Business Models in the Carbon Market Master Thesis

Francesco Canu (59205) – Giulia Costantini Melchiorri (59502)

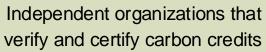
Table of contents

01	O2	03
Introduction to the	Key Stakeholders	Project Developers
Carbon Market 04	05	06
Nature-Based	Technology-Based	Industry Evolution &
Solutions	Solutions	Trends

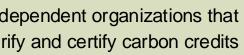
Introduction to the Carbon Market

- Key role in climate change mitigation, helping companies and governments achieve net-zero emissions
- By enabling the trading of carbon credits, it creates financial incentives to reduce or remove CO2 from the atmosphere
- Companies use carbon credits to compensate for emissions that cannot be eliminated through internal reductions

Compliance vs. Voluntary Carbon Market


Key Stakeholders

Project Developers



Generate and supply carbon credits through CO2 avoidance or removal projects

Standards Bodies

Intermediaries

Provide carbon measurement, consulting, and trading platforms, matching supply and demand

End Buyers

Companies purchasing credits to offset their emissions

Project Developers

- Project Developers are key players, directly responsible for generating carbon credits
- Their Business Model varies based on the type of carbon avoidance or removal solution they offer

Nature-Based Solutions (NBS)

Use biological processes to capture and store CO2, contributing to ecosystem restoration and conservation

Technology-Based Solutions (TBS)

Use industrial technology to physically extract CO2, storing it or repurposing it

Nature-Based Solutions

Nature-Based Avoidance

• Prevents additional CO2 from being released into the atmosphere

→ REDD+: "Reducing Emissions from Deforestation and forest Degradation

Nature-Based Removal

 Actively extracts CO2 from the atmosphere and stores it in natural carbon sink

 \rightarrow ARR: "Afforestation, Reforestation, and Revegetation"

Key factors:

- Land ownership
- Control over the sale of credits
- Revenue sharing model
- Standard vs. premium credit

Pros: Cheaper, environmental co-benefits, limited technologyCons: Risk of reversal, slower carbon removal

Companies: Finite Carbon, Forest Carbon, Wildlife Works

Technology-Based Solutions

Carbon Capture and Storage (CCS)

• CO2 is permanently stored underground

Carbon Capture and Utilization (CCU)

CO2 is repurposed for chemicals, fuels and materials

Key distinctions:

- Direct Air Capture vs. Point-Source Capture
- Storage vs. Utilization
- Subscription-Based vs. Upfront Payment

Pros: Permanent storage, precise measurement, scalabilityCons: High costs, energy-intensive infrastructure

Companies:

Climeworks, Carbon Engineering, Charm Industrial

Industry Evolution & Trends

- 1990s: market-based approaches to reducing GHG emissions
- Kyoto Protocol, EU ETS, Chinese ETS
- Focus on Compliance Carbon Market
- Mandate-based approach

- Growth of the Voluntary Carbon Market
- Emergence of technology and TBS
- Digital Marketplaces & Intermediaries
- Growing Demand: Net-zero commitments are driving demand for high-quality credits

- Hybrid Business Models: Companies integrating NBS and TBS solutions
- Shift towards Standardization: Stricter verification and premium credit markets
- Role of AI & Blockchain: Increasing transparency and automation in credit trading

