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Motivation

• Understanding the dynamic effects of economic shocks, such as changes in monetary
policy, on macroeconomic variables like output, inflation, and employment.

• Traditional approach: Vector Autoregressions (VARs) are widely used to study
such dynamic relationships

• However, VARs can be restrictive: they rely on full-system estimation, require
strong stability assumptions, and often impose linear and time-invariant
relationships.

• These assumptions may not hold in practice—especially when monetary policy
operates in an environment with evolving expectations, structural breaks, or
nonlinear responses.

Goal: Develop or apply more flexible methods to estimate how a monetary policy shock
today influences economic outcomes over time, accounting for potential complexities in
the data.
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Local Projections (LPs) – The Basic Idea

Jordà (2005): Estimate impulse responses directly using horizon-specific regressions.

yt+h = αh + θh · shockt + γ′hXt + εt+h

• θh: Estimated impulse response at horizon h — captures the effect of the shock h
periods ahead.

• Xt : Set of controls, typically including lags of yt , lags of the shock variable, and
possibly time or entity fixed effects.

• Estimation is performed separately for each forecast horizon h, allowing for
time-varying dynamics and flexible functional forms.

• Robust to model misspecification: avoids iterating the system forward like VARs,
reducing bias from incorrect dynamic structure.

• Easy to incorporate nonlinearities (e.g., interactions, thresholds) and heterogeneity
(e.g., state-dependent responses, panel data).

Key Advantage: LPs offer a simple and robust alternative to VARs for tracing dynamic
causal effects of shocks across time horizons.
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Local Projections (LPs) – The Basic Idea (Cont.)
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Econometric Reasoning Behind LPs

LPs as a sequence of conditional expectations:

θh =
∂E[yt+h | shockt ]

∂shockt

• Interpretation: θh captures the marginal effect of a shock at time t on the expected
value of y at horizon t + h

• Estimating impulse responses as derivatives of conditional expectations avoids
assumptions about the full dynamic system

• LPs implement this by regressing yt+h on shockt and controls — effectively
estimating E[yt+h | shockt ,Xt ]
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Econometric Reasoning Behind LPs

• Non-parametric intuition: Each horizon h is treated as a separate estimation
problem, allowing the response to evolve flexibly over time

• Robust to misspecification of the joint data-generating process (e.g., if dynamics are
nonlinear or contain unobserved regime shifts)

• No need to invert a system of equations or rely on recursive structure — LPs directly
approximate the conditional mean function at each horizon

Key Insight: LPs reframe dynamic causal inference as a series of predictive problems —
estimating how expected outcomes evolve after a shock.
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Comparison with VARs

Feature VARs Local Projections (LPs)

Estimation System of equations Separate regressions
Flexibility Less More
Misspecification Sensitive More robust
Long horizon noise Less noisy (if correct) More noisy
Ease of extension More complex Easier
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LP Estimation Strategy

For each horizon h = 0, 1, 2, . . . ,H, estimate a separate regression:

1. Define the outcome: Set the dependent variable as yt+h — the future value of
interest (e.g., output, inflation, etc.).

2. Specify the shock variable: zt — this could be an observed policy shock, a
residual from a VAR, or an instrumented proxy.

3. Include controls: Xt — typically includes:
• Lags of yt and zt to absorb dynamics;
• Additional covariates or fixed effects to account for confounding;
• Time dummies to capture seasonal or cyclical effects.

8 / 47



LP Estimation Strategy (Cont.)

Estimation Equation:
yt+h = αh + θhzt + γ′hXt + εt+h

• Estimate each equation separately via OLS;

• If zt is endogenous, use instrumental variables (IV) to isolate exogenous variation;
• Compute standard errors:

• Use HAC (e.g., Newey-West) to correct for serial correlation;
• In panel settings, cluster at the appropriate level.

• Stack the estimated θh across horizons to construct the full impulse response
function.

