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Abstract. In this article, we describe an iterative approach for the estimation
of linear regression models with high-dimensional fixed effects. This approach is
computationally intensive but imposes minimum memory requirements. We also
show that the approach can be extended to nonlinear models and to more than
two high-dimensional fixed effects.
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1 Introduction

The increasing availability of large microlevel datasets has spurred interest in methods
for estimation of models with high-dimensional fixed e!ects. Researchers in several fields
such as economics, sociology, and political science, among others, find the introduction
of fixed e!ects to be a particularly appealing way of controlling for unobserved hetero-
geneity that is shared among groups of observations. In this case, it becomes possible
to account for all intergroup variability by adding to the set of regressors some dummy
variables that absorb group-specific heterogeneity. This approach has the advantage
of allowing for the existence of general patterns of correlation between the unobserved
e!ects and the other regressors.

In practice, when fitting a model with a single fixed e!ect (that is, a factor in the
analysis of covariance), one is not required to actually add the group dummy variables to
the set of regressors. This is particularly convenient when dealing with high-dimensional
fixed e!ects—that is, in a situation where the number of groups (dummy variables) is
very large. For several common procedures such as linear regression, Poisson regression,
and logit regression, the fixed e!ect can be eliminated from the model, thereby making it
possible to obtain estimates for the coefficients of the relevant regressors without having
to introduce the group dummy variables in the model. For other nonlinear models, it
is still possible to avoid the explicit introduction of dummy variables to account for the
fixed e!ect by modifying the iterative algorithm used to solve the maximum likelihood
problem (see Greene [2004]).

However, there is no simple solution in situations that have more than one high-
dimensional fixed e!ect. A notable example would be the large employer–employee
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panel datasets commonly used in the labor economics literature. When studying re-
lations in the labor market, researchers often want to simultaneously account for two
sources of unobserved heterogeneity—the firm and the worker. Explicit introduction
of dummy variables is not an option because the number of units (groups) for either
firms or workers is too large. Other well-known examples of large datasets with obvious
sources of unobserved heterogeneity include these two types of panel datasets: patient
claims data, in which the potential sources of heterogeneity are the patient, the doctor,
and the hospital; and student performance, in which potential sources of heterogeneity
are the student, the teacher, and the school.

Abowd, Kramarz, and Margolis (1999) tackled the problem of accounting for two
high-dimensional fixed e!ects in the linear regression problem. In a widely cited article,
the authors proposed several methods that provide approximations to the least-square
solution.1 Later, in an unpublished article, Abowd, Creecy, and Kramarz (2002) pre-
sented an iterative algorithm that leads to the exact least-square solution of a linear
regression model with two fixed e!ects. The user-written command a2reg is a Stata
implementation of this algorithm by Amine Ouazad. In a recent article published in the
Stata Journal, Cornelissen (2008) presented a new user-written command, felsdvreg,
which consists of a memory-saving procedure for estimation of a linear regression model
with two high-dimensional fixed e!ects.

At this point, we should make clear that the methods discussed above (as well as
those discussed in this article) may not lead to consistent estimation. Unlike the case
with most panel-data estimators, consistency is achieved if we are willing to admit that
the dimension of the groups is unrelated to sample size. This means that, from an
asymptotic point of view, the number of parameters of the model remains unchanged
as the sample size tends to infinity. This assumption gets around the incidental param-
eter problem but more correctly places these estimators as extensions of Stata’s areg
command—that is, as alternative ways to fit models with large sets of dummy variables.

In our own work (Carneiro, Guimarães, and Portugal 2010), we were faced with the
problem of fitting a linear regression model with two high-dimensional fixed e!ects (firm
and worker) using a linked employer–employee dataset with over 30 million observations.
Implementation of the user-written commands discussed above in a computer with 8 gi-
gabytes of random-access memory (RAM) and running Stata/MP for Windows failed
because of memory limitations. However, using an iterative procedure that was simple
to implement, we were able to fit the linear regression model with two and even three
high-dimensional fixed e!ects. The approach is computationally intensive, but it has the
advantage of imposing minimal memory requirements. In this article, we present a de-
tailed discussion of the method proposed in Carneiro, Guimarães, and Portugal (2010)
and show how it can be extended to nonlinear models and to applications with more
than two high-dimensional fixed e!ects.

1. For a discussion on the implementation of these methods in Stata, see Andrews, Schank, and
Upward (2006).



630 Fitting models with high-dimensional fixed effects

2 The linear regression model

2.1 One fixed effect

To start with, consider the conventional linear regression model setup

yi = β1x1i + β2x2i + · · · + βkxki + εi

or, more compactly,
Y = Xβ + ε

Application of the least-squares method results in the set of normal equations given
below: 

⎢⎢⎢⎢⎥

∂SS
∂β1

=
∑

i x1i(yi − β1x1i − β2x2i − · · ·− βkxki) = 0
∂SS
∂β2

=
∑

i x2i(yi − β1x1i − β2x2i − · · ·− βkxki) = 0

· · ·
∂SS
∂βk

=
∑

i xki(yi − β1x1i − β2x2i − · · ·− βkxki) = 0




(1)

These equations have a closed-form solution, the least-squares estimator, given by the
well-known formula

β̂ =
(
X′X

)−1 X′Y

However, the above formula is one of several alternative ways to find the solution to (1).
For instance, we can solve for β̂ using a partitioned iterative algorithm. An example of
such an algorithm is shown below:

• Initialize β(0)
1 ,β(0)

2 , . . . , β(0)
k

• Solve for β(1)
1 as the solution to ∂SS

∂β1
=
∑

i x1i(yi−β1x1i−β(0)
2 x2i−· · ·−β(0)

k xki) = 0

• Solve for β(1)
2 as the solution to ∂SS

∂β2
=
∑

i x2i(yi−β(1)
1 x1i−β2x2i−· · ·−β(0)

k xki) = 0

• . . .

