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Sequential Problem

Recall the sequential problem, SP , of a ”social planner” who
chooses sequences of consumption and capital:

SP : max
{ct ,kt+1}∞

t=0

∞

∑
t=0

βtu(ct)

subject to:

ct + kt+1 ≤ f (kt) (1)

k0 given. (2)
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Indirect utility from k0

Define v ∗ : R+ → R as:

v ∗(k0) ≡ sup
{ct ,kt+1}∞

t=0

∞

∑
t=0

βtu(ct)

subject to:

ct + kt+1 ≤ f (kt) (3)

k0 > 0 given. (4)

v ∗(k0) is the lifetime utility the consumer gets when he solves SP ,
starting with an initial capital stock k0.

Note the sup instead of max: in general there may not be a finite
valued solution to SP (sup is always well defined).
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Value Function

Although the problem we stated in SP was a choice of
infinite sequences {ct , kt+1}∞

t=0 at time zero, the problem
that the planner in fact faces in period 0 is

current consumption c0, and
capital for next period, k1.

The rest can wait until t = 1.

If we knew the preferences of the planner over c0 and k1, we
could simply optimize the choice of these quantities subject to

c0 + k1 ≤ f (k0). (5)

Suppose we know the function v ∗(k0).
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Recursive Formulation

With v ∗ so defined, v ∗(k1) would give us the value of utility
from period 1 that could be obtained with k1 as beginning of
the period capital in t = 1.

Then the problem of the planner in period 0 would be:

max
c0,k1

u(c0) + βv ∗(k1) (6)

subject to

c0 + k1 ≤ f (k0) (7)

k0 given. (8)

If we know v ∗, we can solve this problem and obtain the
solution k1 = g(k0), c0 = f (k0)− g(k0)
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Functional Equations

If we solve the problem above, it follows that v ∗(k0) must
satisfy:

v ∗(k0) = max
c0,k1

u(c0)+ βv ∗(k1) , s.t. c0+ k1 ≤ f (k0), k0 given.

(9)

Also, we could do it for any two subsequent periods, so the
time subscript is irrelevant.

v ∗(k) = max
c,k ′

u(c) + βv ∗(k ′) , s.t. c + k ′ ≤ f (k), k given.

(10)

The relevant difference is in k , the capital of the current
period (fixed) and k ′, the capital of the next period (choice
variable).

(10) becomes one equation in one unknown function: v ∗. It’s
called a functional equation.

Dynamic Programming deals with dynamic optimization
problems expressed in terms of functional equations.
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DP Problems

The previous example is not great motivation for an
alternative (recursive) formulation: we have just learned how
to solve the sequence problem in the previous lectures.

However, think how you would extend the analysis if capital
productivity in the future were subject to random shocks.

It makes no sense that the solution continues to be a
deterministic sequence of capital; it should depend on the
history of shocks.

This makes the problem very difficult to characterize in
sequence form.

But it is almost unchanged if solved recursively: just find the
optimal policy function that depends on current capital and
current shock.

Optimal policy is contingent on the realization of the shock.

Obviously, the shocks must have certain properties for us to
be able to use this method.
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DP Problems

Other examples:

A worker that faces a job offer today that he can either accept
or reject and wait until tomorrow to evaluate a new (random)
offer.

A store manager with a stock of items facing a stochastic
demand every day, who has to decide to increase stock at a
cost or forgo sales he could have made.

A financial market with portfolio managers who have to
decide whether to keep or to sell a stock at the current price,
before learning the dividend it will pay next period.
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Recursive Problem

The function v ∗ satisfies a functional equation, the Bellman
Equation:

v ∗(k) = sup
{c,k ′}

u(c) + βv ∗(k ′) (11)

subject to:

c + k ′ ≤ f (k) (12)

k given. (13)
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Principle of Optimality

Let C(R+) denote the space of bounded continuous functions
f : R+ → R. Define the functional operator T : C(R+) → C(R+):

(Tf )(k) = sup
{c,k ′}

u(c) + βf (k ′) (14)

The Principle of Optimality states the following results:

(a) v ∗, the indirect utility function of SP , is a fixed point of T :

(Tv ∗)(k) = v ∗(k), for all k ∈ R+. (15)

(b) Under some conditions, the only finite valued fixed point of T
is v ∗, the solution to SP .

(c) If {c∗t , k∗t+1}∞
t=0 solves SP , then it satisfies:

v(kt) = u(ct) + βv(kt+1), for t = 0, 1, ... (16)

for v = v ∗.

(d) Any sequence {ct , kt+1}∞
t=0 that satisfies (16) with v = v ∗

and a certain boundedness condition, is a solution to SP .
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PO: conditions

The main assumption is that for all k0 > 0 and allocations
z̃ ∈ Z(k0), where Z is the set of all feasible allocations:

lim
n→∞

n

∑
t=0

βtu(c̃t) exists. (17)

For more details see: Theorem 4.2-4.5 in S&L (1989).

If u is bounded, and β ∈ (0, 1), (17) holds.

