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Time Varying Volatility Models



An Excursion into Non-linearity Land

• Motivation: the linear structural (and time series) models cannot 
explain a number of important features common to much financial data
- leptokurtosis
- volatility clustering or volatility pooling
- leverage effects
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- leverage effects

• Our “traditional” structural model could be something like:
yt = β1 + β2x2t + ... + βkxkt + ut, or more compactly  y = Xβ + 
u.

• We also assumed ut ∼ N(0,σ2).



Figure 4: Example Commodity Price Index - 02/02/1989 - 01/02/2024
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Types of non-linear models

• The linear paradigm is a useful one. Many apparently non-linear 
relationships can be made linear by a suitable transformation. On the 
other hand, it is likely that many relationships in finance are 
intrinsically non-linear.
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• There are many types of non-linear models, e.g.
- ARCH / GARCH
- switching models
- bilinear models



Testing for Non-linearity

• The “traditional” tools of time series analysis (acf’s, spectral analysis)
may find no evidence that we could use a linear model, but the data
may still not be independent.

• Portmanteau tests for non-linear dependence have been developed. The
simplest is Ramsey’s RESET test, which took the form:
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simplest is Ramsey’s RESET test, which took the form:

• Many other non-linearity tests are available, e.g. the “BDS test” and
the bispectrum test.

• One particular non-linear model that has proved very useful in finance
is the ARCH model due to Engle (1982).
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Heteroscedasticity Revisited

• An example of a structural model is

with ut ∼ N(0, ).

• The assumption that the variance of the errors is constant is known as

σu
2

σ 2

yt = β1 + β2x2t + β3x3t + β4x4t + u t 
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homoscedasticity, i.e. Var (ut) = .

• What if the variance of the errors is not constant?
- heteroscedasticity
- would imply that standard error estimates could be wrong.

• Is the variance of the errors likely to be constant over time? Not for
financial data.

σ u
2



Autoregressive Conditionally Heteroscedastic  
(ARCH) Models

• So use a model which does not assume that the variance is constant.
• Recall the definition of the variance of ut:

= Var(ut ut-1, ut-2,...) = E[(ut-E(ut))2 ut-1, ut-2,...]
We usually assume that E(ut) = 0
so = Var(ut ut-1, ut-2,...) = E[ut

2 ut-1, ut-2,...].

σt
2

σt
2
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so = Var(ut ut-1, ut-2,...) = E[ut  ut-1, ut-2,...].

• What could the current value of the variance of the errors plausibly
depend upon?
– Previous squared error terms.

• This leads to the autoregressive conditionally heteroscedastic model
for the variance of the errors:

= α0 + α1
• This is known as an ARCH(1) model.

σt

σt
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Autoregressive Conditionally Heteroscedastic  
(ARCH) Models (cont’d)

• The full model would be
yt = β1 + β2x2t + ... + βkxkt + ut , ut ∼ N(0, )
where = α0 + α1

• We can easily extend this to the general case where the error variance
depends on q lags of squared errors:

σt
2

σt
2 ut−1
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= α0 + α1 +α2 +...+αq
• This is an ARCH(q) model.

• Instead of calling the variance , in the literature it is usually called ht,
so the model is

yt = β1 + β2x2t + ... + βkxkt + ut , ut ∼ N(0,ht)
where ht = α0 + α1 +α2 +...+αq
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Another Way of Writing ARCH Models

• For illustration, consider an ARCH(1). Instead of the above, we can
write

yt = β1 + β2x2t + ... + βkxkt + ut , ut = vtσt
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, vt ∼ N(0,1)

• The two are different ways of expressing exactly the same model. The
first form is easier to understand while the second form is required for
simulating from an ARCH model, for example.

σ α αt tu= + −0 1 1
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Testing for “ARCH Effects”

1. First, run any postulated linear regression of the form given in the equation
above, e.g. yt = β1 + β2x2t + ... + βkxkt + ut
saving the residuals, .

