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Chapter 1

Introduction

The panel data are repeated time series observations on the same set of
cross-section units. Thus, “pooling” of cross-section and time series data,

where there are N cross-section individuals, ¢ = 1,2,..., N, and T time
periods, t =1,2,...,T. Regression model is written as
Yit = B1wit1 + BoTita + -+ + BrTik + it (1.1)

i=1,2,...,N,t=1,2,...,T, where y;; is the value of the dependent vari-
able for cross-section unit ¢ at time ¢, x;;; is the value of the jth explanatory
variable for unit ¢ at time ¢t for j = 1,...,k. Let x; = (@i1,...,Zax) be a
1 x k vector of regressors (including constant), and 8 = (834, ..., 8;) a k x 1
vectors of parameters. Then, (1.1) can be compactly written as

yit:Xitﬁ+€it,i:1,2,...,N,t:1,2,...,T. (12)
More compactly,
yvi=x8+¢€,1=1,2,...,N, (13)
where
Yi1 Xi1 €il
Yi2 X2 €i2
Vi = . , X§ = . , € = )
Tx1 . Txk . Tx1
yiT XiT &iT
and finally
where
Y1 X1 €1
y2 X2 €9
y = . ) X = ) £ =
NTx1 : NTxk NTx1
YN XN EN

11



12 CHAPTER 1. INTRODUCTION

Motivation for use of panel data: The analysis of panel data is the
subject of one of active literature in econometrics. See Hsiao (2003) and
Baltagi (2008). First, we can obtain efficiency gain from using more obser-
vations. e.g. Budget study, where y is consumption of some good, x (prices,
income), prices vary over time and (real) income varies over individual. Sec-
ond, we can control the bias of the estimation. e.g. Labor economics, in
earnings equation, where y is wage, x education, age, etc. time invariant
unobservables or individual effects, which can be related to individual ability
or intelligence.

Sources and types of the panel data

e The Panel Study of Income Dynamics (PSID)collected by the Institute
of Social research at the University of Michigan (since 1968). Infor-
mation about economic status such as income, job, marital status and
SO on

e The Survey of Income and Program Participation (SIPP, US Depart-
ment of Commerce) covers shorter time periods.

e The study by Card (1992): Effects of the minimum wage law on em-
ployment: Collected information by US States on youth employment,
unemployment rates, average wages and other factors for 1976-90.

e Macropanel such as the international data set obtained from the ver-
sion 5.5 of the Penn World Tables collected by Summers and Heston.

1.1 Models For Pooled Time Series

Here N is relatively small, and T is large enough to run separate regres-
sions for each individual but combining individuals may yield better (more
efficient) estimates. Define the NT' x NT covariance matrix,

V = Cov(e) = E(e€’)

/ / !
€1€1 €1€y ... E1&EN Vi1 Vi2 ... VIN
/ / /
€2€7 €289 ... E2&)y V21 Vo2 ... VapN
= = 5
/ / !
ENE] ENEy ... ENEN VN1 VN2 ... VNN

where the dimension of each block is T' x T'. Assume that
e~ N(0,V),

and X’s are exogenous. Then, we consider the two basic estimators:
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Ordinary least squares (OLS):
Bors = (X'X)"'X'y,
which is unbiased but inefficient; that is,

Cov(Bors) = (X'X)IX'VX(X'X) L.

Generalised least squares (GLS):
Bors = (X'VIX) X'V,
which is unbiased and efficient; that is,
Cov(Bars) = (X'VIX)™"
Exercise 1.1.1 Show that Cov(Bprg) > Cov(Bars)-

We have different models depending on specifications of V.

1.1.1 Classical regression model

We have ideal conditions such as e;’s are iidN (0, 0?). Then,
V = o%Inr, GLS = OLS,

where Iyr is an NT x NT identity matrix.