• Repeat until convergence is achieved.

Algorithms such as this one are discussed in Smyth (1996). This algorithm is known
as the “zigzag” or full Gauss–Seidel algorithm. According to Smyth, this algorithm
produces a stable but slow iteration depending on the correlation between the parameter
estimators. In this particular case, use of an iterative algorithm to solve the normal
equations is highly inefficient. However, this implementation has the advantage of not
requiring the explicit calculation of the inverse of the X′X matrix.
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Consider now what happens if we include a set of dummy variables to account for a
fixed e!ect in the regression. In that case,

Y = Zβ + Dα + ε

where Z is the matrix of explanatory variables with N × k dimension and D is the
N × G1 matrix of dummy variables. Now we can write the normal equations as

[
Z′Z Z′D
D′Z D′D

] [
β
α

]
=
[

Z′Y
D′Y

]

which can be arranged to show
[

Z′Zβ + Z′Dα = Z′Y
D′Zβ + D′Dα = D′Y

]

Solving each set of equations independently yields
[

β =
(
Z′Z

)−1 Z′ (Y − Dα)

α =
(
D′D

)−1 D′ (Y − Zβ)

]

The above partition of the normal equations suggests a convenient iteration strategy.
To obtain the exact least-squares solution, one can simply alternate between estimation
of β and estimation of α. It is important to mention that we no longer have to worry
about the dimensionality of D. The expression

(
D′D

)−1 D′ used on the estimation of
α translates into a simple group average of the residuals of the regression of Y on Z.
On the other hand, the expression Dα that shows up on the equation for β is a column
vector containing all the elements of α. Estimation of β consists of a simple linear
regression of a transformed Y on Z. In our implementation, instead of transforming
Y, we will keep Y as the dependent variable and add Dα as an additional covariate.
When the estimation procedure converges, the coefficient on Dα must equal one and
the vector Dα will contain all the estimated coefficients for the group dummy variables.
With this approach, we avoided inversion of a potentially large matrix that would be
required if we had simply added D to the set of regressors. As an illustration of this
approach, we use auto.dta and replicate the coefficient estimates obtained with areg
as shown in example 1 of [R] areg.

. sysuse auto
(1978 Automobile Data)

. keep if rep78 < .
(5 observations deleted)

. generate double fe1=0

. local rss1=0

. local dif=1

. local i=0
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. while abs(`dif´)>epsdouble() {
2. quietly {
3. regress mpg weight gear_ratio fe1
4. local rss2=`rss1´
5. local rss1=e(rss)
6. local dif=`rss2´-`rss1´
7. capture drop yhat
8. predict double yhat
9. generate double temp1=mpg-yhat+_b[fe1]*fe1
10. capture drop fe1
11. egen double fe1=mean(temp1), by(rep78)
12. capture drop temp1
13. local i=`i´+1
14. }
15. }

. display "Total Number of Iterations --> " `i´
Total Number of Iterations --> 13

. quietly regress mpg weight gear_ratio fe1

. estimates table, b(%10.7f)

Variable active

weight -0.0051031
gear_ratio 0.9014780

fe1 1.0000000
_cons 34.0588892

As we implied earlier, the estimated coefficients are identical to those obtained using
the areg command (see [R] areg). The final regression includes an additional variable,
fe1, with a coefficient of one. This variable was created during estimation and contains
the estimates of the fixed e!ect.

2.2 More than one fixed effect

Suppose now that instead of a single high-dimensional fixed e!ect, we have two high-
dimensional fixed e!ects. That is, we now intend to fit the following model:

Y = Zβ + D1α + D2γ + ε

where D1 is N × G1, D2 is N × G2, and both G1 and G2 have high dimensionality.
As discussed earlier, in this particular case, estimation of the linear regression model is
complicated. However, implementation of the partitioned algorithm discussed above is
straightforward. Proceeding as we did before, we can solve the normal equations as



⎢⎢⎥

β =
(
Z′Z

)−1 Z′ (Y − D1α − D2γ)

α =
(
D′

1D1

)−1 D′
1 (Y − Zβ − D2γ)

γ =
(
D′

2D2

)−1 D′
2 (Y − Zβ − D1α)



 (2)

Iterating between these sets of equations provides us with the exact least-squares solu-
tion. All we have to do is compute several linear regressions with k explanatory variables
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and compute group means of residuals. If we add more fixed e!ects, the logic remains
unchanged. To illustrate the approach, we modify the above algorithm and apply it to
the ancillary dataset that accompanies the felsdvreg command developed by Thomas
Cornelissen. As before, we introduce D1α and D2γ as additional regressors instead of
subtracting them from the dependent variable.