2. Then square the residuals, and regress them on q own lags to test for ARCH

tû
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of order q, i.e. run the regression

where vt is iid.
Obtain R2 from this regression

3. The test statistic is defined as TR2 (the number of observations multiplied
by the coefficient of multiple correlation) from the last regression, and is
distributed as a χ2(q).

tqtqttt vuuuu +++++= −−−
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Testing for “ARCH Effects” (cont’d)

4. The null and alternative hypotheses are
H0 : γ1 = 0 and γ2 = 0 and γ3 = 0 and ... and γq = 0
H1 : γ1 ≠ 0 or γ2 ≠ 0 or γ3 ≠ 0 or ... or γq ≠ 0.
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If the value of the test statistic is greater than the critical value from the
χ2 distribution, then reject the null hypothesis.

• Note that the ARCH test is also sometimes applied directly to returns
instead of the residuals from Stage 1 above.



Problems with ARCH(q) Models

• How do we decide on q?
• The required value of q might be very large
• Non-negativity constraints might be violated.

– When we estimate an ARCH model, we require αi >0 ∀ i=1,2,...,q
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i
(since variance cannot be negative)

• A natural extension of an ARCH(q) model which gets around some of
these problems is a GARCH model.



Generalised ARCH (GARCH) Models

• Due to Bollerslev (1986). Allow the conditional variance to be dependent
upon previous own lags

• The variance equation is now
(1)

• This is a GARCH(1,1) model, which is like an ARMA(1,1) model for the
σt

2 = α0 + α1
2

1−tu +βσt-1
2 
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• This is a GARCH(1,1) model, which is like an ARMA(1,1) model for the
variance equation.

• We could also write

• Substituting into (1) for σt-1
2 :

σt-1
2 = α0 + α1

2
2−tu +βσt-2

2 

σt-2
2 = α0 + α1

2
3−tu +βσt-3

2  

σσσσt
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2
1−tu +ββββ(αααα0 + αααα1

2
2−tu +ββββσσσσt-2

2)  

= αααα0 + αααα1
2

1−tu +αααα0ββββ + αααα1ββββ 2
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Generalised ARCH (GARCH) Models (cont’d)

• Now substituting into (2) for σt-2
2

• An infinite number of successive substitutions would yield

σt
2 =α0 + α1

2
1−tu +α0β + α1β 2

2−tu +β2(α0 + α1
2

3−tu +βσt-3
2) 

σt
2 = α0 + α1

2
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2−tu +α0β2 + α1β2 2
3−tu +β3σt-3

2 

σt
2 = α0 (1+β+β2) + α1 

2
1−tu (1+βL+β2L2 ) + β3σt-3
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• An infinite number of successive substitutions would yield

• So the GARCH(1,1) model can be written as an infinite order ARCH model.

• We can again extend the GARCH(1,1) model to a GARCH(p,q):

σt
2 = α0 (1+β+β2+...) + α1 

2
1−tu (1+βL+β2L2+...) + β∞σ0
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Generalised ARCH (GARCH) Models (cont’d)

• But in general a GARCH(1,1) model will be sufficient to capture the
volatility clustering in the data.

• Why is GARCH Better than ARCH?
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- more parsimonious - avoids overfitting
- less likely to breech non-negativity constraints



The Unconditional Variance under the GARCH 
Specification

• The unconditional variance of ut is given by

when

Var(ut) = 
)(1 1

0

βα
α
+−

  

βα +1  < 1 
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• is termed “non-stationarity” in variance

• is termed intergrated GARCH

• For non-stationarity in variance, the conditional variance forecasts will 
not converge on their unconditional value as the horizon increases.

βα +1  ≥ 1 

βα +1  = 1 



Estimation of ARCH / GARCH Models

• Since the model is no longer of the usual linear form, we cannot use
OLS.

• We use another technique known as maximum likelihood.
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• The method works by finding the most likely values of the parameters
given the actual data.

• More specifically, we form a log-likelihood function and maximise it.



Estimation of ARCH / GARCH Models (cont’d)

• The steps involved in actually estimating an ARCH or GARCH model
are as follows

1. Specify the appropriate equations for the mean and the variance - e.g. an
AR(1)- GARCH(1,1) model:
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AR(1)- GARCH(1,1) model:

2. Specify the log-likelihood function to maximise:

3. The computer will maximise the function and give parameter values and
their standard errors

yt = µ + φyt-1 + ut   , ut ∼ N(0,σt
2)  

σt
2 = α0 + α1
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Parameter Estimation using Maximum Likelihood

• Consider the bivariate regression case with homoscedastic errors for
simplicity:

• Assuming that ut ∼ N(0,σ2), then yt ∼ N( , σ2) so that the
probability density function for a normally distributed random variable

ttt uxy ++= 21 ββ

tx21 ββ +
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probability density function for a normally distributed random variable
with this mean and variance is given by

(1)

• Successive values of yt would trace out the familiar bell-shaped curve.