1.1.2 Cross-sectional heteroskedasticity: heterogenous vari-
ances
We have ideal conditions except

Var(ey) = o2 # Var(ej) = JJZ, for i # 7,

that is, the error variance is allowed to vary across individuals. Then,

olry 0 ... O

0 o3r ... O

V= : . : :
0 0 ... oxIr

Therefore, the GLS estimator becomes the weighted least squares estimator
given by

Bars = X'VIX)"'X'Vly

N -1 /N
— (Z ai—?xgxi> <Z a;zx;yi> .
=1 =1
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Noting that o?’s are not observable, feasible GLS estimator is obtained by

X N , -1/ N /
BrcLs = <Z Si_ZXin) <Z Sz'_QXin) 5
i=1

i=1
where 1 ,
s = T % <Yi - XiﬁGLs) <Yi - XzﬂGLS) :

The FGLS is consistent, and asymptotically efficient (as T — oo and N
fixed).

Example 1 Greene (1997).
Liy = By + BoFi + B3Cu + i,

where N =5, T =20 (1935-1954), I;; is gross investment, Fy market value
of the firm and Cy value of plant and equipment.

OLS : I = —48.03 + .106 F + .305C, R? = .78,

(.011) (.043)
FGLS : I = -36.25+ .095 F' + .338C.
(.0074) (.030)

1.1.3 Cross-sectional Heteroskedasticity: Correlation across
groups

Now, there is correlation across individuals at the same time;

0fort=#s }

oij fort =s

COU(EZ‘t, 6]‘5) = {

Then,
UIIIT 012IT e UINIT
ooalr  oxlr ... oonlp
V = . . . . =3 ® IT7
onilr on2Ir ... onnIT

where the dimension of 3 is N x N. This is the same error structure as in
“seemingly unrelated regressions model”.
FGLS can be obtained as previously: replace unknown o;; in V by

1 - / -
5= 7 <Yi - XzﬂGLS) <Yj - XjﬁGLs) )
so define V = V accordingly with si; in place of 0;;. Then,
. R -1/, .
Brars = (X V_1X> (X V_1y> .

Again, the GLS estimator is consistent and asymptotically normal as T" — oo
and N fixed.
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Example 2 Greene example continued:

FGLS : 1 =-30.28+ .094 F + .341C.
(.0068) (.027)

For testing that the off-diagonal elements of 3 are zero; that is, there is
no correlation across groups, we use the following LM statistic developed by
Breusch and Pagan (1980):

N -1

LM =T Y r},

i=2 j=1

where rfj is the 7jth residual correlation coefficient. Under the (joint) null
of 0jj =0fori,j=1,2,...N,and i # j, as T — o0,

LM — X2N(N—1) .
2
Example 3 Greene example continued: Using the residuals based on the
FGLS estimates given above we find LM = 51.32, which is far greater than

the 95% critical value of x3,. Hence we may conclude that the simple het-
eroskedastic model is not general enough for the investment data.

1.1.4 Autocorrelation (but not correlation across individu-
als)

See Greene (1997, Section 15.2.3).
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Chapter 2

Models for Longitudinal
Data

Here we have large N, but small 7": hence we use an asymptotic theory as
N — oo and T fixed.

Example 4 Panel study for income dynamics (PSID), N = 5000,7 = 9.

In principle methods of the previous section could be applied, but prob-
lematic because only a few time periods are available. In this case the tech-
niques has been focused on cross sectional variation or heterogeneity. The
basic assumption is that time-invariant “individual effect,” becomes part
of error process: that is, we consider the following error components-based
panel,

yit = X8 +ei, t=1,2,... . N;t=1,2,...,T, (2.1)

and g;; is decomposed as
Eit = Q4 + Uit, (2.2)

where ¢;’s are called individual effects. Here we assume:
e u;’s are N(0,02).

e u;; are uncorrelated with x;, for all ¢,¢,7,s, i.e., X’s are exogenous
with respect to u.

But, assumptions about «; vary.

