Macroeconomics II

– Preliminary – Nova SBE 2025

João Brogueira de Sousa

Spring 2025

Sequential Problem

Recall the sequential problem, SP, of a "social planner" who chooses sequences of consumption and capital:

$$\mathcal{SP}: \max_{\{c_t, k_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(c_t)$$

subject to:

$$c_t + k_{t+1} \le f(k_t) \tag{1}$$

$$k_0 \text{ given.} \tag{2}$$

Indirect utility from k_0

Define $v^*: \mathbb{R}^+ o \mathbb{R}$ as:

$$v^*(k_0) \equiv \sup_{\{c_t, k_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(c_t)$$

subject to:

$$c_t + k_{t+1} \le f(k_t) \tag{3}$$

$$k_0 > 0 \text{ given.} \tag{4}$$

 $v^*(k_0)$ is the lifetime utility the consumer gets when he solves SP, starting with an initial capital stock k_0 .

Note the sup instead of max: in general there may not be a finite valued solution to SP (sup is always well defined).

João Brogueira de Sousa

Value Function

O Although the problem we stated in SP was a choice of infinite sequences $\{c_t, k_{t+1}\}_{t=0}^{\infty}$ at time zero, the problem that the planner in fact faces in period 0 is

O current consumption c_0 , and

O capital for next period, k_1 .

- O The rest can wait until t = 1.
- O If we knew the preferences of the planner over c_0 and k_1 , we could simply optimize the choice of these quantities subject to

$$c_0 + k_1 \le f(k_0).$$
 (5)

Suppose we know the function $v^*(k_0)$.

João Brogueira de Sousa

Recursive Formulation

- O With v^* so defined, $v^*(k_1)$ would give us the value of utility from period 1 that could be obtained with k_1 as beginning of the period capital in t = 1.
- O Then the problem of the planner in period 0 would be:

$$\max_{c_0,k_1} u(c_0) + \beta v^*(k_1)$$
(6)

subject to

$$c_0 + k_1 \le f(k_0) \tag{7}$$

$$k_0 \text{ given.} \tag{8}$$

O If we know v^* , we can solve this problem and obtain the solution $k_1 = g(k_0)$, $c_0 = f(k_0) - g(k_0)$

João Brogueira de Sousa

Functional Equations

O If we solve the problem above, it follows that $v^*(k_0)$ must satisfy:

$$v^*(k_0) = \max_{c_0,k_1} u(c_0) + \beta v^*(k_1) \text{ , s.t. } c_0 + k_1 \le f(k_0), \ k_0 \text{ given.}$$
(9)

O Also, we could do it for any two subsequent periods, so the time subscript is irrelevant.

$$v^{*}(k) = \max_{c,k'} u(c) + \beta v^{*}(k') \text{ , s.t. } c+k' \leq f(k), \text{ k given.}$$
(10)

- O The relevant difference is in k, the capital of the current period (fixed) and k', the capital of the next period (choice variable).
- O (10) becomes one equation in one unknown function: v^* . It's called a *functional equation*.
- *Dynamic Programming* deals with dynamic optimization problems expressed in terms of functional equations.

João Brogueira de Sousa

DP Problems

- O The previous example is not great motivation for an alternative (recursive) formulation: we have just learned how to solve the sequence problem in the previous lectures.
- However, think how you would extend the analysis if capital productivity in the future were subject to random shocks.
- O It makes no sense that the solution continues to be a deterministic sequence of capital; it should depend on the history of shocks.
- O This makes the problem very difficult to characterize in sequence form.
- But it is almost unchanged if solved recursively: just find the optimal policy function that depends on current capital and current shock.

O Optimal policy is contingent on the realization of the shock.

O Obviously, the shocks must have certain properties for us to be able to use this method.

João Brogueira de Sousa

DP Problems

Other examples:

- O A worker that faces a job offer today that he can either accept or reject and wait until tomorrow to evaluate a new (random) offer.
- O A store manager with a stock of items facing a stochastic demand every day, who has to decide to increase stock at a cost or forgo sales he could have made.
- O A financial market with portfolio managers who have to decide whether to keep or to sell a stock at the current price, before learning the dividend it will pay next period.