. use felsdvsimul, clear

. generate double temp=0

. generate double fe1=0

. generate double fe2=0

. local rss1=0

. local dif=1

. local i=0

. while abs(`dif´)>epsdouble() {
2. quietly {
3. regress y x1 x2 fe1 fe2
4. local rss2=`rss1´
5. local rss1=e(rss)
6. local dif=`rss2´-`rss1´
7. capture drop res
8. predict double res, res
9. replace temp=res+_b[fe1]*fe1, nopromote
10. capture drop fe1
11. egen double fe1=mean(temp), by(i)
12. replace temp=res+_b[fe2]*fe2, nopromote
13. capture drop fe2
14. egen double fe2=mean(temp), by(j)
15. local i=`i´+1
16. }
17. }

. display "Total Number of Iterations --> " `i´
Total Number of Iterations --> 695

. quietly regress y x1 x2 fe1 fe2

. estimates table, b(%10.7f)

Variable active

x1 1.0292584
x2 -0.7094820
fe1 1.0000000
fe2 1.0000000

_cons -1.9951791

As we hinted above, the estimates for the model coefficients are identical to the least-
squares results with all dummy variables included, as reported in Cornelissen (2008).
The algorithm took 695 iterations to converge, which is one of the drawbacks of this
approach. Fortunately, as discussed below, there is substantial room for improvement.
One obvious simplification is to sweep out one of the fixed e!ects by subtracting the
group mean from all variables. By doing this, we avoid dealing with one of the fixed
e!ects. This means that with minor modifications, the code shown above can be used
to fit a model with three high-dimensional fixed e!ects. We illustrate the estimation of
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a model with three high-dimensional fixed e!ects by assuming that our single variable
of interest is x1 and that x2 is a variable indicating an additional fixed e!ect. The
modified code is shown below:

. use felsdvsimul, clear

. generate double temp=0

. generate double fe1=0

. generate double fe2=0

. generate double fe1t=0

. generate double fe2t=0

. egen double mean=mean(x1), by(x2)

. generate double x1t=x1-mean

. capture drop mean

. egen double mean=mean(y), by(x2)

. generate double yt=y-mean

. local rss1=0

. local dif=1

. local i=0

. while abs(`dif´)>epsdouble() {
2. quietly {
3. capture drop mean
4. egen double mean=mean(fe1), by(x2)
5. replace fe1t=fe1-mean, nopromote
6. capture drop mean
7. egen double mean=mean(fe2), by(x2)
8. replace fe2t=fe2-mean, nopromote
9. regress yt x1t fe1t fe2t
10. local rss2=`rss1´
11. local rss1=e(rss)
12. local dif=`rss2´-`rss1´
13. replace temp=yt-_b[x1t]*x1t+_b[fe1t]*(fe1-fe1t)-_b[fe2t]*fe2t, nopromote
14. capture drop fe1
15. egen double fe1=mean(temp), by(i)
16. replace temp=yt-_b[x1t]*x1t-_b[fe1t]*fe1t+_b[fe2t]*(fe2-fe2t), nopromote
17. capture drop fe2
18. egen double fe2=mean(temp), by(j)
19. local i=`i´+1
20. }
21. }

. display "Total Number of Iterations --> " `i´
Total Number of Iterations --> 477

. quietly areg y x1 fe1 fe2, absorb(x2)

. estimates table, b(%10.7f)

Variable active

x1 0.9634370
fe1 1.0000000
fe2 1.0000000

_cons -2.2295298
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As we can readily see, the estimated coefficient for x1 is the same as that obtained
by the simple regression on x1 and three sets of dummy variables.

. quietly xi: regress y x1 i.x2 i.i i.j

. estimates table, keep(x1) b(%10.7f)

Variable active

x1 0.9634370

In Carneiro, Guimarães, and Portugal (2010), we estimated a conventional Mince-
rian wage equation with three high-dimensional fixed e!ects. Our data source is the
Quadros do Pessoal, a mandatory employment survey collected yearly by the Portuguese
Ministry of Labor and Social Security. The dataset comprised more than 30 million ob-
servations spanning from 1986 to 2007. In our estimation, we wanted to account for
firm, worker, and job heterogeneity and year fixed e!ects. With around 6.4 million
workers, 624,171 firms, and 115,822 jobs, employing dummy variables to account for
the fixed e!ects was not an option. In the following example, though, we show the out-
put result of one specification with 28 covariates and the three high-dimensional fixed
e!ects estimated using the approach outlined above.

(Continued on next page)
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********** Linear Regression with 3 High-Dimensional Fixed Effects **********

Number of obs = 30906573
F(6703079,24203493)= 30.81
Prob > F = 0.0000
R-squared = 0.8951
Adj R-squared = 0.8660
Root MSE = 0.2159

ln_real_hw Coef. Std. Err. t P>|t| [95% Conf. Interval]

age .0506563 .0038823 13.05 0.000 .043047 .0582655
agesq -.0002992 6.36e-07 -470.60 0.000 -.0003005 -.000298
hab_1 -.0228571 .0011448 -19.97 0.000 -.0251008 -.0206134
hab_2 -.0202456 .0010558 -19.18 0.000 -.0223149 -.0181763
hab_3 -.0173233 .0010535 -16.44 0.000 -.0193881 -.0152585
hab_4 -.0068901 .0010517 -6.55 0.000 -.0089515 -.0048288
hab_5 .0047679 .00105 4.54 0.000 .0027099 .006826

hab_67 .0658466 .0011658 56.48 0.000 .0635618 .0681314
hab_8910 .1175194 .0011608 101.24 0.000 .1152443 .1197945

