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Likelihood Function Maximum Likelihood

The Likelihood Principle

Choose as estimator of the parameter vector θ0 that value of θ that
maximizes the likelihood of observing the actual sample

Discrete case: this likelihood is the probability obtained from the
probability mass function
Continuous case: this likelihood is the density

The joint probability mass function or density f (y,X|θ) is viewed as a
function of θ given the data (y,X)

This is called the likelihood function and is denoted by LN(θ|y,X)
Maximizing LN(θ) is equivalent to maximizing the log-likelihood
function

LN(θ) = lnLN(θ)
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Likelihood Function Maximum Likelihood

Conditional Likelihood

For cross-section data the observations (yi , xi ) are independent over i
with conditional density function f (yi |xi , θ)
Then,

f (y|X, θ) =
N∏
i=1

f (yi |xi , θ)

Leading to the (conditional) log-likelihood function

QN(θ) = N−1LN(θ) =
1

N

N∑
i=1

ln f (yi |xi , θ)

where we divide by N so that the objective function is an average
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Likelihood Function Maximum Likelihood

Maximum Likelihood: Commonly Used Densities

Source: Cameron and Trivedi, 2005
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Likelihood Function Maximum Likelihood

Log-Likelihood Function

Suppose we have a random sample of N observations of y and x

We can use these data to construct a series of probabilities corresponding to the
sequence of observations on y

i

yi

Fi

1 2 3 … N

1 1 0 … 0

F(x1β) F(x2β) 1-F(x3β) 1-F(xNβ)…

The likelihood of each observation i will be

ℓi (yi |xi , β) = F (xiβ)
yi [1− F (xiβ)]

1−yi

And the log-likelihood function will be

ln LN(β) =
N∑
i=1

{yi lnF (xiβ) + (1− yi ) ln(1− F (xiβ))}
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MLE Maximum Likelihood

Maximum Likelihood Estimator

Maximizes the (conditional) log-likelihood function and is clearly an
extremum estimator

Usually the MLE is the local maximum that solves the first-order
conditions

1

N

∂LN(θ)

∂θ
=

1

N

N∑
i=1

∂ ln f (yi |xi , θ)
∂θ

= 0

This estimator is the conditional MLE as it is based on the
conditional density of y given x

The gradient vector ∂LN(θ)/∂θ is called the score vector as it sums
the first derivatives of the log density, and when evaluated at θ0 it is
called the efficient score
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MLE Maximum Likelihood

MLE (Cont.)

Derive the foc for the optimum from the maximization of ln LN

∂ ln L

∂β
= 0

and solve for β̂

The sample analogue of this estimator is the solution of the following
equation

∂ ln L

∂β
=

N∑
i=1

yi − F (xiβ)

F (xiβ)[1− F (xiβ)]
f (xiβ)xi = 0

which is the sum of scores for each observation i

For the Logit and Probit, the LN function is concave (see Amemiya
for a proof). Thus, the maximum is unique and easy to compute
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MLE Maximum Likelihood

Information Matrix Equality

ML Regularity Conditions

Ef

[
∂ ln f (y |x, θ)

∂θ

]
=

∫
∂ ln f (y |x, θ)

∂θ
f (y |x, θ) = 0

and

−Ef

[
∂2 ln f (y |x, θ)

∂θ∂θ′

]
= Ef

[
∂ ln f (y |x, θ)

∂θ

∂ ln f (y |x, θ)
∂θ′

]
Information Matrix (Fisher Information)

Is the expectation of the outer product of the score vector

I = E

[
∂LN(θ)

∂θ

∂LN(θ)

∂θ′

]
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MLE Maximum Likelihood

Information Matrix Equality

For log-likelihood function, the regularity condition implies that

−Ef

[
∂2LN(θ)

∂θ∂θ′

∣∣∣∣
θ0

]
= Ef

[
∂LN(θ)

∂θ

∂LN(θ)