The function v^* satisfies a functional equation, the Bellman Equation:

$$v^{*}(k) = \sup_{\{c,k'\}} u(c) + \beta v^{*}(k')$$
(11)

subject to:

$$c + k' \le f(k) \tag{12}$$

k given. (13)

Let $\mathcal{C}(\mathbb{R}^+)$ denote the space of bounded continuous functions $f: \mathbb{R}^+ \to \mathbb{R}$. Define the functional operator $\mathcal{T}: \mathcal{C}(\mathbb{R}^+) \to \mathcal{C}(\mathbb{R}^+)$:

$$(Tf)(k) = \sup_{\{c,k'\}} u(c) + \beta f(k')$$
 (14)

Let $\mathcal{C}(\mathbb{R}^+)$ denote the space of bounded continuous functions $f: \mathbb{R}^+ \to \mathbb{R}$. Define the functional operator $\mathcal{T}: \mathcal{C}(\mathbb{R}^+) \to \mathcal{C}(\mathbb{R}^+)$:

$$(Tf)(k) = \sup_{\{c,k'\}} u(c) + \beta f(k')$$
 (14)

The Principle of Optimality states the following results:

(a) v^* , the indirect utility function of SP, is a fixed point of T:

$$(Tv^*)(k) = v^*(k)$$
, for all $k \in \mathbb{R}^+$. (15)

Let $\mathcal{C}(\mathbb{R}^+)$ denote the space of bounded continuous functions $f: \mathbb{R}^+ \to \mathbb{R}$. Define the functional operator $\mathcal{T}: \mathcal{C}(\mathbb{R}^+) \to \mathcal{C}(\mathbb{R}^+)$:

$$(Tf)(k) = \sup_{\{c,k'\}} u(c) + \beta f(k')$$
 (14)

The Principle of Optimality states the following results:

(a) v^* , the indirect utility function of SP, is a fixed point of T:

$$(Tv^*)(k) = v^*(k)$$
, for all $k \in \mathbb{R}^+$. (15)

(b) Under some conditions, the only finite valued fixed point of T is v^* , the solution to SP.

Let $\mathcal{C}(\mathbb{R}^+)$ denote the space of bounded continuous functions $f: \mathbb{R}^+ \to \mathbb{R}$. Define the functional operator $\mathcal{T}: \mathcal{C}(\mathbb{R}^+) \to \mathcal{C}(\mathbb{R}^+)$:

$$(Tf)(k) = \sup_{\{c,k'\}} u(c) + \beta f(k')$$
 (14)

The Principle of Optimality states the following results:

(a) v^* , the indirect utility function of SP, is a fixed point of T:

$$(Tv^*)(k) = v^*(k)$$
, for all $k \in \mathbb{R}^+$. (15)

(b) Under some conditions, the only finite valued fixed point of T is v*, the solution to SP.
(c) If {c_t*, k_{t+1}*}_{t=0} solves SP, then it satisfies: v(k_t) = u(c_t) + βv(k_{t+1}), for t = 0, 1, ... (16) for v = v*.

João Brogueira de Sousa

Let $\mathcal{C}(\mathbb{R}^+)$ denote the space of bounded continuous functions $f: \mathbb{R}^+ \to \mathbb{R}$. Define the functional operator $\mathcal{T}: \mathcal{C}(\mathbb{R}^+) \to \mathcal{C}(\mathbb{R}^+)$:

$$(Tf)(k) = \sup_{\{c,k'\}} u(c) + \beta f(k')$$
 (14)

The Principle of Optimality states the following results:

(a) v^* , the indirect utility function of SP, is a fixed point of T:

$$(Tv^*)(k) = v^*(k)$$
, for all $k \in \mathbb{R}^+$. (15)

(b) Under some conditions, the only finite valued fixed point of T is v^* , the solution to SP.