y87 .0139098 .0038957 3.57 0.000 .0062743 .0215453
y88 .0036002 .0077708 0.46 0.643 -.0116303 .0188307
y89 .108814 .0116502 9.34 0.000 .0859801 .131648
y91 .0802597 .0194122 4.13 0.000 .0422125 .1183068
y92 .0748048 .0232936 3.21 0.001 .0291501 .1204595
y93 .042098 .0271755 1.55 0.121 -.0111649 .0953609
y94 .0060495 .0310574 0.19 0.846 -.0548219 .0669209
y95 -.0086197 .034939 -0.25 0.805 -.077099 .0598596
y96 -.0186946 .0388209 -0.48 0.630 -.0947821 .057393
y97 .0024842 .0427027 0.06 0.954 -.0812116 .08618
y98 .0294311 .0465845 0.63 0.528 -.0618729 .1207351
y99 .043531 .0504663 0.86 0.388 -.0553812 .1424433
y03 -.0054844 .0659942 -0.08 0.934 -.1348307 .123862
y00 .0412941 .0543482 0.76 0.447 -.0652264 .1478146
y02 .0171165 .0621123 0.28 0.783 -.1046213 .1388544
y04 .0296664 .0698753 0.42 0.671 -.1072867 .1666195
y05 .0194295 .0737572 0.26 0.792 -.1251318 .1639909
y06 -.0153513 .0776394 -0.20 0.843 -.1675216 .1368191
y07 -.0225893 .0815211 -0.28 0.782 -.1823678 .1371893

2.3 Estimation of the standard errors

To provide the standard errors associated with the estimator of β, we would need to
estimate

V
(
β̂
)

= σ2
(
X′X

)−1

which again raises the problem of inverting the X′X matrix. An alternative solution to
estimate the elements of V (β̂) is to use the known relation

V
(
β̂j

)
=

σ2

Ns2
j

(
1 − R2

j.123...

)

where s2
j is the sample variance associated with the xj variable and R2

j.123... is the
coefficient of determination obtained from a regression of xj on all other remaining
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explanatory variables. Estimation of σ2 is easy because the final regression that provides
the estimates of β has the correct sum of squared residuals (SSR). As we will see, the
remaining difficulty is the computation of the number of degrees of freedom associated
with SSR. With multiple fixed e!ects, it may be difficult to compute the actual dimension
of X because some of the coefficients for the fixed e!ects may not be identifiable. If
we were simply estimating the model by adding dummy variables to account for the
fixed e!ects, Stata would numerically identify colinearities and drop variables as needed
to identify the coefficients in the model. However, to implement our solution, we need
to know beforehand the number of coefficients of the dummy variables that can be
identified.2 Computation of R2

j.123... is not a problem because we know how to estimate
a model with high-dimensional e!ects. However, this approach may be time consuming
because it would require estimation of a regression with high-dimensional fixed e!ects
for each of the regressors.

Fortunately, there is an alternative strategy that will produce results faster. The
idea is a standard application of the well known Frisch–Waugh–Lovell theorem; simply
put, it consists of fitting the model in two steps. In the first step, we expurgate the fixed
e!ects from all variables in the model. This involves running a linear regression of each
individual variable on only the high-dimensional e!ects and storing the residuals. In the
second step, we run the regression of interest using the stored residuals of the variables
obtained in the first step instead of the original variables. Because we are not dealing
with the high-dimensional fixed e!ects, the regressions in the second step are easy to
implement and will have the correct standard errors provided that we adjust the degrees
of freedom. One reason why this approach works well is that the calculations in the first
step are relatively simple. We can see from (2) that in this case, the algorithm involves
only the computation of means. In the next example, we again use the ancillary dataset
that accompanies the felsdvreg user-written command and show how to obtain the
correct standard errors in a regression with two high-dimensional fixed e!ects. In the
Stata code shown below, we speed up the algorithm by demeaning all variables with
respect to one of the fixed e!ects.

. use felsdvsimul, clear

. recast double _all

. generate double temp=0

. generate double fe2=0

. generate double lastfe2=0

2. In the appendix, we provide a more extensive discussion of this issue.
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. foreach var of varlist y x1 x2 {
2. quietly {
3. local i=0
4. local dif=1
5. capture drop mean
6. egen double mean=mean(`var´), by(i)
7. replace `var´=`var´-mean, nopromote
8. while abs(`dif´)>epsdouble() {
9. replace lastfe2=fe2, nopromote
10. capture drop mean
11. egen double mean=mean(fe2), by(i)
12. capture drop fe2
13. egen double fe2=mean(`var´+mean), by(j)
14. replace temp=sum(reldif(fe2,lastfe2)), nopromote
15. local dif=temp[_N]/_N
16. display `i´ " " `dif´
17. local i=`i´+1
18. }
19. noisily display "Total Number of Iterations for `var´ --> " `i´
20. generate double `var´_res=`var´-fe2+mean
21. }
22. }

Total Number of Iterations for y --> 40
Total Number of Iterations for x1 --> 41
Total Number of Iterations for x2 --> 41

. regress y_res x1_res x2_res, nocons dof(69)

Source SS df MS Number of obs = 100
F( 2, 69) = 17.17

Model 1033.49122 2 516.745611 Prob > F = 0.0000
Residual 2076.72508 69 30.0974649 R-squared = 0.3323

Adj R-squared = 0.0323
Total 3110.2163 100 31.102163 Root MSE = 5.4861

y_res Coef. Std. Err. t P>|t| [95% Conf. Interval]

x1_res 1.029258 .2151235 4.78 0.000 .6000987 1.458418
x2_res -.709482 .2094198 -3.39 0.001 -1.127263 -.2917009