Example 5 We have observations for T time periods on N countries. We
want to estimate the spillover effect of foreign technology on domestic firm
productivity in manufacturing. An error components model describing out-
put in each region with a standard Cobb-Douglas production is given by

qit = Brkit + Bolit + Bsmir + Byfir + ai + wig,

17



18 CHAPTER 2. MODELS FOR LONGITUDINAL DATA

where q;+ 1s the log of output of domestic firms, ki the log of capital, l;; the
log of labor, m; the log of material, f;; a measure of the influence of foreign
firms. A positive spillover is indicated by 5, > 0. Why should we allow for
the unobserved individual effects a; ¢ One reason is that an observed positive
relationship between output in a region and foreign influence, controlling only
for capital, labor and materials, might simply reflect the fact that foreign
firms tend to settle in areas that lend themselves to higher productivity; there
may be no spillover effect at all. By adding «; we allow f;z to be correlated
possibly with features of region, embodied in «;, that are related to higher
productivity. This solution is an improvement over not allowing for «;.

Example 6 Let y be net migration into city v at time t. We would like
to see whether taxes, housing prices, educational quality and other factors
influence population flows. There are certain features of cities, for example
geographical characteristics, reputation that could be difficult to model, but
are essentially constant over short periods of time. Because the unobserv-
ables influence y;z and might also be related to local policy and economic
variables, it is important to control for them. One model would be

Yit = PBr1Tit + Bohit + Baeir + Bycit + o + usy,

where x are tax rates, h housing prices, e educational quality and c crime
rates. Now «; capture all time-constant (unobservable) differences about
cities that might affect migration. Thus, the above regression allows us to
estimate

E (yit|zit, hit, €it, cit, o)

which makes it clear that we are controlling for unobserved city effects when
estimating the effects of tax policy on net migration for example.

There are two main approaches to deal with «;’s: fixed effects and ran-
dom effects.

2.1 Fixed Effects Estimator

Here we treat a; as fixed, but remember that we do not assume «; to be
uncorrelated with x;;. This implies that differences across cross section
units can be captured in differences in the constant terms. Notice that the
regression of y;; on x;; only is biased if «; is correlated with x;;. We want
to avoid this bias by using the fixed effects estimation. Defining

1 (65] er 0 N 0
1 a9 0 er ... O

er = | . , Oy = : , D= S : = Iy®er,
L P AN | Nx1 0 0 T 1 NTxN
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and ) )
ai
aq
a2 aier
: agzer
a= = ) =Da, = a,®er,
a9 .
aner
an
L an 4 NTx1

then we have (in 7" observations for each individual)
Yi = Xi3 + aser +u, (2.3)
or (in NT' observations)
y=XB8+a+u=y=X8+Da, +u. (2.4)
Notice that the bias in regression of y on X only is due to omission of D in
(2.4). Solution is simply to regress y on (X,D). So it is sometimes called
least squares dummy variable (LSDV) model; that is,

B = coefficients of X in the regression of y on (X,D).

But there is a computational problem for large N, since the dimension of D
is very big (N columns). So we need an alternative formulation. Define the
NT x NT matrices P and Q by
P =D(D'D) 'D’,
Q=Iyr—P=Iyy —-DDD) D,
then a standard result from least squares algebra says:

B = (X'QX) 1 (X'Qy).

Digression on algebra: Notice that

—_ =
_
Ju—

erer =T; erel, =
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Defining
1 1 1
T T T
1 1 1
p 1 T 7T T
* — TeTeT - )
1 1 1
T T T

. . /
then this matrix creates “means” for any T' x 1 vector ¢ = [ey, .., cr]';

C
- T
c B 1
P.c= : :ceT,c:cht
: t=1
C
Next, define
11 _1 1
. ot h 1
T T T
Q. =1Ir— TeTe/T = : ;
1 1 1
— —2 e 14

which makes “deviations from means”: that is,

c1—¢C

co—C
Q.c=

cr —C

These matrices are relevant because

which are idempotent,

PP =P, QQ=Q,

symmetric
P-P.Q=Q

and orthogonal to each other

PQ = 0.
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They make “individual means” and “deviation from individual means”;

[ ] [y - |
12'1 iva - ?1
Y2 Y21 — Y2
Py = ﬂ.z Qv = Yor - g2 |’ (2:5)
N YN1 _ 9N
| YN ] | YNT — YN ]

where ¥; = % E?:l y;t and similarly for X and 6. In particular, note that
Qy =Q(XB+a+u)=QXB+Qu,

because
Qa =0.