Result: A flexible, horizon-by-horizon estimation of dynamic responses to a one-time
shock at t.
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LP Estimation Strategy (Cont.)
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Extensions and Variants

• Instrumented LPs: Use external instruments for shocks

• Nonlinear LPs: Interactions, threshold effects

• Panel LPs: Cross-sectional units (countries, firms)

• Smooth LPs: Penalize volatility across horizons
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Instrumented Local Projections (IV-LPs)

Goal: Address endogeneity of the shock variable zt using valid external instruments wt

1st Stage: zt = π0 + π1wt + π′
2Xt + ut

2nd Stage: yt+h = αh + θhẑt + γ′hXt + εt+h

• wt : External instrument satisfying relevance (strongly correlated with zt) and
exogeneity (uncorrelated with εt+h)

• ẑt : Fitted value of zt from first-stage regression

• Ensures causal interpretation of θh when zt is endogenous

• Common in monetary policy and fiscal policy applications

Estimation: Use 2SLS or GMM at each horizon h
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Nonlinear Local Projections

Goal: Allow impulse responses to vary across states or regimes

yt+h = αh + θ
(1)
h zt · I(st = 1) + θ

(2)
h zt · I(st = 2) + γ′hXt + εt+h

• st : Indicator or continuous variable capturing regime/state (e.g., high vs low
inflation, expansion vs recession)

• θ
(1)
h , θ

(2)
h : State-dependent impulse responses

• Can also include smooth interactions: θh(zt · f (st))
• Captures nonlinearities and asymmetries in the response

Estimation: Standard OLS or IV with interaction terms
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Panel Local Projections

Goal: Estimate impulse responses across multiple cross-sectional units (e.g., countries,
regions, firms)

yi ,t+h = αi ,h + θhzi ,t + γ′hXi ,t + εi ,t+h

• i : Cross-sectional unit; t: time

• Allows for unit-specific fixed effects αi ,h

• Can pool θh across units or estimate heterogeneous responses

• Enhances statistical power, especially with short time series

• Requires clustering standard errors at the unit level

Estimation: Panel OLS/IV with fixed effects and clustered SEs
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Smooth Local Projections

Goal: Impose smoothness across horizons to reduce volatility in θh estimates

min
{θh}

H∑
h=0

(
RSSh + λ ·∆2θh

)
• Adds penalty term for roughness in impulse responses (e.g., second-difference of θh)

• Encourages more stable and interpretable IRFs, especially in noisy or small samples

• λ: Tuning parameter controlling the smoothness penalty

• Can be viewed as a regularized estimator or a form of shrinkage

Estimation: Penalized least squares or Bayesian priors over θh
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Instrumented Local Projections (IV-LPs)

Top-left: Instrumented LP

• Use external instruments wt to isolate
exogenous variation in the shock zt

• Two-stage estimation:

1. Stage 1: Predict zt using wt

2. Stage 2: Use predicted ẑt in LP
regressions

• Addresses endogeneity concerns
common in macroeconomic applications

• Requires instruments to satisfy
relevance and exogeneity
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Nonlinear Local Projections

Top-right: Nonlinear LP (State-Dependent IRFs)

• IRFs vary by regime or state (e.g.,
recession vs expansion)

• Introduce interaction terms:
zt · I(st = regime)

• Can capture asymmetries or threshold
effects in responses

• Useful for studying fiscal multipliers,
monetary policy under ZLB, etc.
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Smooth Local Projections

Bottom-right: Smooth LP (Regularized IRFs)

• LP estimates can be noisy across
horizons

• Smooth LPs impose a penalty on
roughness (e.g., ∆2θh)

• Encourages coherent and interpretable
IRFs

• Can be implemented via penalized
regression or Bayesian priors

• Especially useful in small samples
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Empirical Illustration

Goal: Estimate the dynamic effects of a monetary policy shock on output and inflation.

• How does a rise in the interest rate affect real GDP and inflation over time?

• We focus on quarterly U.S. macroeconomic data: 1985Q1–2022Q4

• Estimate Impulse Response Functions (IRFs) using Local Projections
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Data Overview

Key Variables (quarterly):

• yt : Log real GDP

• πt : Inflation (log-difference of CPI or GDP deflator)

• it : Federal Funds Rate

• zt : Monetary policy shock (e.g., high-frequency surprise or Taylor rule residual)

Controls:

• Lags of yt , it , πt
• Time fixed effects (quarter dummies)
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LP Estimation Equation

Jordà (2005) LP setup: For each horizon h = 0, 1, . . . ,H estimate:

yt+h = αh + θhzt + γ′hXt + εt+h

• yt+h: Output or inflation at horizon h

• zt : Monetary policy shock at time t

• Xt : Controls (lags of endogenous vars + time FE)