Notice that the iterative procedure was much faster, taking about 40 iterations for
each variable. The final regression has the correct estimates for both the coefficients
and standard errors. To obtain the correct standard errors, we had to adjust the degrees
of freedom of the regression. This was done by using the dof() option in the regress
command. Given that in felsdvsimul.dta we have 100 observations, that G1 = 15,
that G2 = 20, and that we have six mobility groups and two regressors (x1 and x2),
the regression has 100 − 15 − 20 + 6 − 2 = 69 degrees of freedom.3 We also can easily
compute clustered standard errors by using the regression on the transformed variables.
In the example below, we cluster the standard errors on the variable g and confirm the
results using the regress command.4

3. See the appendix for a more detailed explanation.
4. If the clustering variable is di!erent for each observation (each observation is treated as a cluster),

then we obtain heteroskedasticity-robust White-corrected standard errors.
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. quietly regress y_res x1_res x2_res, nocons mse1

. matrix VV=e(V)

. predict double res, residual

. _robust res, variance(VV) minus(31) cluster(g)

. display "Clustered standard error of x1 --> " sqrt(VV[1,1])
Clustered standard error of x1 --> .20274454

. display "Clustered standard error of x2 --> " sqrt(VV[2,2])
Clustered standard error of x2 --> .14387506

. quietly xi: regress y x1 x2 i.i i.j, vce(cluster g)

. display "Clustered standard error of x1 --> " _se[x1]
Clustered standard error of x1 --> .20274454

. display "Clustered standard error of x2 --> " _se[x2]
Clustered standard error of x2 --> .14387506

Finally, even though we ran a regression on transformed variables, we are still able to
recover the estimates for the coefficients of the fixed e!ects. We do so by implementing
the same iterative procedure discussed above to the residuals obtained when we subtract
the e!ects of x1 and x2 from y.

. quietly regress y_res x1_res x2_res, nocons

. generate double dum=y-_b[x1_res]*x1-_b[x2_res]*x2

. capture drop mean

. egen double mean=mean(dum), by(i)

. replace dum=dum-mean, nopromote
(29 real changes made)

. local i=0

. local dif=1

. while abs(`dif´)>epsdouble() {
2. quietly replace lastfe2=fe2, nopromote
3. capture drop mean
4. egen double mean=mean(fe2), by(i)
5. capture drop fe2
6. egen double fe2=mean(dum+mean), by(j)
7. quietly replace temp=sum(reldif(fe2,lastfe2)), nopromote
8. local dif=temp[_N]/_N
9. local i=`i´+1
10. }

. display "Total Number of Iterations for fe2 --> " `i´
Total Number of Iterations for fe2 --> 41

. quietly replace dum=dum-fe2, nopromote

. egen double fe1=mean(dum), by(i)

. quietly regress y x1 x2 fe1 fe2, nocons

. estimates table, b(%10.7f)

Variable active

x1 1.0292583
x2 -0.7094820
fe1 1.0000000
fe2 1.0000000



640 Fitting models with high-dimensional fixed effects

We confirm that the estimated coefficients are correct by adding the variables fe1
and fe2 to the linear regression of y on x1 and x2. As expected, the estimated β
coefficients are the correct ones and the coefficients associated with the variables fe1
and fe2 equal one.

Subtracting the influence of the fixed e!ects from each variable and working with
only the residuals has some advantages compared with the process shown earlier that
entailed direct estimation of the full regression with all the fixed e!ects added. First, the
simple regressions in step 1 are likely to converge at a faster rate. Second, it is possible
to test di!erent specifications of the model using only the transformed variables without
the need to deal with the high-dimensional fixed e!ects. And third, when dealing with
very large datasets, we can substantially reduce memory requirements because during
step 1 we only need to load into memory the variable being handled and the group
identifiers for the fixed e!ects. In fact, we could do even better because the solution
to the algorithm is performed independently across mobility groups, meaning that it
would be possible to load each mobility group into memory separately.5

3 Extension to nonlinear models

In this section, we show that the iterative approach outlined earlier for the linear regres-
sion model can be extended to nonlinear models. With nonlinear models, it is possible
to estimate correctly the vector β, but there is no easy solution for estimation of the
associated standard errors. While it would be possible to bootstrap the standard errors,
this solution is likely to be computationally very expensive. Given that with the itera-
tive approach proposed in this article we obtain the correct values for the log-likelihood
function, it may be easier to implement statistical tests for the coefficients based upon
likelihood ratios (LRs). To illustrate, let us first consider a typical Poisson regression
model with expected value given by

E(yi) = λi = exp(x′
iβ)

We know that the maximum likelihood estimators are obtained as the solution to:
∂ ln L

∂β
=

∑

i=1

yixi − xi exp(x′
iβ)

=
∑

i=1

{yi − exp(x′
iβ)}xi = 0

If one of the regressors is a dummy variable, say dj , then its estimated coefficient, say
αj , has a closed-form solution given by

exp(αj) = d′
jy ×

[
d′

j exp
{

(x′
iβ)(j)

}]−1
(3)

5. Currently available in the Statistical Software Components archive are two user-written commands
that implement the algorithms discussed in this article for estimation of linear regression models
with two high-dimensional fixed e!ects. The first, gpreg, is a fast Mata implementation pro-
grammed by Johannes Schmieder. The second, reg2hdfe, is particularly suited for estimation with
large datasets and was programmed by Paulo Guimarães.
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where the subscript (j) in the argument of the exponential function shows that dj is
excluded from the argument. The above expression suggests a simple iterative strategy,
much like the one used for the linear regression. We can alternate between estimation
of a Poisson regression with k explanatory variables and calculation of the estimates
for all the coefficients of the fixed e!ects using (3). These estimates can be kept in a
single column vector. To show this algorithm at work, we replicate the estimates of the
Poisson model with fixed e!ects, which appear in example 1 of [XT] xtpoisson as an
illustration of that command with the fe option. That example shown in the manual
includes an exposure variable, service, which we incorporated into the algorithm:

. webuse ships, clear

. quietly poisson acc op_75_79 co_65_69 co_70_74 co_75_79, exposure(service)

. keep if e(sample)
(6 observations deleted)

. bysort ship: egen sumy=total(acc)

. generate double off=0

. generate double temp=0

. local dif=1

. local ll1=0

. local i=0

. while abs(`dif´)>epsdouble() {
2. quietly poisson acc op_75_79 co_65_69 co_70_74 co_75_79, offset(off)
> noconstant
3. local ll2=`ll1´
4. local ll1=e(ll)
5. capture drop xb
6. predict double xb, xb
7. quietly replace temp=xb-off+log(service), nopromote
8. capture drop sumx
9. bysort ship: egen double sumx=total(exp(temp))
10. quietly replace off=log(sumy/sumx)+log(service), nopromote
11. local dif=`ll2´-`ll1´
12. local i=`i´+1
13. }

. display "Total Number of Iterations --> " `i´
Total Number of Iterations --> 103

. quietly poisson acc op_75_79 co_65_69 co_70_74 co_75_79, noconstant
> offset(off)

. estimates table, b(%10.7f) eform

Variable active

op_75_79 1.4688312
co_65_69 2.0080025
co_70_74 2.2669302
co_75_79 1.5736955

Extending the algorithm to two fixed e!ects is straightforward. We use the same
dataset as before, but instead of including the dummy variables for year of construction
(co 65 69, co 70 74, and co 75 79), we treat the year of construction as a fixed e!ect;
that is, we let the variable yr con identify a second fixed e!ect. Now the algorithm is
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implemented without an exposure variable. For comparability purposes, we first run a
Poisson regression that includes dummy variables for both fixed e!ects.

. webuse ships, clear

. local dif=1

. xi: poisson acc op_75_79 i.yr_con i.ship, nolog
i.yr_con _Iyr_con_1-4 (naturally coded; _Iyr_con_1 omitted)
i.ship _Iship_1-5 (naturally coded; _Iship_1 omitted)

Poisson regression Number of obs = 34
LR chi2(8) = 475.45
Prob > chi2 = 0.0000

Log likelihood = -118.47588 Pseudo R2 = 0.6674

accident Coef. Std. Err. z P>|z| [95% Conf. Interval]

op_75_79 .2928003 .1127466 2.60 0.009 .071821 .5137796
_Iyr_con_2 .5824489 .1480547 3.93 0.000 .2922671 .8726308
_Iyr_con_3 .4627844 .151248 3.06 0.002 .1663437 .7592251
_Iyr_con_4 -.1951267 .2135749 -0.91 0.361 -.6137258 .2234724

_Iship_2 1.79572 .1666196 10.78 0.000 1.469151 2.122288
_Iship_3 -1.252763 .3273268 -3.83 0.000 -1.894312 -.6112142
_Iship_4 -.9044563 .2874597 -3.15 0.002 -1.467867 -.3410457
_Iship_5 -.1462833 .2351762 -0.62 0.534 -.6072202 .3146537

_cons 1.308451 .1972718 6.63 0.000 .9218049 1.695096

. keep if e(sample)
(6 observations deleted)

. bysort ship: egen sumy1=total(acc)

. bysort yr_con: egen sumy2=total(acc)

. generate double off=0

. generate double temp=0

. generate double temp1=0

. generate double temp2=0

. generate double fe1=0

. generate double fe2=0

. local ll1=0

. local i=0

. while abs(`dif´)>epsdouble() {
2. quietly poisson acc op_75_79, noconstant offset(off)
3. local ll2=`ll1´
4. local ll1=e(ll)
5. capture drop xb
6. predict double xb, xb
7. quietly replace temp1=xb-off+fe2, nopromote
8. capture drop sumx
9. bysort ship: egen double sumx=total(exp(temp1))
10. quietly replace fe1=log(sumy1/sumx), nopromote
11. quietly replace temp2=xb-off+fe1, nopromote
12. capture drop sumx
13. bysort yr_con: egen double sumx=total(exp(temp2))
14. quietly replace fe2=log(sumy2/sumx), nopromote
15. quietly replace off=fe1+fe2
16. local dif=`ll2´-`ll1´
17. local i=`i´+1
18. }
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. display "Total Number of Iterations --> " `i´
Total Number of Iterations --> 45

. quietly poisson acc op_75_79, noconstant offset(off)

. estimates table, b(%10.7f)

Variable active

op_75_79 0.2928003

To test the statistical significance of the variable op 75 79 using an LR test, we
run the same regression as above but without the op 75 79 variable and retaining the
log-likelihood value. The value for the log likelihood of this restricted regression is
−121.88042, which leads to a value of the LR test of LR = 2×(−118.47588+121.88042) =
6.80908. The LR statistic follows a chi-squared distribution with 1 degree of freedom,
and its square root should be comparable with the z statistic reported in the Stata
output for the Poisson regression. Taking the square root of the LR statistic, we obtain
2.6094213, which is very close to the z statistic for op 75 79 that is reported by Stata
in the Poisson regression that explicitly includes all dummy variables.6 Application of
the algorithm to Poisson regression was straightforward because we could find a closed-
form solution for the coefficients associated with the fixed e!ects. However, in most
nonlinear regression models, the fixed e!ects do not have a closed-form solution. As
shown in Guimarães (2004), models from the multinomial logit family such as logit,
multinomial logit, and conditional logit all can be fit using Poisson regression, meaning
that the above algorithm could be used for these cases. The inexistence of a closed-form
solution for the coefficients of the fixed e!ects does not invalidate use of the zigzag
algorithm, but it requires the use of a numerical optimization routine to solve for the
coefficients of the fixed e!ects. This routine may slow down the algorithm considerably.
As an example of this approach, we show an application of the zigzag algorithm to fit
a negative binomial model with fixed e!ects.7

6. The results are not identical because Stata reports the Wald statistic, while we calculated the LR
statistic. Asymptotically, the two statistics are equivalent.