∂θ′

∣∣∣∣
θ0

]
if the expectation is with respect to f (y |x, θ0)

Implies that the information matrix also equals

I = −E

[
∂2LN(θ)

∂θ∂θ′

]
The asymptotic distribution of the MLE is often expressed as

θ̂ML
a∼ N

[
θ,−

(
E

[
∂2LN(θ)

∂θθ′

])−1]
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Testing Maximum Likelihood

Three Asymptotically Equivalent Testing Procedures
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Testing Maximum Likelihood

Three Asymptotically Equivalent Testing Procedures

Testing the hypothesis H0 : c(θ) = 0

Likelihood ratio test: If the restriction c(θ) = 0 is valid then
imposing it should not lead to a large reduction in the log-likelihood
function. The test is based on the difference lnLU−lnLR , where LU
and LR are the values of the likelihood function at the unconstrained
value of θ and at the restricted estimate, respectively.

Wald Test: If the restriction is valid then c(θ̂MLE ) should be close to
zero since the MLE is consistent. We reject the hypothesis if this
value is significantly different from zero.

Lagrange multiplier test: If the restriction is valid then the
restricted estimator should be near the point that maximizes the
log-likelihood. Therefore, the slope of the log-likelihood function
should be near zero at the restricted estimator.
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Notation Numerical Optimization

Maximum Likelihood

Find the value of β that maximizes the LL(β), ie, β̂

Note in this figure that LL is always negative, since the likelihood is a probability between
0 and 1 and the log of any number between 0 and 1 is negative

The researcher specifies starting values β0 and at each iteration moves to a new value of
the parameters at which LL(β) is higher than at the previous value
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Notation Numerical Optimization

Maximum Likelihood

The question is: what is the best step we can take next, that is, what
is the best value for βt+1?

The gradient at βt is the vector of first derivatives of LL(β) evaluated
at βt

gt =

(
∂LL(β)

∂β

)
βt

This vector tells us how to move in order to go up the likelihood
function. The Hessian is the matrix of second derivatives:

Ht =

(
∂gt
∂β′

)
βt

=

(
∂2LL(β)

∂β∂β′

)
βt
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NR Algorithms

Newton-Raphson

To determine the best value of βt+1 take a second-order Taylor’s
approximation of LL(βt+1) around LL(βt)

LL(βt+1) = LL(βt) + (βt+1 − βt)
′gt +

1

2
(βt+1 − βt)

′Ht(βt+1 − βt)

Find the value of βt+1 that maximizes this approximation to LL(βt+1)

∂LL(βt+1)

∂βt+1
= gt + Ht(βt+1 − βt) = 0

Ht(βt+1 − βt) = −gt

βt+1 − βt = −H−1
t gt

βt+1 = βt + (−H−1
t )gt
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NR Algorithms

Figure: Direction of step follows the slope

Figure: Step size is inversely related to curvature
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NR Algorithms

NR (Cont.)

It is possible for the NR procedure to step past the maximum and
move to a lower LL(β)

The actual LL is given by the solid line. The dashed line is a quadratic
function that has the slope and curvature that LL has at the point βt

The NR procedure moves to the top of the quadratic, to βt+1.
However, LL(βt+1) is lower than LL(βt) in this case

Pedro Portugal (NOVA SBE) Microeconometrics Carcavelos 16 / 26



NR Algorithms

Step Size

To allow for this possibility

βt+1 = βt + λ(−H−1
t )gt

The vector (−H−1
t )gt is called the direction, and λ is called the step size

The step size λ is reduced to assure that each step of the NR
procedure provides an increase in LL(β)
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NR Algorithms

Concavity

Suppose the log-likelihood function has regions that are not concave.
In these areas, the NR procedure can fail to find an increase

If the function is convex at βt , then the NR procedure moves in the
opposite direction to the slope of the log-likelihood function