Therefore, taking deviations from (individual) means removes time-invariant
unobservables. Multiplication by Q (taking deviations from individual means)
is often called the “within transformations”.

Within estimator This can be obtained by one of the following equivalent

expressions:

1. Regression Qy on Qx.

2. Regression of y;; — y; on x4 — X3, ¢ = 1,..., N, t = 1,...,T, where
T T 1T
Yi =T Zt:1 yit and X; = T thl Xit-

3. OLS estimation with dummy variables (LSDV).
The within estimator is obtained by!

2 -1

Bw = (X'QX) " X'Qy.

Here we should bear in mind that

'Using the (double) summation notation, we have

Bw = {Z (it — %) (it —iz‘)} {Z

i=1 i=1t

(xit — )_(i)/ (yir — ij)} .

1
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1. We cannot include any time-invariant regressors.

2. If you estimate by within-estimation and still want ¢&;, then

3. Statistical properties of BW: unbiased, consistent (as N — oo or T' —
o0) and asymptotically normal,?

Y NT—o0

. 1 -1
_ 2 : R '
VNT (ﬁ ﬁ) ~N {o,a lim ( —X QX) } .
The usual inference procedures can be used like ¢t and Wald tests.

In sum, the fixed effects estimation removes potential bias caused by
time-invariant unobservables by the within transformation. Cost is that
only variation over time (not between individual) is used in estimating 3,
which would possibly result in imprecise estimates. Essentially the fixed
effects model concentrates on differences within individuals; it is explaining
to what extent y;; differs from ; and does not explain why ¥; is different from
yj. It may be important to realize that 3’s are identified (or consistently
estimated) only through within variation of the data.

2.2 Random Effects Estimator

We consider the same basic model, (5.16), but now assume:
o uy’s are iidN (0,02).
e a;’s are idN(0,02).

e «;’s are uncorrelated with uj, for all ¢, j,¢, that is, £ [oyuj] = 0 for all
2,7, t.

e «; and u; are uncorrelated with z;s for all 7,7, s,¢ (so x is exogenous
with respect to a and u).

2 A consistent estimate for o2 is obtained as the within residual sum of squares divided
by N (T — 1), that is,

6o = m;;{(yzt - Ti) *BW (%t *ii)}Q-

It is also possible to apply the usual degrees of freedom correction in which case k is
subtracted from the denominator.
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This approach would be appropriate if we believed that sampled cross-
sectional units were drawn from a large population. First, the OLS estimator
is unbiased or consistent, because x is assumed to be exogenous with respect
to € = a + u, but inefficient. This model is suitable for case of “pooling”,
not of “bias reduction” as in the fixed effects model. In general, the GLS
estimator will be more efficient. For the GLS estimation we need a more
detailed expression for Cov () = V.

First, consider

2

€i1 €i1€i2 .. E{&T
2
£i2€i1 &2 o E&T
Cov(e;) = FE i ) i
. R 2
ElTE:Zl 62T812 e E@'T TxT

Under the assumptions given above it is easily seen that

E (e}) = E (o + uj, + 20iuir) = 05 + 03,
E (gqis) = E (0 + uir) (0 + uis) = 00, L # 5.

Hence, for all i,

03 + Ui agé ag
2 2 2 2
o o, +o0o o
Cov(e;) = o2erey + oIy = N © °
o2 a2 on+on
Therefore, the NT x NT matrix V can be written as
Q 0 --- 0
0 Q --- 0
V =Cou(e) = . . =Iy®Q, (2.6)
0O 0 --- Q

where ® is a Kronecker product.
Now, recall

1 1
P.= TeTe/TV Q* = IT - TeTelTa P = IN ®P*a Q = IN & Q*

Then, € can be rewritten as
1 1
Q = (To?+o2) TeTeép + 02 <IT - TeTe'T>
= (TJZ + Ji) P. +02Q..
Next,
V=Iy®Q=(Tol+02)P+0.Q, (2.7)

where we used
P=Iy®P,, Q=Iy® Q..
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Digression on derivation of the inverse of V. For the GLS estimation
we need to find

V3islyeQloVv1i2=o1yeq 12

Using the special nature of P and Q, it can be shown that?