(c) If $\{c_t^*, k_{t+1}^*\}_{t=0}^{\infty}$ solves SP, then it satisfies:

$$v(k_t) = u(c_t) + \beta v(k_{t+1})$$
, for $t = 0, 1, ...$ (16)

for $v = v^*$.

(d) Any sequence $\{c_t, k_{t+1}\}_{t=0}^{\infty}$ that satisfies (16) with $v = v^*$ and a certain boundedness condition, is a solution to SP.

João Brogueira de Sousa

PO: conditions

The main assumption is that for all $k_0 > 0$ and allocations $\tilde{z} \in \mathcal{Z}(k_0)$, where \mathcal{Z} is the set of all feasible allocations:

$$\lim_{n \to \infty} \sum_{t=0}^{n} \beta^{t} u(\tilde{c}_{t}) \text{ exists.}$$
(17)

For more details see: Theorem 4.2-4.5 in S&L (1989).

If u is bounded, and $\beta \in (0, 1)$, (17) holds.

Note that in common specs (e.g. CRRA) $u : \mathbb{R}^+ \to \mathbb{R}$ is not bounded with the sup norm...

João Brogueira de Sousa

A Contraction Mapping

T satisfies *Blackwell's Sufficient Conditions* for a contraction (see Theorem 3.3 in S&L (1989):

Under certain conditions on f, and assuming u is bounded and continuous, and $\beta \in (0, 1)$, the operator T defined above maps $\mathcal{C}(\mathbb{R}^+)$ into itself; has a unique fixed point $v^* \in \mathcal{C}(\mathbb{R}^+)$; and for all $v_0 \in \mathcal{C}(\mathbb{R}^+)$:

$$||T^{n}v_{0} - v^{*}|| \leq \beta^{n} ||v_{0} - v^{*}||, \ n = 0, 1, 2, ...$$
(18)

A Contraction Mapping

T satisfies *Blackwell's Sufficient Conditions* for a contraction (see Theorem 3.3 in S&L (1989):

Under certain conditions on f, and assuming u is bounded and continuous, and $\beta \in (0, 1)$, the operator T defined above maps $\mathcal{C}(\mathbb{R}^+)$ into itself; has a unique fixed point $v^* \in \mathcal{C}(\mathbb{R}^+)$; and for all $v_0 \in \mathcal{C}(\mathbb{R}^+)$:

$$||T^{n}v_{0} - v^{*}|| \leq \beta^{n}||v_{0} - v^{*}||, n = 0, 1, 2, ...$$
 (18)

It follows that, starting from any initial function $v_0 \in \mathcal{C}(\mathbb{R}^+)$, defining v_n as:

$$v_n(k) = (T^n v_0)(k),$$
 (19)

i.e. applying successively T, n times, we have that:

$$||v_n - v^*|| \to 0 \text{ as } n \to \infty.$$
 (20)

João Brogueira de Sousa

The previous properties provide a method to find v*:

Pick some initial \tilde{v} , apply T over and over again, stop when $||T^n \tilde{v} - T^{n-1} \tilde{v}|| \leq \epsilon$ (small enough).

It's called Value Function Iteration.

Recall that v^* is the unique fixed point of T and, due to (b), it is the value of the solution of the original problem SP.

Policy Functions

In addition, if u is continuous, strictly increasing and strictly concave, and f is continuous, strictly increasing and strictly quasiconcave, then v^* is continuous, strictly increasing, and strictly concave. Because of this, the solution to the problem:

$$\max_{\{c,k\}} u(c,l) + \beta v^*(k')$$
(21)

subject to

$$c + k' \le f(k)$$
 (22)
k given. (23)

exists and is unique for all k. This solution is what we often call the policy functions of the problem:

$$g_c(k), g_{k'}(k),$$
 (24)

the optimal decisions for consumption and capital in the state k.