Note that in common specs (e.g. CRRA) u : R+ → R is not
bounded with the sup norm...
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A Contraction Mapping

T satisfies Blackwell’s Sufficient Conditions for a contraction (see
Theorem 3.3 in S&L (1989):

Under certain conditions on f , and assuming u is bounded and
continuous, and β ∈ (0, 1), the operator T defined above maps
C(R+) into itself; has a unique fixed point v ∗ ∈ C(R+); and for
all v0 ∈ C(R+):

||T nv0 − v ∗|| ≤ βn||v0 − v ∗||, n = 0, 1, 2, ... (18)

It follows that, starting from any initial function v0 ∈ C(R+),

defining vn as:
vn(k) = (T nv0)(k), (19)

i.e. applying successively T , n times, we have that:

||vn − v ∗|| → 0 as n → ∞. (20)
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Value Function Iteration

The previous properties provide a method to find v∗:

Pick some initial ṽ , apply T over and over again, stop when
||T nṽ − T n−1ṽ || ≤ ϵ (small enough).

It’s called Value Function Iteration.

Recall that v ∗ is the unique fixed point of T and, due to (b), it is
the value of the solution of the original problem SP .
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Policy Functions

In addition, if u is continuous, strictly increasing and strictly
concave, and f is continuous, strictly increasing and strictly
quasiconcave, then v ∗ is continuous, strictly increasing, and strictly
concave. Because of this, the solution to the problem:

max
{c,k}

u(c , l) + βv ∗(k ′) (21)

subject to

c + k ′ ≤ f (k) (22)

k given. (23)

exists and is unique for all k . This solution is what we often call
the policy functions of the problem:

gc(k), gk ′(k), (24)

the optimal decisions for consumption and capital in the state k.
João Brogueira de Sousa 6119 - Macroeconomics 14 / 20



Policy Functions

Recall (c) and (d) above. Let {c∗t , k∗t+1}∞
t=0 denote the solution to

problem SP with the initial condition k0 > 0. Then

c∗0 = gc(k0) (25)

k∗1 = gk ′(k0) (26)

c∗1 = gc(gk ′(k0)) (27)

...
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Analytical Example

In most cases, we cannot find an analytical solution for v ∗ and the
policy function g , and resort to numerical approximation methods.
For some special cases, it is possible to do so.

Assume f (k) = kα, α ∈ (0, 1) and let u(c) = ln(c).

v(k) = max
k ′

ln(kα − k ′) + βv(k ′) (28)

Take v0(k) = 0.

1. v1(k) = maxk ′ ln(kα − k ′) =⇒ k ′ = 0, v1(k) = ln(kα) =
α ln(k).

2. v2(k) = maxk ′ ln(kα − k ′) + βα ln(k ′) =⇒
k ′ =

αβ

1+ αβ
kα,

v2(k) = ln

(
1

1+ αβ

)
+ αβ ln

(
αβ

1+ αβ

)
+ (α + α2β) ln(k)
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Analytical Example (cont.)

3. Repeat until realize the sequence follows a geometric sequence
that converges to:

v(k) =
1

1− β

(
ln(1− αβ) +

αβ

1− αβ
ln(αβ)

)
+

α

1− αβ
ln(k).

4. The associated policy function is:

k ′ = αβkα

Another solution method: guess and verify that v(k) is of the form:

v(k) = A+ B ln(k).

Substitute and find A and B.
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Analytical Example (cont.)

The first order condition of problem (28) is:

− 1

kα − k ′
+ βv ′(k ′) = 0 (29)

The envelope condition states that at the solution (i.e. when
k ′ = g(k)) the derivative of v satisfies:

v ′(k) = u′(f (k)− g(k))f ′(k) = −αkα−1 1

kα − g(k)
(30)

Together imply:

− 1

kα − g(k)
− βαg(k)α−1 1

g(k)α − g(k ′)
= 0 (31)

Verify that k ′ = g(k) = αβ ln(k) satisfies this condition.
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Envelope Condition

This is how you can derive the envelope condition.
Consider the previous problem:

max
k ′

ln(kα − k ′) + βv ∗(k ′), k fixed. (32)

FOC evaluated at the solution k ′ = g(k):

u′(f (k)− g(k))) = βv ∗′(g(k)) (33)

Define w(k) = u(f (k)− g(k)) + βv ∗(g(k)). Note that we know
w(k) = v ∗(k). But let’s take the derivate of w w.r.t. k:

w ′(k) = u′(f (k)− g(k))(f ′(k)− g ′(k)) + βv ∗′(g(k))g ′(k).
(34)

Using the FOC, we can write it as:

w ′(k) = u′(f (k)− g(k))(f ′(k)− g ′(k)) + u′(f (k)− g(k)))g ′(k)
(35)

Since w(k) = v ∗(k), this implies:

v ∗′(k) = u′(f (k)− g(k))f ′(k) (36)
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Readings

L&S (2018): Chapter 1.

S&L (1989): Chapters 1, 2, and 4.
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