• Assuming that ut are iid, then yt will also be iid.
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Parameter Estimation using Maximum Likelihood 
(cont’d)

• Then the joint pdf for all the y’s can be expressed as a product of the
individual density functions
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(2)

• Substituting into equation (2) for every yt from equation (1),

(3)
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Parameter Estimation using Maximum Likelihood 
(cont’d)

• The typical situation we have is that the xt and yt are given and we want to
estimate β1, β2, σ2. If this is the case, then f(•) is known as the likelihood
function, denoted LF(β1, β2, σ2), so we write

(4)



 −−
−= ∑

T
tt xy

LF
2

212 )(1exp1),,(
ββ

σββ

21

(4)

• Maximum likelihood estimation involves choosing parameter values (β1,
β2,σ2) that maximise this function.

• We want to differentiate (4) w.r.t. β1, β2,σ2, but (4) is a product containing
T terms.
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• Since , we can take logs of (4).

• Then, using the various laws for transforming functions containing
logarithms, we obtain the log-likelihood function, LLF:

max ( ) maxlog( ( ))
x x

f x f x=

Parameter Estimation using Maximum Likelihood 
(cont’d)
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• which is equivalent to

(5)

• Differentiating (5) w.r.t. β1, β2,σ2, we obtain
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(7)

(8)
• Setting (6)-(8) to zero to minimise the functions, and putting hats above

Parameter Estimation using Maximum Likelihood 
(cont’d)
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• Setting (6)-(8) to zero to minimise the functions, and putting hats above
the parameters to denote the maximum likelihood estimators,

• From (6),

(9)
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• From (7),

Parameter Estimation using Maximum Likelihood 
(cont’d)
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• From (8),
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• Rearranging,

(11)

• How do these formulae compare with the OLS estimators?

$ $σ 2 21
= ∑T

ut

Parameter Estimation using Maximum Likelihood 
(cont’d)
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• How do these formulae compare with the OLS estimators?
(9) & (10) are identical to OLS
(11) is different. The OLS estimator was

• Therefore the ML estimator of the variance of the disturbances is biased,
although it is consistent.

• But how does this help us in estimating heteroscedastic models?

$ $σ 2 21
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Estimation of GARCH Models Using 
Maximum Likelihood

• Now we have yt = µ + φyt-1 + ut , ut ∼ N(0, )σt
2
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• Unfortunately, the LLF for a model with time-varying variances cannot be
maximised analytically, except in the simplest of cases. So a numerical
procedure is used to maximise the log-likelihood function. A potential
problem: local optima or multimodalities in the likelihood surface.

• The way we do the optimisation is:
1. Set up LLF.
2. Use regression to get initial guesses for the mean parameters.
3. Choose some initial guesses for the conditional variance parameters.
4. Specify a convergence criterion - either by criterion or by value.



Non-Normality and Maximum Likelihood

• Recall that the conditional normality assumption for ut is essential.

• We can test for normality using the following representation
ut = vtσt vt ∼ N(0,1)

v ut=
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• The sample counterpart is

• Are the normal? Typically are still leptokurtic, although less so than
the . Is this a problem? Not really, as we can use the ML with a robust
variance/covariance estimator. ML with robust standard errors is called Quasi-
Maximum Likelihood or QML.
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Extensions to the Basic GARCH Model

• Since the GARCH model was developed, a huge number of extensions
and variants have been proposed. Three of the most important
examples are EGARCH, GJR, and GARCH-M models.

• Problems with GARCH(p,q) Models:
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• Problems with GARCH(p,q) Models:
- Non-negativity constraints may still be violated
- GARCH models cannot account for leverage effects

• Possible solutions: the exponential GARCH (EGARCH) model or the
GJR model, which are asymmetric GARCH models.