1 1
vl= P+— 2.8
To? + o2 +O’%Q’ (28)
and then
1 1 1 o2
vz = P+ =— " +
To? + o2 \/EQ Ty To? + 03 @
1 o2
= Iyt —(1—4|/5"—=|P;.
au{ NT ( \ TO'?X—FO'%) }
Define
2
o
f=1—4 —2— 2.9
To2 + o2’ (2:92)
then .
V2 = — (Iyy — 0P). (2.10)
o

u

Notice that the GLS estimator is obtained by

Bars = (X'VIX)H(X'Vly)

1
(V—1/2X)I(V—1/2X) (V_1/2X),(V_1/2y),

and therefore BG 1. is obtained from the regression of V=1/2y on V~1/2X.
In fact, this is equivalent to the OLS estimation after “f differences”. Since

_ 1 1
VT1P2y = —(Iyy —6P)y = — (y = 0Py),

u Ou

or more precisely

L (V_l/QY), = Ui (yit — 01:)

Oy it u
and likewise 1 1
L (vrx) = L os,
Oy it Oy

3Similarly, the inverse of € can be obtained as

1 1

P.+ 72Q*

—1
Q" =——-P.
Tog + o3 o
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where 4; = % Zthl yir and X; = %Zthl X;t. So the GLS estimator is ob-
tained from a regression of

(yit — 07;) = (xit — 0%;) B + Eit,

where &; = ¢;; — 0&; (the proportionality constant é being cancelled out).
In other words, a fixed proportion # of the individual means is subtracted
from the data to obtain this transformed model.

We note in passing that

1. We can include time-invariant or individual specific variables. They
also get multiplied by Iy — 0P.

2. If 8 = 0, then the GLS estimator is equivalent to OLS. But, this would
occur only if 02 = 0.

3. The GLS estimator is consistent as N — oo (with T" fixed or with
T — oo such that % constant). It is also asymptotically efficient
relative to the within estimator with

-1
Cow (BGLS> = (X'VIX) ' = {X’ <1P + 0120,) X} .

2 2
To% + o

4. The efficiency difference tends to 0 as ' — oo and ¢ — 1. (When
0 =1, Bars = Bw-)
Between estimator
We formulate the model in terms of the individual means,
Vi=XB+E;,1=1,...,N, (2.11)
where

Yi =y Qer, X; =X; ®er
Tx1 Txk

g, = o; ®er + U,

T T
Gi=T") ya, i =T ) =y
t=1 t=1

Reminding that the matrix P creates “means” for any conformable vector,
then we write (2.11) in matrix form as

Py = PXg + Pe. (2.12)
The OLS estimator in the above regression gives the between estimator,

Bs = (X'PX) ' X'Py, (2.13)
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which is also unbiased and consistent as N — oo under the assumption that
X; is uncorrelated with «; (such that F (X/g;) = 0), and with

Var (B5) = (T + %) (X'PX) .

The between estimator ignores any information within individuals. The
formular in (2.13) will be simplified as: Notice from (2.5) that Py and PX
can be written as

Py=y®er, PX=X®er,

where

and thus we have

B = {x®er) (xoer)} (R@er) (F®er) (2.14)
= (Xzx@érer)  (Kyoerer) = (XxaT) ' (XyeT)
_ {(;—c’;—c)‘l ® T*l} ®yoT) = (¥x)'Xy,
which is equivalent to the OLS estimator obtained from the following cross-
sectional regression:

Ui =%X;.3+8&.,i=1,...,N. (2.15)

