estimator

The log-likelihood function of the Multinomial logit model is

ln(L) =
N∑
i=1

H∑
j=0

dij ln(Pij)

where dij = 1 if i chooses j

The first-order conditions for the maximization of the likelihood are

∂ ln(L)

∂βj
=

N∑
i=1

(dij − Pij)Xi = 0

This is a system of K × H equations
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Multinomial Choices Multinomial Logit Model

Maximum Likelihood Estimator

The second derivatives matrix is composed by H2 blocks each with
dimension K × K

The main diagonal blocks have the form:

∂2 ln(L)

∂βjβ
′
j

= −
N∑
i=1

Pij(1− Pij)X
′
i Xi

The off main diagonal blocks (for j ̸= s) have the form:

∂2 ln(L)

∂βjβ′
s

=
N∑
i=1

PijPisX
′
i Xi
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Multinomial Choices Multinomial Logit Model

Interpretation

The parameters βj should be interpreted carefully.

ln
Pij

Pi0
= Xiβj

The coefficient βj measures the impact of the attributes Xi on the
log-odds that the decision maker chooses j instead of s

Also,

ln
Pij

Pis
= Xi (βj − βs)

The difference between the coefficients βj and βs measure the impact
of the attributes Xi on the log-odds that the decision maker chooses j
instead of s
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Multinomial Choices Multinomial Logit Model

Interpretation

The marginal effects of the individual attributes Xi on the probability of a
choice Yi = j are even more difficult to interpret.

γj =
∂Pj

∂Xi
= Pj

(
βj −

H∑
s=0

Psβs
)
= Pj(βj − β̄)

The effect of Xi on Pj (generic probability of a choice j) depends on
the parameters concerning all the choices, not just on the parameters
concerning choice j
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Multinomial Choices Multinomial Logit Model

Interpretation

The problem is that when Xi changes the probabilities of all the choices
are contemporaneously affected. Consider the car example with 3 choices:
”Japanese” (j = 0), ”European” (j = 1) and ”American” (j = 2)

Suppose Xi is the age of the buyer and that β2 > β1 > 0

Implies that older workers tend to buy more European and more
American cars than Japanese cars. Moreover, older workers tend to
buy more American cars than European cars

However, if β2 is much larger than β1 it may happen that the
probability of a European choice decreases, when age Xi increases

The marginal effects are a function of the explanatory factors X
(
since

Pj =
e
Xβj∑H

s=0 e
Xβs

)
, and therefore have to be computed at some reference

value of X (the mean, the median, a particular i ,...)
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Multinomial Choices Multinomial Logit Model

Effects on Odds Ratio

As in the binary case, results can be expressed in the form of odds ratios,
or exponentiated form

The odds of a choice j instead of 0, given Xi , are:

Ω(Yi = j ;Yi = 0|X ) =
Pij

Pi0
= eXiβj

Given two realizations of Xi , X1 and X0, we can define the odds ratio

Ω(Yi = j ;Yi = 0|X1)

Ω(Yi = j ;Yi = 0|X0)
= e(X1−X0)βj

This statistic tells us how the odds of observing Y = j instead of
Y = 0 change when Xi changes from X0 to X1

Pedro Portugal (SBE 2025) Microeconometrics Multinomial Models 15 / 22



Multinomial Choices Conditional Logit Model

The Conditional Logit Model

Conventional name for a multiple choice problem in which the
representative utility of each choice depends on choice specific attributes:

Uij = Xijβ + εit

The probability of a choice model would be:

Pj =
eXijβ∑H
s=0 e

Xisβ

and in this case the coefficients β are identified even if they are identical
across choices
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Multinomial Choices Conditional Logit Model

Marginal Effects

Consider the car example and suppose that Xij is the number of dealers in
the city of each buyer, for each type of car

The marginal effect of an increase in the number of dealers of car j on the
probability that car j is bought is:

γij =
∂Pj

∂Xij
= Pj(1− Pj)βdealer

The marginal effect of an increase in the number of dealers of car s on the
probability that car j is bought is:

γis =
∂Pj

∂Xis
= −PjPsβdealer

The usual odds ratio (exponentiated) representation of coefficients is also
possible
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Multinomial Choices Conditional Logit Model

Maximum Likelihood Estimation

The log-likelihood function of the Conditional Logit Model is

ln(L) =
N∑
i=1

H∑
j=0

dij ln(Pij)

where dij = 1 if i chooses j

The first-order conditions for the maximization of the likelihood are:

∂ ln L

∂β
=

N∑
i=1

H∑
j=0

dij(Xij − X̄i ) = 0

where X̄i =
∑H

j=0 PijXij

The second derivatives matrix is:

∂2 ln L

∂ββ′ =
N∑
i=1

H∑
j=0

Pij(Xij − X̄i )(Xij − X̄i )
′
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Multinomial Choices Conditional Logit Model

A Test for the IIA Hypothesis

Hausman and McFadden (1984) suggest that if a subset of the choice set
is irrelevant, omitting it from the model should not change the parameter
estimates systematically

Consider a choice set A = {B,C} where B and C are subsets of A. We
want to test whether the presence of the choices in C are irrelevant for the
odds between the choices in B

The statistic for the ”Hausman’s specification test” is

HM = (β̂B − β̂A)
′[V̂B − V̂A]

−1(β̂B − β̂A) ∼ χ2(K )

where

β̂B and β̂A are the ML estimates of the parameters of the restricted and unrestricted
models

V̂B and V̂A are the ML estimates of the asymptotic covariance matrices of the restricted
and unrestricted models

Both estimates are consistent under the null and β̂A is more efficient
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Multinomial Choices Multinomial Probit Model

Multinomial Probit Model

Alternatives to the Conditional Logit Model: the Multinomial Probit Model

Assume three alternative cases:
Y ∗
1i = x1iβ + u1i

Y ∗
2i = x2iβ + u2i

Y ∗
0i = 0

where the unobservable components follow the joint normal process(
u1i
u2i

)
∼ N

((
0
0

)
,

(
1 σ12
σ12 σ22

))
Then

P[yi = 1|xi ] = P[y∗1i > 0, y∗1i > y∗2i |x1i , x2i ]

=

∫ +∞

−x1iβ

∫ (x1i−x2i )β+u1

−∞
f (u1, u2)du2du1
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Multinomial Choices Multinomial Probit Model

Estimation of Multinomial Probit

The log-likelihood function for J possible choices is:

ln LN(β,Ω) =
N∑
i=1

J∑
j=0

1(yi = j)P(yi = j |xi , β,Ω)

where Ω is the variance-covariance matrix

For a large number of options, the solution is to use simulation

Simulated Maximum Likelihood
Draw R random vectors y∗ from the distribution N (xiβ,Ω)
Construct the simulated probabilities

p̃j =
N∑
i=1

R∑
r=1

1[y∗
irj = max(y∗

ir0, y
∗
ir1, ..., y

∗
irJ)]

Iterate over β to approximate the true probabilities
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Multinomial Choices Multinomial Probit Model

Estimation of Multinomial Probit

Method of Simulated Moments
Use the first order conditions:

∂ ln LN
∂β

=
∑
i

∑
j

∂ lnP[yij = 1|xi ]
∂β

Use simulated probabilities and derivatives to solve the first order
conditions with respect to β
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