• Estimate each h separately via OLS
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Estimation Procedure

• Forecast horizon: H = 12 (3 years)

• Separate regressions for each h

• Use Newey-West HAC standard errors (4 lags)
• Estimate for both dependent variables:

• yt+h = real GDP (log)
• πt+h = inflation (log-diff)

• Stack θ̂h to obtain IRFs
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Impulse Response

Interpretation:

• A contractionary monetary policy shock reduces output for several quarters

• Inflation responds with a lag — consistent with sticky prices

• Confidence bands widen at longer horizons
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Inference and Robustness

Inference:

• HAC standard errors (Newey-West) correct for serial correlation

• Uniform confidence bands: Bonferroni, bootstrap, or delta method

Robustness Checks:

• Vary lag length in Xt

• Use alternative shock measures (e.g., narrative shocks)

• Check stability across pre- and post-crisis subsamples
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Impulse Responses to Multiple Shocks

• LP easily generalizes to include multiple shocks:

yt+h = αh + β1hz1t + β2hz2t + γ′hXt + εt+h

• Example: responses to monetary and fiscal shocks.

• Separate βjh traces out the IRF to each shock.

• Plot multiple IRFs on the same figure for comparison.
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Bootstrap Algorithm for LP Inference

Consider the local projection regression for horizon h:

yt+h = αh + βhzt + γ′hXt + εt+h,

where zt is the shock of interest, Xt is a vector of control variables, and βh is the impulse
response at horizon h.
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Step-by-Step Bootstrap Procedure

1. Estimate the LP regressions for each horizon h = 0, 1, . . . ,H and store the residuals
ε̂t+h.

2. Resample residuals:
• Residual Bootstrap: Sample with replacement from ε̂t+h.
• Moving Block Bootstrap: Resample blocks to preserve time dependence.
• Wild Bootstrap: Multiply residuals by random variables (e.g., Rademacher distribution).

3. Generate bootstrap samples:
• Construct new dependent variable y

∗(b)
t+h = α̂h + β̂hzt + γ̂′

hXt + ε
∗(b)
t+h

4. Re-estimate the LP model on the bootstrap sample and collect β̂
∗(b)
h .

5. Repeat steps 2–4 for B bootstrap replications.

6. Construct confidence intervals:
• Use empirical percentiles (e.g., 5th and 95th for 90% CI).
• Alternatively, use standard deviation of β̂

∗(b)
h to compute normal approximation.
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Remarks

• The choice of bootstrap method depends on the properties of the data, especially
serial correlation.

• Block bootstraps are preferable when residuals exhibit strong time dependence.

• Wild bootstrap is particularly useful for heteroskedastic errors.
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Quiz Questions
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Quiz: Core Concepts

1. What is the econometric interpretation of the impulse response θh in a Local
Projection?

A. The expected value of yt
B. The partial derivative of E[yt+h | zt ] with respect to zt
C. The coefficient on the lag of yt
D. The correlation between zt and yt+h

2. True or False: LPs estimate the full joint distribution of the data-generating process.

3. Why do we run a separate regression for each horizon h in LPs?
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Quiz: Estimation Strategy

4. What is typically included in the control vector Xt?

A. Only future values of yt
B. Lags of yt , zt , and other covariates
C. Unrelated variables to reduce variance
D. None of the above

5. What is the purpose of using HAC standard errors in LPs?
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Quiz: Extensions

6. Which conditions must a valid instrument wt satisfy in IV-LPs?

7. Which LP extension best captures asymmetric responses in different macroeconomic
regimes?

8. Why do we cluster standard errors in panel LPs?

9. What is the benefit of using smooth LPs?
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Quiz: Inference and Confidence Intervals

10. Why are standard errors in LPs often estimated using Newey-West or other HAC
methods?
A. Because errors are heteroskedastic and serially correlated across t
B. To reduce bias in small samples
C. Because standard OLS errors are always invalid
D. To correct for panel fixed effects

11. What is a key drawback of using separate confidence intervals for each horizon h?
A. They overfit the model
B. They do not account for the joint uncertainty over the entire IRF
C. They assume perfect foresight
D. They cannot be computed using OLS

12. What are some approaches to constructing uniform confidence bands for impulse
responses?
A. Bonferroni correction
B. Bootstrap-based joint inference
C. Delta method with multiple-testing adjustment
D. All of the above
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Quiz: Applied Reasoning

13. You’re studying monetary shocks during periods of high and low inflation. Which LP
extension should you use and why?

14. What could happen if your instrument in IV-LPs is weak?
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Empirical Illustration: Fiscal Shock

• Question: What is the effect of a government spending shock on output?