The EGARCH Model

• Suggested by Nelson (1991). The variance equation is given by
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• Advantages of the model
- Since we model the log(σt

2), then even if the parameters are negative, σt
2

will be positive.
- We can account for the leverage effect: if the relationship between

volatility and returns is negative, γ, will be negative.

 −−
πσσ 11 tt



The GJR Model

• Due to Glosten, Jaganathan and Runkle

where It-1 = 1 if ut-1 < 0

σt
2 = α0 + α1

2
1−tu +βσt-1

2+γut-1
2It-1 
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t-1 t-1

= 0 otherwise

• For a leverage effect, we would see γ > 0.

• We require α1 + γ ≥ 0 and α1 ≥ 0 for non-negativity.



An Example of the use of a GJR Model

• Using monthly S&P 500 returns, December 1979- June 1998

• Estimating a GJR model, we obtain the following results.

172.0=ty
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News Impact Curves

The news impact curve plots the next period volatility (ht) that would arise from various 
positive and negative values of ut-1, given an estimated model.

News Impact Curves for S&P 500 Returns using Coefficients from GARCH and GJR 
Model Estimates:

0.12

0.14
GARCH
GJR
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GARCH-in Mean

• We expect a risk to be compensated by a higher return. So why not let
the return of a security be partly determined by its risk?

• Engle, Lilien and Robins (1987) suggested the ARCH-M specification.
A GARCH-M model would be
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A GARCH-M model would be

• δ can be interpreted as a sort of risk premium.

• It is possible to combine all or some of these models together to get
more complex “hybrid” models - e.g. an ARMA-EGARCH(1,1)-M
model.

yt = µ + δσt-1+ ut   , ut ∼ N(0,σt
2)  

σt
2 = α0 + α1

2
1−tu +βσt-1

2 



What Use Are GARCH-type Models?

• GARCH can model the volatility clustering effect since the conditional
variance is autoregressive. Such models can be used to forecast volatility.

• We could show that
Var (yt  yt-1, yt-2, ...) = Var (ut  ut-1, ut-2, ...)
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Var (yt  yt-1, yt-2, ...) = Var (ut  ut-1, ut-2, ...)

• So modelling σt
2 will give us models and forecasts for yt as well.

• Variance forecasts are additive over time. 



Forecasting Variances using GARCH Models

• Producing conditional variance forecasts from GARCH models uses a 
very similar approach to producing forecasts from ARMA models.

• It is again an exercise in iterating with the conditional expectations 
operator.

• Consider the following GARCH(1,1) model:
, u ∼ N(0,σ 2),
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, ut ∼ N(0,σt
2),

• What is needed is to generate are forecasts of σT+1
2 ΩT, σT+2

2 ΩT, ...,
σT+s

2 ΩT where ΩT denotes all information available up to and
including observation T.

• Adding one to each of the time subscripts of the above conditional
variance equation, and then two, and then three would yield the
following equations

σT+1
2 = α0 + α1 +βσT

2 , σT+2
2 = α0 + α1 +βσT+1

2 , σT+3
2 = α0 + α1 +βσT+2

2

tt uy += µ 2
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Forecasting Variances 
using GARCH Models (Cont’d)

• Let        be the one step ahead forecast for σ2 made at time T. This is 
easy to calculate since, at time T, the values of all the terms on the 
RHS are known. 

• would be obtained by taking the conditional expectation of the 
first equation at the bottom of slide 36:

2
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first equation at the bottom of slide 36:

• Given,        how is       , the 2-step ahead forecast for σ2 made at time T, 
calculated? Taking the conditional expectation of the second equation 
at the bottom of slide 36:

= α0 + α1E(       ΩT) +β
• where E(       ΩT) is the expectation, made at time T, of       , which is 

the squared disturbance term.
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Forecasting Variances 
using GARCH Models (Cont’d)

• We can write
E(uT+1

2 | Ωt) = σT+1
2

• But σT+1
2 is not known at time T, so it is replaced with the forecast for 

it,        , so that the 2-step ahead forecast is given by
= α0 + α1           +β
= α + (α +β)
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= α0 + (α1+β)
• By similar arguments, the 3-step ahead forecast will be given by

= ET(α0 + α1 + βσT+2
2)

= α0 + (α1+β)
= α0 + (α1+β)[ α0 + (α1+β)        ]
= α0 + α0(α1+β) + (α1+β)2

• Any s-step ahead forecast (s ≥ 2) would be produced by 
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What Use Are Volatility Forecasts?