The NR step with K = 1 is LL′(β)/(−LL′′(β)). The second derivative
is positive at βt , since the slope is rising, and therefore (−LL′′(β)) is
negative and the step is in the opposite direction to the slope
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BHHH Algorithms

Berndt, Hall, Hall, and Hausman (1974)

Uses Bt in the optimization routine in place of −Ht

Each iteration os defined by

βt+1 = βt + λB−1
t gt

This step is the same as for NR except that Bt is used in place of
−Ht where Bt is the average outer product in the sample

Bt =
∑
n

sn(βt)sn(βt)
′/N

The score of an observation is the derivative of that observation’s LL
with respect to the parameters

sn(βt) = ∂ lnP(β)/∂β evaluated at βt
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BHHH Algorithms

BHHH

The gradient is the average score

gt =
∑
n

sn(βt)/N

The outer product of observation n’s score is the k × K matrix

sn(βt)sn(βt)
′ =


s1ns

1
n s1ns

2
n ... s1ns

K
n

s1ns
2
n s2ns

2
n ... s2ns

K
n

... ... ...
s1ns

K
n s2ns

K
n ... sKn sKn


where skn is the kth element of sn(βt)
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BHHH Algorithms

Shape of LL function near maximum

If all individuals in the sample have similar scores, the LL function is fairly flat, given that
different values of the parameters fit the data about the same

The curvature is small when the variance of the scores is small

Scores differing greatly over observations mean that the observations are quite different,
the LL function is highly peaked, given that the sample provides good information on the
values of β

The curvature is great when the variance of the scores is high
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BHHH Algorithms

BHHH-2

Variant on the BHHH procedure obtained by subtracting out the
mean score before taking the outer product

For any level of the average score, the covariance of the scores over
the sampled decision makers is

Wt =
∑
n

(sn(βt)− gt)(sn(βt)− gt)
′

N

where the gradient gt is the average score

Wt is the covariance of the scores around their mean, and Bt is the
average outer product of the scores

The maximization procedure can use Wt instead of Bt

βt+1 = βt + λW−1
t gt
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Steepest Ascent Algorithms

Steepest Ascent

This procedure is defined by the iteration formula

βt+1 = βt + λgt

The defining matrix is the identity matrix I

It provides the greatest possible increase in LL(β) for the distance
between βt and βt+1, at least for small enough distance
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DFP and BFGS Algorithms

DFP and BFGS

Calculate the approximate Hessian using information at more than
one point on the likelihood function

NR uses the actual Hessian at βt to determine the step to βt+1, and
BHHH and BHHH-2 use the scores at βt to approximate the Hessian

In contrast, the DFP and BFGS procedures use information at several
points to obtain a sense of the curvature of the LL function

The Hessian is the matrix of second derivatives and therefore it gives
the amount by which the slope of the curve changes as one moves
along the curve

Since we are interested in making large steps is useful to understand
how the slope changes for noninfinitesimal movements
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DFP and BFGS Algorithms

arc Hessian

Consider a function f (x) with slope at x = 3 equal to 25 and at
x = 4 equal to 19

The change in slope for a one unit change in x is -6

Therefore the arc Hessian is -6, representing the change in the slope
as a step is taken from x = 3 to x = 4

The DFP and BFGS procedures calculate the gradient at each step in
the iteration process

The difference in the gradient between the various points that have
been reached is used to calculate an arc Hessian over these points
The arc Hessian reflects the change in the gradient that occurs for
actual movement on the curve, as opposed to the Hessian which
reflects the change in slope for infinitesimally small steps around that
point
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Local vs Global Max Algorithms

Local versus Global Maximum

All of the methods previously discussed are susceptible to converging at a local maximum
that is not the global maximum

Starting at β0 will lead to convergence at β1

Unless other starting values were tried, the researcher would mistakenly believe that the
maximum of LL(β) had been achieved

Starting at β2, convergence is achieved at β̂. Comparing LL(β̂) with LL(β1) shows that
β1 is not a maximizing value
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