The GLS estimator can be shown to be a weighted average of the within
estimator By, and the between estimator 35,

B =FBw + L —F) By,
where
F = (X'QX + AX'PX) ' X'QX, A= (1-0)%.
This clearly shows that the efficiency gain of the GLS relative to the within
estimator comes from the use of between (across individuals) variations. The
GLS estimator is the optimal combination of the within and the between
estimator. Therefore, it is more efficient than either.
There are some polar cases to consider:

1. If A =1, the GLS is equivalent to the OLS. This would occur only if
02 = 0. Thus, the OLS estimator is also a linear combination of the
within and the between estimators, but inefficient one.

2. If A = 0, the GLS is equivalent to the within estimator. There are
two possibilities. The first is 02 = 0, in which case all variation across
individuals would be due to «;’s, which would be equivalent to the
dummy variables used in the fixed effects model. The question of
whether they were fixed or random would be moot. The other case is
T — oo.
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Feasible GLS estimator

We need to find a consistent (as N — 00) estimator of

and then V (see (2.7)). The estimator of 02 is easily obtained from the
within residuals (see (5.4) or (2.4)), denoted 62 and estimated by

; : %i ; (2.16)
R — a2, 2.16
N(T-1)-kiZim "

with the within residuals given by

-~

Uit = (Yir — Ui) — (Xit — X;) By

From the between regression (2.15) we find

1
oh =E(g}) = E (a? + U, + 20;u;.) = 04 + Tai.

Hence, the consistent estimator for 62 is obtained by

N ~2
65 =——>S (2.17)

Now, we have

and the resulting feasible GLS estimates is the random effects estimator,

Bre = (X'VIX)H(X'Vy), (2.18)
where ] ]
v1= P+ .
Gow + 762 &iw Q

41t is also possible to apply degrees of freedom correction in computing &i,w and 6%.
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One thing to note is that the implied estimate of o2 may be negative in
finite samples. Such a negative finding calls the specification of the model
into question. See Green, section 16.4.3b.

None of the desirable properties of the random effects estimator relies
on T — oo, although it can be shown that some consistency results follow
for T increasing. On the other hand, in this case the fixed effects estimator
does rely on T increasing for consistency. See Nickell (1981).

2.3 Fixed Effects or Random Effects

Whether to treat individual effects «; as fixed or random is not an easy
question to answer. The most common view is that the discussion should
not be about the true nature of «;. The appropriate interpretation is that
the fixed effects approach is conditional on the values of o;. This makes sense
if the individuals in the sample are ‘one of a kind’ and cannot be viewed
as a random draw from some underlying population. This is probably most
appropriate when i denotes, (large) companies or industries.

In contrast the random effects approach is not conditional on the individ-
ual a;’s but integrates them out. In this case we are usually not interested
in the particular value of some individual’s «;; we just focus on arbitrary
individuals that have certain characteristics. The random effects approach
allows one to make inference with respect to population characteristics.

One way of formalizing this is noting that the random effects model
states that

E (yit|xit) = X3,

while the fixed effects model estimates
E (yit|xit) = xitB + .

B’s in these two conditional expectations are the same only if E (a;|xi) = 0.

However, even if we are interested in the larger population of individ-
uals, and a random effects framework seems appropriate, the fixed effects
estimator may be preferred, since it is likely the case that x;; and «; are
correlated in which the random effects approach, ignoring this correlation,
leads to inconsistent estimators. This problem of correlation can be handled
only by using the fixed effects approach.

2.3.1 Hausman Test

The general specification test suggested by Hausman (1978) can be used to
test the null hypothesis

Hy : x;+ and «; are uncorrelated,
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against the alternative hypothesis
H; : x;; and «; are correlated.