1. Option pricing

C = f(S, X, σ2, T, rf)

2. Conditional betas
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2. Conditional betas

3. Dynamic hedge ratios
The Hedge Ratio - the size of the futures position to the size of the
underlying exposure, i.e. the number of futures contracts to buy or sell per
unit of the spot good.
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What Use Are Volatility Forecasts? (Cont’d)

• What is the optimal value of the hedge ratio?
• Assuming that the objective of hedging is to minimise the variance of the

hedged portfolio, the optimal hedge ratio will be given by

h p s

F
=

σ
σ

39

where h = hedge ratio
p = correlation coefficient between change in spot price (S) and

change in futures price (F)
σS = standard deviation of S
σF = standard deviation of F

• What if the standard deviations and correlation are changing over time?
Use

tF
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Testing Non-linear Restrictions or

Testing Hypotheses about Non-linear Models

• Usual t- and F-tests are still valid in non-linear models, but they are
not flexible enough.

• There are three hypothesis testing procedures based on maximum
likelihood principles: Wald, Likelihood Ratio, Lagrange Multiplier.
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likelihood principles: Wald, Likelihood Ratio, Lagrange Multiplier.

• Consider a single parameter, θ to be estimated, Denote the MLE as
and a restricted estimate as .~θ

θ̂



Likelihood Ratio Tests

• Estimate under the null hypothesis and under the alternative.
• Then compare the maximised values of the LLF.
• So we estimate the unconstrained model and achieve a given maximised

value of the LLF, denoted Lu
• Then estimate the model imposing the constraint(s) and get a new value of

the LLF denoted L .
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the LLF denoted Lr.
• Which will be bigger?
• Lr ≤ Lu comparable to RRSS ≥ URSS

• The LR test statistic is given by
LR = -2(Lr - Lu) ∼ χ2(m)

where m = number of restrictions



Likelihood Ratio Tests (cont’d)

• Example: We estimate a GARCH model and obtain a maximised LLF of
66.85. We are interested in testing whether β = 0 in the following equation.

yt = µ + φyt-1 + ut , ut ∼ N(0, )
= α0 + α1 + β

σt
2

σt
2 ut−1

2 2
1−tσ
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= α0 + α1 + β

• We estimate the model imposing the restriction and observe the maximised
LLF falls to 64.54. Can we accept the restriction?

• LR = -2(64.54-66.85) = 4.62.
• The test follows a χ2(1) = 3.84 at 5%, so reject the null.
• Denoting the maximised value of the LLF by unconstrained ML as L( )

and the constrained optimum as . Then we can illustrate the 3 testing
procedures in the following diagram:

σt ut−1

L( ~)θ

1−tσ

θ̂



Comparison of Testing Procedures under Maximum 
Likelihood: Diagramatic Representation

 
 
 
 
  ( )θL  
 
               A 

( )θ̂L
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Hypothesis Testing under Maximum Likelihood

• The vertical distance forms the basis of the LR test.

• The Wald test is based on a comparison of the horizontal distance.

• The LM test compares the slopes of the curve at A and B.
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• The LM test compares the slopes of the curve at A and B.

• We know at the unrestricted MLE, L( ), the slope of the curve is zero.

• But is it “significantly steep” at ?

• This formulation of the test is usually easiest to estimate.

L( ~)θ

θ̂



An Example of the Application of GARCH Models 
- Day & Lewis (1992)

• Purpose
• To consider the out of sample forecasting performance of GARCH and

EGARCH Models for predicting stock index volatility.

• Implied volatility is the markets expectation of the “average” level of
volatility of an option:

45

volatility of an option:

• Which is better, GARCH or implied volatility?

• Data
• Weekly closing prices (Wednesday to Wednesday, and Friday to Friday)

for the S&P100 Index option and the underlying 11 March 83 - 31 Dec. 89

• Implied volatility is calculated using a non-linear iterative procedure.



