Macroeconomics II

– Preliminary – Nova SBE 2025

João Brogueira de Sousa

Spring 2025

$$v(k) = \max_{0 \le y \le f(k)} \{ u(f(k) - y) + \beta v(y) \}$$
(1)

where $f : \mathbb{R}^+ \to \mathbb{R}^+$ and $u : \mathbb{R}^+ \to \mathbb{R}$ are continuous functions and k is fixed. We assume that:

(U1) $0 < \beta < 1;$

(U2) *u* is continuous;

(U3) u is strictly increasing;

(U4) u is strictly concave;

(U5) *u* is continuously differentiable;

(T1) f is continuous;

(T2) f(0) = 0, and for some $\bar{k} > 0 : k \le f(k) \le \bar{k}$, all $0 \le k \le \bar{k}$, and f(k) < k, all $k > \bar{k}$;

(T3) f is strictly increasing;

(T4) f is weakly concave;

(T5) f is continuously differentiable.

Note that $K = [0, \bar{k}]$ is the set of maintainable capital stocks. If $y \in K$, then u and f are bounded on the relevant domains. Under these assumptions, have the following results:

- O Under (U1)-(U3) and (T1)-(T3), there exists a unique, bounded, strictly increasing, continuous function v satisfying (1), and the optimal policy correspondence G is nonempty see Theorems 4.2-4.7 in S&L (1989);
- O Additionally, under (U4) and (T4), v is strictly concave and the optimal policy correspondence is single-valued and continuous Theorem 4.8 in S&L (1989).

João Brogueira de Sousa

Stationary Points

- O There is a trivial stationary point at k = 0.
 O If k₀ = 0, then f(0) = 0, the capital stock and output are zero in every subsequent period.
- O To determine other stationary points, consider the first-order and envelope conditions for problem (1):

$$u'[f(k) - g(k)] = \beta v'[g(k)],$$
 (2)

$$v'(k) = u'[f(k) - g(k)]f'(k).$$
 (3)

O At any stationary point we have that g(k) = k. A necessary condition for a stationary point implied by (2)-(3) is:

$$1 = \beta f'(k) \tag{4}$$

João Brogueira de Sousa

Stationary Points

Under the stated assumptions on f, there exists a unique positive solution to this equation:

$$k^* = f'^{-1}(1/\beta)$$
 (5)

Since v is strictly concave, we have that

$$\{v'(k) - v'[g(k)]\}[k - g(k)] \le 0, \forall k \in (0, \bar{k}]$$
(6)

with = iff g(k) = k. Substituting v'(k) with the envelope condition, and v'[g(k)] with the FOC, and using the fact that u'(c) > 0, conclude that:

$$[f'(k) - 1/\beta][k - g(k)] \le 0, \forall k \in (0, \bar{k}],$$
(7)

with = iff g(k) = k.

João Brogueira de Sousa

Dynamics

- The LHS of (7) is zero at k^* , and holds with strict inequality for $k \neq k^*$.
- O Since f is concave, $f'(k) \leq 1/\beta$ as $k \geq k^*$.
- O It follows that $g(k) \leq k$ as $k \geq k^*$.

We have established the following:

Proposition: Let f, u and β satisfy the assumptions above, and let g be the policy function that solves (1). Then g has two stationary points, k = 0 and $k^* = f'(1/\beta)$, and for any $k_0 \in (0, \bar{k}]$, the sequence $\{k_t\}_{t=0}^{\infty}$ given by $k_{t+1} = g(k_t)$ converges monotonically to k^* .

One-sector optimal growth model Dynamics

Figure: Policy function, g(k), and steady state capital k^* .

João Brogueira de Sousa

One-sector optimal growth model **Dynamics**

k* Capital Stock

Figure: Capital Stock, k_t , and steady state capital k^* .

João Brogueira de Sousa

Portugal's Capital Stock Dynamics

Data: Penn World Table 10.01. Figure: ChatGPT.

João Brogueira de Sousa

U.S.' Capital Stock Dynamics

Data: Penn World Table 10.01. Figure: ChatGPT.

João Brogueira de Sousa

Adding Growth to the Growth Model

The simplest way to ensure steady-state capital (and consumption) growth is to postulate exogenous technological change (Solow's (1956)), at the constant rate $1 + \mu \ge 1$:

$$L_t = A_t L$$
, with $A_t = (1 + \mu) A_{t-1}$, (8)

where *L* is a fixed stock of labor. Consumer preferences:

$$\sum_{t=0}^{\infty} \beta^t C_t^{\gamma} / \gamma \tag{9}$$

 $0 < \beta < 1$, $\gamma > 0$. Technology:

$$C_t + I_t \le F(K_t, L_t), t \ge 0$$
(10)

$$K_{t+1} = (1 - \delta)K_t + I_t, t \ge 0$$
 (11)

$$L_{t+1} = (1+\mu)L_t, t \ge 0$$
 (12)

$$L_0 > 0, K_0 > 0$$
 given. (13)

F is strictly increasing, concave, and continuously differentiable João Brogueira de Sousa 6119 - Macroeconomics

Exogenous Growth Model

Without loss of generality, normalize $L_0 = 1$. Then define:

$$k_t = (1+\mu)^{-t} K_t; \quad c_t = (1+\mu)^{-t} C_t; \quad i_t = (1+\mu)^{-t} I_t, t \ge 0.$$
(14)

Additionally, define $f : \mathbb{R}^+ \to \mathbb{R}^+$ by $f(k_t) = F(k_t, 1)$. Using these definitions, we can write the optimal growth model in functional form as:

$$v(k) = \max_{\{c,k'\}} \{ c^{\gamma} / \gamma + \beta (1+\mu)^{\gamma} v(k') \}$$
(15)

subject to $c+(1+\mu)k'\leq f(k)+(1-\delta)k$, k given.