João Brogueira de Sousa

Policy Functions

Recall (c) and (d) above. Let $\{c_t^*, k_{t+1}^*\}_{t=0}^{\infty}$ denote the solution to problem SP with the initial condition $k_0 > 0$. Then

. . .

$$c_0^* = g_c(k_0)$$
 (25)

$$k_1^* = g_{k'}(k_0) \tag{26}$$

$$c_1^* = g_c(g_{k'}(k_0))$$
 (27)

Analytical Example

In most cases, we cannot find an analytical solution for v^* and the policy function g, and resort to numerical approximation methods. For some special cases, it is possible to do so.

Assume $f(k) = k^{\alpha}$, $\alpha \in (0, 1)$ and let $u(c) = \ln(c)$.

$$v(k) = \max_{k'} \ln(k^{\alpha} - k') + \beta v(k')$$
 (28)

Take
$$v_0(k) = 0$$
.
1. $v_1(k) = \max_{k'} \ln(k^{\alpha} - k') \implies k' = 0, v_1(k) = \ln(k^{\alpha}) = \alpha \ln(k)$.
2. $v_2(k) = \max_{k'} \ln(k^{\alpha} - k') + \beta \alpha \ln(k') \implies k' = \frac{\alpha \beta}{1 + \alpha \beta} k^{\alpha}$,
 $v_2(k) = \ln\left(\frac{1}{1 + \alpha \beta}\right) + \alpha \beta \ln\left(\frac{\alpha \beta}{1 + \alpha \beta}\right) + (\alpha + \alpha^2 \beta) \ln(k)$

João Brogueira de Sousa

Analytical Example (cont.)

3. Repeat until realize the sequence follows a geometric sequence that converges to:

$$v(k) = \frac{1}{1-\beta} \left(\ln(1-\alpha\beta) + \frac{\alpha\beta}{1-\alpha\beta} \ln(\alpha\beta) \right) + \frac{\alpha}{1-\alpha\beta} \ln(k).$$

4. The associated policy function is:

 $k' = \alpha \beta k^{\alpha}$

Another solution method: guess and verify that v(k) is of the form: $v(k) = A + B \ln(k)$.

Substitute and find A and B.

João Brogueira de Sousa

Analytical Example (cont.)

The first order condition of problem (28) is:

$$-\frac{1}{k^{\alpha}-k'}+\beta v'(k')=0$$
 (29)

The envelope condition states that at the solution (i.e. when k' = g(k)) the derivative of v satisfies:

$$v'(k) = u'(f(k) - g(k))f'(k) = -\alpha k^{\alpha - 1} \frac{1}{k^{\alpha} - g(k)}$$
(30)

Together imply:

$$-\frac{1}{k^{\alpha}-g(k)}-\beta \alpha g(k)^{\alpha-1}\frac{1}{g(k)^{\alpha}-g(k')}=0$$
 (31)

Verify that $k' = g(k) = \alpha \beta \ln(k)$ satisfies this condition.

João Brogueira de Sousa

Envelope Condition

This is how you can derive the envelope condition. Consider the previous problem:

$$\max_{k'} \ln(k^{\alpha} - k') + \beta v^{*}(k'), \ k \text{ fixed.}$$
(32)

FOC evaluated at the solution k' = g(k):

$$u'(f(k) - g(k))) = \beta v^{*'}(g(k))$$
(33)

Define $w(k) = u(f(k) - g(k)) + \beta v^*(g(k))$. Note that we know $w(k) = v^*(k)$. But let's take the derivate of w w.r.t. k: $w'(k) = u'(f(k) - g(k))(f'(k) - g'(k)) + \beta v^{*'}(g(k))g'(k)$

$$w'(k) = u'(f(k) - g(k))(f'(k) - g'(k)) + \beta v^{*'}(g(k))g'(k).$$
(34)

Using the FOC, we can write it as:

$$w'(k) = u'(f(k) - g(k))(f'(k) - g'(k)) + u'(f(k) - g(k)))g'(k)$$
(35)

Since $w(k) = v^*(k)$, this implies:

$$v^{*'}(k) = u'(f(k) - g(k))f'(k)$$
(36)
(36)

João Brogueira de Sousa

6119 - Macroeconomics

19 / 20

Readings

O L&S (2018): Chapter 1.O S&L (1989): Chapters 1, 2, and 4.