The Models

• The “Base” Models
For the conditional mean

(1)

And for the variance (2)

ttFtMt uhRR ++=− 10 λλ

11
2

110 −− ++= ttt huh βαα
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And for the variance (2)

or (3)

where
RMt denotes the return on the market portfolio
RFt denotes the risk-free rate
ht denotes the conditional variance from the GARCH-type models while
σt

2 denotes the implied variance from option prices.

11110 −− ++= ttt huh βαα
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The Models (cont’d)

• Add in a lagged value of the implied volatility parameter to equations (2)
and (3).
(2) becomes

(4)2
111

2
110 −−− +++= tttt huh δσβαα
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and (3) becomes

(5)

• We are interested in testing H0 : δ = 0 in (4) or (5).
• Also, we want to test H0 : α1 = 0 and β1 = 0 in (4),
• and H0 : α1 = 0 and β1 = 0 and θ = 0 and γ = 0 in (5).
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The Models (cont’d)

• If this second set of restrictions holds, then (4) & (5) collapse to
(4’)

• and (3) becomes
(5’)

2
10

2
−+= tth δσα

)ln()ln( 22 +=h σδα
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(5’)

• We can test all of these restrictions using a likelihood ratio test.

)ln()ln( 2
10

2
−+= tth σδα



In-sample Likelihood Ratio Test Results:
GARCH Versus Implied Volatility

 

ttFtMt uhRR ++=− 10 λλ       (8.78) 

11
2

110 −− ++= ttt huh βαα       (8.79) 
2

111
2

110 −−− +++= tttt huh δσβαα      (8.81) 
2

10
2

−+= tth δσα        (8.81′) 
Equation for λ0 λ1 α0×10-4 α1 β1 δ Log-L χ2 
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Equation for 
Variance 

specification 

λ0 λ1 α0×10  α1 β1 δ Log-L χ  

(8.79) 0.0072 
(0.005) 

0.071 
(0.01) 

5.428 
(1.65) 

0.093 
(0.84) 

0.854 
(8.17) 

- 767.321 17.77 

(8.81) 0.0015 
(0.028) 

0.043 
(0.02) 

2.065 
(2.98) 

0.266 
(1.17) 

-0.068 
(-0.59) 

0.318 
(3.00) 

776.204 - 

(8.81′) 0.0056 
(0.001) 

-0.184 
(-0.001) 

0.993 
(1.50) 

- - 0.581 
(2.94) 

764.394 23.62 

Notes: t-ratios in parentheses, Log-L denotes the maximised value of the log-likelihood function in 
each case. χ2 denotes the value of the test statistic, which follows a χ2(1) in the case of (8.81) restricted 
to (8.79), and a χ2(2) in the case of (8.81) restricted to (8.81′). Source: Day and Lewis (1992). 
Reprinted with the permission of Elsevier Science.  
 



In-sample Likelihood Ratio Test Results:
EGARCH Versus Implied Volatility
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)2()ln()ln(
2/1

1

1

1

1
1110


















−+++=

−

−

−

−
− π

γθαβα
t

t

t

t
tt h

u
h

u
hh  (8.80) 

)ln()2()ln()ln( 2
1

2/1

1

1

1

1
1110 −

−

−

−

−
− +


















−+++= t

t

t

t

t
tt h

u
h

u
hh σδ

π
γθαβα  (8.82) 

50


)ln()ln( 2

10
2

−+= tth σδα        (8.82′) 
Equation for 

Variance 
specification 

λ0 λ1 α0×10-4 β1 θ γ δ Log-L χ2 

(c) -0.0026 
(-0.03) 

0.094 
(0.25) 

-3.62 
(-2.90) 

0.529 
(3.26) 

-0.273 
(-4.13) 

0.357 
(3.17) 

- 776.436 8.09 

(e) 0.0035 
(0.56) 

-0.076 
(-0.24) 

-2.28 
(-1.82) 

0.373 
(1.48) 

-0.282 
(-4.34) 

0.210 
(1.89) 

0.351 
(1.82) 

780.480 - 

(e′) 0.0047 
(0.71) 

-0.139 
(-0.43) 

-2.76 
(-2.30) 

- - - 0.667 
(4.01) 

765.034 30.89 

Notes: t-ratios in parentheses, Log-L denotes the maximised value of the log-likelihood function in 
each case. χ2 denotes the value of the test statistic, which follows a χ2(1) in the case of (8.82) restricted 
to (8.80), and a χ2(2) in the case of (8.82) restricted to (8.82′). Source: Day and Lewis (1992). 
Reprinted with the permission of Elsevier Science.  