7. The fixed-e!ects negative binomial model (xtnbreg with the fe option) is not equivalent to a
negative binomial model with dummy variables added for fixed e!ects (see Guimarães [2008]).
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. webuse ships, clear

. xi: nbreg acc op_75_79 co_65_69 co_70_74 co_75_79 i.ship, nolog
i.ship _Iship_1-5 (naturally coded; _Iship_1 omitted)

Negative binomial regression Number of obs = 34
LR chi2(8) = 41.45

Dispersion = mean Prob > chi2 = 0.0000
Log likelihood = -88.445258 Pseudo R2 = 0.1898

accident Coef. Std. Err. z P>|z| [95% Conf. Interval]

op_75_79 .3324104 .328116 1.01 0.311 -.3106852 .975506
co_65_69 .8380919 .4378077 1.91 0.056 -.0199955 1.696179
co_70_74 1.658684 .4850461 3.42 0.001 .708011 2.609357
co_75_79 .8604224 .5955773 1.44 0.149 -.3068876 2.027732
_Iship_2 2.35359 .4701847 5.01 0.000 1.432045 3.275135
_Iship_3 -1.104561 .5214874 -2.12 0.034 -2.126657 -.082464
_Iship_4 -.9606946 .4905212 -1.96 0.050 -1.922098 .0007092
_Iship_5 -.077889 .4780747 -0.16 0.871 -1.014898 .8591201

_cons .4230202 .5218569 0.81 0.418 -.5998006 1.445841

/lnalpha -.7372302 .3814595 -1.484877 .0104166

alpha .4784372 .1825044 .2265302 1.010471

Likelihood-ratio test of alpha=0: chibar2(01) = 60.06 Prob>=chibar2 = 0.000

. keep if e(sample)
(6 observations deleted)

. egen id=group(ship)

. quietly sum id

. local maxg=r(max)

. local dif=1

. local ll1=0

. local i=0

. generate double off1=0

. generate double off2=0

. while abs(`dif´)>epsdouble() {
2. quietly nbreg acc op_75_79 co_65_69 co_70_74 co_75_79, noconstant offset(off1)
3. local lna=log(e(alpha))
4. constraint define 1 [lnalpha]_cons=`lna´
5. local ll2=`ll1´
6. local ll1=e(ll)
7. capture drop xb
8. predict double xb, xb
9. quietly replace off2=xb-off1, nopromote
10. forval j=1/`maxg´ {
11. quietly nbreg acc if id==`j´, offset(off2) constraint(1)
12. quietly replace off1=_b[_cons] if e(sample), nopromote
13. }
14. local dif=`ll2´-`ll1´
15. local i=`i´+1
16. }

. display "Total Number of Iterations -->" `i´
Total Number of Iterations -->122

. quietly nbreg acc op_75_79 co_65_69 co_70_74 co_75_79, offset(off1) noconstant
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. estimates table, b(%10.7f)

Variable active

accident
op_75_79 0.3324104
co_65_69 0.8380920
co_70_74 1.6586841
co_75_79 0.8604225

lnalpha
_cons -0.7372302

Following an approach similar to the one used for the negative binomial model,
it should be possible to extend the algorithm to other nonlinear models. In general,
the algorithm should work well with models that have globally concave log-likelihood
functions such as the ones discussed here.

4 Conclusion

In this article, we successfully explored the implementation of the full Gauss–Seidel
algorithm to fit regression models with high-dimensional fixed e!ects. The main ad-
vantage of this procedure is the ability to fit linear regression models with two or more
high-dimensional fixed e!ects under minimal memory requirements. Generalizing the
procedure to nonlinear regression models is straightforward, particularly in cases having
a closed-form solution for the fixed e!ect.

We do not claim, however, that our procedure is a superior estimation strategy.
Quite to the contrary, the zigzag algorithm can be very slow, and researchers should
use more efficient estimation techniques whenever available. We know that the linear
regression model with two high-dimensional fixed e!ects is fit much more efficiently
with the user-written command felsdvreg, the same way that xtpoisson is the better
approach to fit a Poisson model with a single high-dimensional fixed e!ect. Nevertheless,
the zigzag algorithm may prove useful in some circumstances, namely, when existing
approaches do not work because of hardware (memory) limitations or when no other
known ways of fitting the model exist. As we mentioned earlier, the estimation strategy
outlined in this article is time consuming, but it does have the advantages of imposing
minimum memory requirements and of being simple to implement.

There are many ways to improve the speed of the algorithms discussed above, and
research is needed to figure out how to improve them. In the examples presented
in this article, we used a very strict convergence criterion. In practical applications,
though, a more relaxed criterion is likely to substantially lower the number of iterations
without meaningful changes to the final results. Other obvious tools that will speed the
algorithms include more efficient Stata code (possibly Mata), better starting values, and
the use of convergence acceleration techniques in the algorithm. Speed should not be
hard to accomplish because the estimates of fixed e!ects tend to converge monotonically,
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making it possible to use the information from the last iterations to adjust the trajectory
of the fixed-e!ect estimates and thus obtain faster convergence.