Previous analysis goes through, provided $\beta(1+\mu)^{\gamma} < 1$.

João Brogueira de Sousa

Exogenous Growth Model Dynamics

Figure: Capital Stock, k_t , and steady state growth.

João Brogueira de Sousa

Exogenous Growth Model Dynamics

Figure: Capital Stock, k_t , from two different k_0 .

João Brogueira de Sousa

Growth rates in selected countries

Data: Penn World Table 10.01. Figure: ChatGPT.

Exogenous Growth

O Different countries may have different growth rates:

```
1 + \mu^i, country i
```

- O Why? And if it depends on country, is it exogenous?
- O Some countries converge to the same $(1 + \mu)^t f(k^*)$, others pass others in output, over time.
- *Exogenous* movement of the production possibilities frontier over time.
- O Change in the production frontier does not require any resources.
- O Typically, we think of R&D activities, education, etc. These do take up resources, labor, and capital.

Endogenous Growth

- O New theories during the 1990s, starting in U. of Chicago with Paul Romer et al.: endogenous growth (the rate at which technology advances).
- O In these models, the technology set is independent of time (and country) – what is possible to do –, but the optimal choices about what to do are different.
- O What can be done in a given country and time depends on the level of 'knowledge', and how this 'knowledge' evolves over time is modeled explicitly.
- O Increasing 'knowledge' over time requires resources.
- O Different assumptions about the form 'knowledge' takes, how it is shared and transmitted across individuals, time, location, etc.

Endogenous Growth Model

Recall the technology in the exogenous growth model seen before:

$$c_t + x_t \le F(k_t, (1+\mu)^t n_t)$$
 (16)

Here we endogenize the growth rate of productivity: $(1+\mu)^t$

$$c_t + x_{ht} + x_{kt} \le F(k_t, h_t n_t), \tag{17}$$

$$h_{t+1} \le x_{ht} + (1 - \delta_h)h_t,$$
 (18)

$$k_{t+1} \le x_{kt} + (1 - \delta_k)k_t,$$
 (19)

$$h_0, k_0$$
 fixed, (20)

with h_{t+1} optimally chosen.

Question: under what conditions the optimal path of h_t is $(1 + \mu)^t h_0$, and what determines μ ?

João Brogueira de Sousa

Endogenous Growth Model

A simple version of the model can easily be expressed as a dynamic programming problem. Suppose labor is inelastically supplied: $n_t = 1, \forall t$.

$$v(h, k) = \max_{c, h', k'} \{ u(c) + \beta v(h', k') \}$$
(21)

subject to

$$c = F(k, h) - h' - k' - (1 - \delta_h)h - (1 - \delta_k)k$$
 (22)

FOCs and ECs imply:

$$F_{h}(h',k') + 1 - \delta_{h} = F_{k}(h',k') + 1 - \delta_{k}$$
(23)

Assume *F* is homogenous of degree one:

(23)
$$\implies h'/k' = (h'/k')^* = \text{constant}, \forall (h, k).$$
 (24)

João Brogueira de Sousa

Endogenous Growth Model

Assume F is Cobb-Douglas $F(h, k) = k^{\alpha} h^{1-\alpha}$, $\delta_h = \delta_k$:

$$F_{h}(h',k') + 1 - \delta_{h} = F_{k}(h',k') + 1 - \delta_{k}$$
(25)

$$\implies (1-\alpha)\left(\frac{k'}{h'}\right)^{\alpha} = \alpha \left(\frac{h'}{k'}\right)^{1-\alpha} \implies \frac{h'}{k'} = \frac{1-\alpha}{\alpha}$$
(26)

and u is CES:

$$\left(\frac{c'}{c}\right)^{\sigma} = \beta[f'(k') + 1 - \delta_k]$$
(27)

Note that:

$$F(k'\frac{1-\alpha}{\alpha},k') = f(k') = Ak'$$
, with $A = \left(\frac{1-\alpha}{\alpha}\right)^{1-\alpha}$, (28)

$$f'(k') = A \implies \frac{c'}{c} = \left(\beta[A+1-\delta_k]\right)^{1/\sigma}.$$
 (29)

Endogenous steady-state growth depends on preferences and technology.

João Brogueira de Sousa

Growth Models

You may have noticed that the endogenous growth model with human capital accumulation, under the assumptions above, reduces to a one-sector growth model, with a linear technology:

$$\max \sum_{t=0}^{\infty} \beta^t c_t^{1-\sigma} / (1-\sigma)$$
(30)

s.t.

$$c_t + (1+a)(k_{t+1} - (1-\delta_k)k_t) \le Ak_t,$$
 (31)

with k_0 given, $a = (1 - \alpha) / \alpha$. (Assume $h_0 = ak_0$.)

João Brogueira de Sousa

Readings

O L&S (2018): 15 O S&L (1989): 5, 6.1