Conclusions for In-sample Model Comparisons & 
Out-of-Sample Procedure

• IV has extra incremental power for modelling stock volatility beyond
GARCH.

• But the models do not represent a true test of the predictive ability of
IV.
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• So the authors conduct an out of sample forecasting test.

• There are 729 data points. They use the first 410 to estimate the
models, and then make a 1-step ahead forecast of the following week’s
volatility.

• Then they roll the sample forward one observation at a time,
constructing a new one step ahead forecast at each step.



Out-of-Sample Forecast Evaluation

• They evaluate the forecasts in two ways:
• The first is by regressing the realised volatility series on the forecasts plus

a constant:
(7)σ σ ξt ft tb b+ += + +1

2
0 1

2
1

σ 2
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where is the “actual” value of volatility, and is the value forecasted
for it during period t.

• Perfectly accurate forecasts imply b0 = 0 and b1 = 1.
• But what is the “true” value of volatility at time t ?

Day & Lewis use 2 measures
1. The square of the weekly return on the index, which they call SR.
2. The variance of the week’s daily returns multiplied by the number
of trading days in that week.

σt+1
2

σ ft
2



Out-of Sample Model Comparisons
 

1
2

10
2

1 ++ ++= tftt bb ξσσ      (8.83) 

Forecasting Model Proxy for ex 
post volatility 

b0 b1 R2 

Historic SR 0.0004 
(5.60) 

0.129 
(21.18) 

0.094 

Historic WV 0.0005 
(2.90) 

0.154 
(7.58) 

0.024 

GARCH SR 0.0002 0.671 0.039 
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GARCH SR 0.0002 
(1.02) 

0.671 
(2.10) 

0.039 

GARCH WV 0.0002 
(1.07) 

1.074 
(3.34) 

0.018 

EGARCH SR 0.0000 
(0.05) 

1.075 
(2.06) 

0.022 

EGARCH WV -0.0001 
(-0.48) 

1.529 
(2.58) 

0.008 

Implied Volatility SR 0.0022 
(2.22) 

0.357 
(1.82) 

0.037 

Implied Volatility WV 0.0005 
(0.389) 

0.718 
(1.95) 

0.026 

Notes: Historic refers to the use of a simple historical average of the squared returns to forecast 
volatility; t-ratios in parentheses; SR and WV refer to the square of the weekly return on the S&P 100, 
and the variance of the week’s daily returns multiplied by the number of trading days in that week, 
respectively. Source: Day and Lewis (1992). Reprinted with the permission of Elsevier Science.  
 



Encompassing Test Results: Do the IV Forecasts 
Encompass those of the GARCH Models?

 
1

2
4

2
3

2
2

2
10

2
1 ++ +++++= tHtEtGtItt bbbbb ξσσσσσ    (8.86) 

Forecast comparison b0 b1 b2 b3 b4 R2 
 

Implied vs. GARCH 
 

-0.00010 
(-0.09) 

0.601 
(1.03) 

0.298 
(0.42) 

- - 0.027 

Implied vs. GARCH 
vs. Historical 

0.00018 
(1.15) 

0.632 
(1.02) 

-0.243 
(-0.28) 

- 0.123 
(7.01) 

0.038 
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vs. Historical 
 

(1.15) (1.02) (-0.28) (7.01) 

Implied vs. EGARCH 
 
 

-0.00001 
(-0.07) 

0.695 
(1.62) 

- 0.176 
(0.27) 

- 0.026 

Implied vs. EGARCH 
vs. Historical 

 

0.00026 
(1.37) 

0.590 
(1.45) 

-0.374 
(-0.57) 

- 0.118 
(7.74) 

0.038 

GARCH vs. EGARCH 
 

0.00005 
(0.37) 

- 1.070 
(2.78) 

-0.001 
(-0.00) 

- 0.018 

Notes: t-ratios in parentheses; the ex post measure used in this table is the variance of the week’s daily 
returns multiplied by the number of trading days in that week. Source: Day and Lewis (1992). 
Reprinted with the permission of Elsevier Science.  