We would like to make researchers aware of the large-sample properties of these
estimators. Given the multiple-dimension panel data, the asymptotic behavior of the
estimators can be studied in di!erent ways. The estimators are consistent if we are
willing to admit that the dimension of the groups is unrelated to sample size. From the
literature on panel data, we know that a critical situation arises when the dimension of
one fixed e!ect (say N) increases without bound while T remains fixed. In this case, the
number of individual parameters increases as N increases, raising the incidental param-
eter problem originally discussed by Neyman and Scott (1948) and recently reviewed by
Lancaster (2000). In the linear regression model, it is well known that the least-square
dummy variable model (or equivalently, the within estimator) still provides consistent
estimates of the slope coefficients, but not of the individual fixed e!ects. This is because
in the linear model, the estimators of the slopes and of the individual e!ects are asymp-
totically independent (Hsiao 2003). As for nonlinear models, in general, the estimators
of the regression coefficients (the slopes) will be plagued by the incidental parameter
problem and, for T fixed, will be inconsistent. With one fixed e!ect, the incidental
problem may be overcome by finding a minimal sufficient statistic for the individual
e!ect as in the conditional logit model of Chamberlain (1980). Lancaster (2000) o!ers
useful reparameterizations for a number of conventional nonlinear regression models.
If, however, both N and T increase without bound, the inconsistency generated by the
incidental parameter problem is circumvented, leading to consistent estimates of the
slope and the individual e!ects.

We should stress that the article presents a technique for estimation of models with
large numbers of dummy variables. From an asymptotic perspective, this approach is
not equivalent to the use of panel-data estimators that condition out or di!erence the
fixed e!ects. This means that consistency and asymptotic normality of our estimators
rely on the implicit assumption that the number of groups remains fixed as the sample
size tends to infinity.

Finally, we would like to point out that we motivated the introduction of fixed e!ects
in large datasets as a way to control for unobserved heterogeneity. However, there
may be other reasons why researchers may want to deal with large numbers of dummy
variables. With large datasets, it may not make sense to impose functional relationships
in the variables, and we can instead let the data best show those relationships using a
dummy variable for each di!erent value of the regressor. With millions of observations,
the loss in degrees of freedom is minimal.
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Appendix

In this appendix, we try to provide some intuition on the issue of identification of the
fixed e!ects. Consider first a regression model with N observations and a single fixed
e!ect with G1 levels (a one-way ANOVA model):

E(yit) = µ + αi

If we replace E(yit) by the data cell means, we have a system of G1 equations on G1 +1
unknowns. To solve this model, we need to impose one restriction (typically, µ = 0 or
α1 = 0). With this restriction, we are able to estimate G1 coefficients of the model.
This in turn means that SSR has N −G1 degrees of freedom (or N − k−G1 if there are
an additional k noncollinear explanatory variables in the model).

Consider now a regression model with two fixed e!ects with G1 and G2 levels,
respectively:

E(yit) = µ + αi + ηj

The unique combinations of αi and ηj available on the data define a set of equations,
but the interdependence between these equations does not make obvious how many
restrictions are needed to identify the coefficients. Abowd, Creecy, and Kramarz (2002)
presented an algorithm that counts the number of restrictions needed to identify the
coefficients. To illustrate, consider an example with G1 = G2 = 3 and the following
unique combinations of the levels of the fixed e!ects:

µ + α1 + η1

µ + α1 + η2

µ + α2 + η1

µ + α2 + η3

µ + α3 + η2

µ + α3 + η3

To solve this system of equations, we can start out by imposing two restrictions,
for example, µ = 0 and α1 = 0. With these restrictions in place, we can immediately
identify η1 and η2. In turn, knowledge of η1 and η2 allow the identification of α2 and α3,
thereby leading to the identification of η3. This sequence of steps is illustrated below:

η1

η2

α2+η1

α2 + η3

α3+η2

α3 + η3

→

η1

η2

α2+η1

α2+η3
α3+η2

α3+η3

→

η1

η2

α2+η1

α2+η3

α3+η2

α3+η3
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Identification of the coefficients is possible only because the equations are “connected”.
Consider now an alternative regression model with parameters given by

µ + α1 + η1

µ + α1 + η2

µ + α2 + η1

µ + α2 + η2

µ + α3 + η3

µ + α3 + η3

If we follow the same strategy as above and set µ = 0 and α1 = 0, we now have the
following sequence of steps:

η1

η2

α2+η1

α2+η2

α3 + η3

α3 + η3

→

η1

η2

α2+η1

α2+η2

α3 + η3

α3 + η3

Now, with these two restrictions, we are only able to identify the coefficients in the
first four equations. This happens because the first set of equations does not share
any coefficients with the remaining equations. In Abowd, Creecy, and Kramarz (2002)
terminology, there are now two mobility groups. Only with an additional restriction
(α3 = 0 or η3 = 0) can we identify the remaining coefficients. It should be obvious that
each additional mobility group requires an additional restriction. If we let M designate
the number of mobility groups, then we conclude that the number of identified coeffi-
cients is G1+G2−M , and the degrees of freedom associated with SSR is N−G1−G2+M
(or N −k−G1−G2 +M if there are k noncollinear explanatory variables in the model).
We can use a similar logic to that outlined above to count the number of identifiable
coefficients in a model with more than two fixed e!ects. However, development of an
algorithm for this purpose is no simple task and is well beyond the scope of this article.