• Data: Quarterly US data (GDP, government spending, interest rates), 1960–2020.

• Shock: Structural spending shock from a narrative approach (e.g., Ramey 2011).

• Specification:
yt+h = αh + βhShockt + γ′hXt + εt+h

• yt+h: log real GDP at horizon h

• Controls: lags of GDP and shock
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Code Example (in Python)

import statsmodels.api as sm

import numpy as np

H = 20 # horizon

betas = []

for h in range(H+1):

y_lead = y.shift(-h) # dependent variable at t+h

X_reg = sm.add_constant(pd.concat([shock, controls], axis=1))

model = sm.OLS(y_lead, X_reg, missing=’drop’).fit(cov_type=’HAC’, cov_kwds={’maxlags’:4})

betas.append(model.params[’shock’])
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Quiz on Bias-Variance Trade-off

• Why do VAR estimates generally have lower standard errors than LP?

• What risks are associated with VAR’s extrapolation approach?
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Control Variables and Lag Length

• Controls ensure valid identification by removing predictable components of the
shocks.

• Controls increase estimation efficiency by reducing residual variance, thus improving
standard errors.

• Lag augmentation helps LP remain robust to dynamic misspecification by explicitly
capturing important past dynamics.

• Lagged controls simplify confidence interval construction by ensuring residual errors
are less correlated.
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The End
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Quiz: Core Concepts

1. What is the econometric interpretation of the impulse response θh in a Local
Projection?

A. The expected value of yt
B. The partial derivative of E[yt+h | zt ] with respect to zt
C. The coefficient on the lag of yt
D. The correlation between zt and yt+h

Answer: B

2. True or False: LPs estimate the full joint distribution of the data-generating process.
Answer: False

3. Why do we run a separate regression for each horizon h in LPs?
Answer: To flexibly estimate dynamic effects without imposing a parametric
structure on time dynamics.
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Quiz: Estimation Strategy

4. What is typically included in the control vector Xt?

A. Only future values of yt
B. Lags of yt , zt , and other covariates
C. Unrelated variables to reduce variance
D. None of the above

Answer: B

5. What is the purpose of using HAC standard errors in LPs?
Answer: To account for autocorrelation and heteroskedasticity in residuals across
forecast horizons.
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Quiz: Extensions

6. Which conditions must a valid instrument wt satisfy in IV-LPs?
Answer: It must be relevant (correlated with zt) and exogenous (uncorrelated with
εt+h).

7. Which LP extension best captures asymmetric responses in different macroeconomic
regimes?
Answer: Nonlinear LPs

8. Why do we cluster standard errors in panel LPs?
Answer: To correct for within-unit autocorrelation and maintain valid inference.

9. What is the benefit of using smooth LPs?
Answer: They stabilize IRFs across horizons and reduce noise by penalizing
roughness in θh.
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Quiz: Inference and Confidence Intervals

10. Why are standard errors in LPs often estimated using Newey-West or other HAC
methods?

A. Because errors are heteroskedastic and serially correlated across t
B. To reduce bias in small samples
C. Because standard OLS errors are always invalid
D. To correct for panel fixed effects

Answer: A

11. What is a key drawback of using separate confidence intervals for each horizon h?

A. They overfit the model
B. They do not account for the joint uncertainty over the entire IRF
C. They assume perfect foresight
D. They cannot be computed using OLS

Answer: B
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Quiz: Applied Reasoning

12. What are some approaches to constructing uniform confidence bands for impulse
responses?

A. Bonferroni correction
B. Bootstrap-based joint inference
C. Delta method with multiple-testing adjustment
D. All of the above

Answer: D

13. You’re studying monetary shocks during periods of high and low inflation. Which LP
extension should you use and why?
Answer: Nonlinear LPs, because they allow impulse responses to vary across regimes
using interaction terms.

14. What could happen if your instrument in IV-LPs is weak?
Answer: The first-stage regression will poorly identify zt , leading to biased and
inconsistent estimates of θh.
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