Conclusions of Paper

• Within sample results suggest that IV contains extra information not
contained in the GARCH / EGARCH specifications.
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• Out of sample results suggest that nothing can accurately predict
volatility!



Multivariate GARCH Models

• Multivariate GARCH models are used to estimate and to forecast 
covariances and correlations. The basic formulation is similar to that of the 
GARCH model, but where the covariances as well as the variances are 
permitted to be time-varying.

• There are 3 main classes of multivariate GARCH formulation that are widely 
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• There are 3 main classes of multivariate GARCH formulation that are widely 
used: VECH, diagonal VECH and BEKK.

VECH and Diagonal VECH
• e.g. suppose that there are two variables used in the model. The conditional 

covariance matrix is denoted Ht, and would be 2 × 2. Ht and VECH(Ht) are 
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VECH and Diagonal VECH

• In the case of the VECH, the conditional variances and covariances would 
each depend upon lagged values of all of the variances and covariances 
and on lags of the squares of both error terms and their cross products.

• In matrix form, it would be written

• Writing out all of the elements gives the 3 equations as
( ) ( ) ( )111   −−− +Ξ′Ξ+= tttt HVECHBVECHACHVECH ( )ttt HN ,0~1−Ξ ψ
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• Writing out all of the elements gives the 3 equations as

• Such a model would be hard to estimate. The diagonal VECH is much 
simpler and is specified, in the 2 variable case, as follows:
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BEKK and Model Estimation for M-GARCH

• Neither the VECH nor the diagonal VECH ensure a positive definite variance-
covariance matrix.

• An alternative approach is the BEKK model (Engle & Kroner, 1995).
• In matrix form, the BEKK model is
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• Model estimation for all classes of multivariate GARCH model is again 
performed using maximum likelihood with the following LLF:

where N is the number of variables in the system (assumed 2 above), θ is a 
vector containing all of the parameters to be estimated, and T is the number of 
observations. 

BBAHAWWH tttt 111 −−− Ξ′Ξ′+′+′=

( ) ( )∑
=

− ΞΞ+−−=
T

t
tttt HHTN

1

1'log
2
12log

2
πθl



An Example: Estimating a Time-Varying Hedge Ratio 
for FTSE Stock Index Returns 

(Brooks, Henry and Persand, 2002).
• Data comprises 3580 daily observations on the FTSE 100 stock index and 

stock index futures contract spanning the period 1 January 1985 - 9 April 1999.  
• Several competing models for determining the optimal hedge ratio are 

constructed. Define the hedge ratio as β.
– No hedge (β=0)
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– No hedge (β=0)
– Naïve hedge (β=1)
– Multivariate GARCH hedges:

• Symmetric BEKK
• Asymmetric BEKK
In both cases, estimating the OHR involves forming a 1-step ahead
forecast and computing

t
tF

tCF
t h

h
OHR Ω−=

+

+
+

1,

1,
1



OHR Results

In Sample

Unhedged
β = 0

Naïve Hedge
β = 1

Symmetric Time
Varying
Hedge

tF

tFC
t h

h

,

,=β

Asymmetric
Time Varying
Hedge

tF

tFC
t h

h

,

,=β
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Return 0.0389
{2.3713}

-0.0003
{-0.0351}

0.0061
{0.9562}

0.0060
{0.9580}

Variance 0.8286 0.1718 0.1240 0.1211

Out of Sample

Unhedged
β = 0

Naïve Hedge
β = 1

Symmetric Time
Varying
Hedge

tF

tFC
t h

h

,

,=β

Asymmetric
Time Varying
Hedge

tF

tFC
t h

h

,

,=β

Return 0.0819
{1.4958}

-0.0004
{0.0216}

0.0120
{0.7761}

0.0140
{0.9083}

Variance 1.4972 0.1696 0.1186 0.1188



Plot of the OHR from Multivariate GARCH

Conclusions
- OHR is time-varying and less 
than 1 

Time Varying Hedge Ratios

0.90

0.95

1.00
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than 1 
- M-GARCH OHR provides a
better hedge, both in-sample 
and out-of-sample.

- No role in calculating OHR for 
asymmetries

Symmetric BEKK
Asymmetric BEKK
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