1. Consider the following optimal growth model with exogenous technological change. Labor productivity grows at rate $1 + \mu > 1$. The technology is given by:

$$C_t + I_t \le F(K_t, L_t), \ t = 0, 1, \dots$$
 (1)

$$K_{t+1} \le (1-\delta)K_t + I_t, \ t = 0, 1, \dots$$
⁽²⁾

$$L_{t+1} = (1+\mu)L_t, \ t = 0, 1, \dots$$
(3)

$$L_0 = 1, K_0 \text{ given}, \tag{4}$$

where C_t is aggregate consumption, I_t investment, K_t is the capital stock in period t, L_t is labor, and δ is capital's depreciation rate. The production function F is strictly increasing, concave, continuously differentiable, and displays constant returns to scale (F homogeneous of degree one). Consumer preferences are given by

$$\sum_{t=0}^{\infty} \beta^t C_t^{\gamma} / \gamma, \quad 0 < \beta < 1, \gamma > 0.$$
(5)

a. Define the function f by $f(k_t) = F(K_t, 1)$, where $k_t = (1 + \mu)^{-t}K_t$. Normalize the relevant variables as in k_t , and using the normalized (stationary) variables, write the functional equation that describes the problem of a social planner that maximizes utility subject to the technological constraints.

b. Show that there is a unique stationary solution k^* to the problem in **a**., with k^* given by:

$$1 = \frac{\hat{\beta}}{1+\mu} \left[(1-\delta) + f'(k^*) \right],$$
 (6)

where $\hat{\beta} = \beta (1 + \mu)^{\gamma}$.

c. Compute the corresponding i^* and c^* when $k_t = k_{t+1} = k^*$. Describe the time series implied by the model for C_t , K_t and I_t , for t = 0, 1, ..., if $K_0 = k^*$.

d. Suppose instead that $K_0 < k^*$. Compare the evolution of K_t over time to what is obtained in **c**.

2. Consider the following optimal growth model with human capital accumulation. Assume that labor is the only input in the production function $f(n_t)$, which is strictly increasing, strictly concave, and continuously differentiable, with

$$f(0) = 0$$
, $\lim_{n \to 0} f'(n) = \infty$, and $\lim_{n \to \infty} f'(n) = 0$. (7)

The worker can accumulate human capital by reducing the number of hours worked. The number of hours available in period t, h_t , is a decreasing function of the ratio of end-of-period to beginning-of-period human capital k_t , according to $h_t = \phi(k_{t+1}/k_t)$. ϕ is a strictly decreasing, strictly concave, and continuously differentiable function, with $\phi(1 - \delta) = 1$ for $\delta \in (0, 1)$, and $\phi(1 + \lambda) = 0$, for some $\lambda > 0$. That is, human capital depreciates at rate δ if all time is devoted to work ($h_t = 1$), and can grow at most at the rate λ if no time is devoted to work ($h_t = 0$). Given the current level of human capital k_t , next period's human capital k_{t+1} satisfies:

$$(1-\delta)k_t \le k_{t+1} \le (1+\lambda)k_t, \quad t = 0, 1, ...,$$
 (8)

with k_0 given. Effective labor supply in period *t* is given by $n_t = k_t h_t = k_t \phi(k_{t+1}/k_t)$. Let *u* denote instantaneous utility of the representative consumer, and assume that

$$u(c) = c^{\gamma} / \gamma, \ 0 < \gamma < 1.$$

The optimal growth problem can be written as

$$\max_{k_{t+1}} \sum_{t=0}^{\infty} \beta^t u(f(n_t)), \tag{9}$$

subject to (8) and

$$c_t = f(n_t), \quad n_t = k_t \phi(k_{t+1}/k_t), \quad k_0 \text{ given.}$$
 (10)

a. Write the functional equation associated with the optimal growth problem defined above.

b. Assume that $f(n) = n^{\alpha}$, with $\alpha \in (0, 1)$. Show that in this case the value function v that solves the equation in **a.** has the form $v(k) = Ak^{\alpha\gamma}$, and that the optimal policy is a constant growth rate for human capital $g(k) = \theta k$, for

some $\theta > 0$.

- 3. Exercise 6.1, 6.2, 6.3, 6.4, 6.7 in Ljunqgvist and Sargent (2018).
- 4. Exercise 13.4, 13.5, 14.3, 14.8 in Ljunqgvist and Sargent (2018).

References:

Ljunqgvist, L. and Sargent T. J. (2018), "Recursive Macroeconomic Theory", fourth edition, The MIT Press.