This test is based on an idea that the fixed effects estimator is consistent
under both the null and the alternative while the random effects estimator
is consistent only under the null but efficient. Let us consider the difference
between By, and Brp. To evaluate the significance of this difference we
need to find its covariance matrix. Under the null the two estimates should
not differ significantly, and it can be also shown under the null that

Var (BW - BRE) = Var (BW) + Var (BRE) — Cov <BW7BRE> —Cov <BW7BRE>
- Var(Bwj-—vnr<BRE), (2.19)
where we used Hausman’s essential result that
Cov ((ﬁw - BRE) >BRE> =Cov (BWv BRE) —Var (BRE) =0,
" Cov (BWaBRE) = Var (BRE) :

Consequently, the Hausman test statistic is defined as
A - !/ —_ - —_— A 71 - -
h = (ﬁw - ﬁRE) {VC”“ (5W> —Var <5RE>} <5W - ﬁRE) , (2.20)

where Var (,BW) and Var (,BRE) denote the estimates of Var (BW) and
Var (,BRE). Under the null,

h~ x2(k),

where k is the number of parameters. The Hausman test thus tests whether
the fixed effects and random effects estimators are significantly different. It
is also possible to test for a subset of parameters in 3.

2.3.2 Random Effects Correlated with Regressors

Essential difference between the “fixed” and “random” effects is whether or
not the individual effects are correlated with regressors. We now consider
the case where the random effects are correlated with regressors.

Mundlak (1978) argued that the dichotomy between fixed effects and
random effects models disappears if we make the assumption that «; depend
on the mean values of x;, an assumption he regards as reasonable in many
problems. As before, consider the error components model,

yi =xiB +a; +uy, (2.21)
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but now assume
;= X; T+ w;,

where w; has the same properties that «; was assumed to have; that is,

1. w;’s are iidN(0,02).

2. wj’s are uncorrelated with wuj; for all 4, j,t; E [wuj] = 0 for all 4, j,¢.

3. w;’s are uncorrelated with zj; for all 4, j, ¢; E [w;xj] = 0 for all 4, j, ¢.

Then, we rewrite (2.21) as

yi = X3 + X + w; + u, (2.22)
which can be written in matrix form as
y=XB8+PXr+w+u=|[X PX | [ i ] +w+u,

where we used

a=PX)7+w,
and Cov(w +u) =V (see (2.6)). Carrying out the GLS estimation, then

e (ox e e x me

(2.23)
After some algebra, it can be shown that’
- - -1
Bers = Bw = (X'QX)  X'Qy, (2.24)
#*ars = Bp — Bw = (XPX) ' X'Py— (X'QX) ' X'Qy,  (2.25)
with

Var (fgrs) = Var (BB>+VCLT’ (BW) = (To2 +02) (X’PX)fl—i—UZ (X'QX)f1 .

This shows that for the linear regression model, the fixed effects is effectively
the same as the random effects correlated with all regressors.
The test of @ = 0 can be based on the following statistic:

. N 1. d
#ns [Var (fers)| ™ #ars — X3 under Hy.

’The same result can be derived alternatively. Applying the GLS transformation de-
scribed earlier to (2.22), we have

yie — 07 = (xa — 0%i) B+ (Xi — 0%i) ™ + vay
= (xit — Xi) B+ R0 + vig,

where § = (1 — 0) ( + B). Using that X; is orthogonal to x;: — X;, we get the result.
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2.4 Alternative IV Estimators

The fixed effects estimator eliminates anything that is time-invariant from
the model, which might be a high price to pay for allowing the z variables to
be correlated with individual specific heterogeneity «;. For example, we may
be interested in the effect of time invariant variables like gender or schooling
on a person’s wage. In this section we show that there is no need to restrict
attention to the fixed and the random effects only, as it is possible to derive
instrumental variables estimators that can be considered an intermediate
case between fixed and random effects approach.

We now show that the fixed effects estimator is a special case of an IV
estimator. Notice that the fixed effects estimator can be written as

. N T -1 N T
Bw = {Z Z (xit — %) (xit — )_(7,)} {Z (xit — %) (yir — gjl)}

i=1 t=1 i=1 t=1

N T LN T
= {ZZ(Xz’t—ii),Xit} {

i=1 t=1 =11

(xit — %;) yit} = ,Bn/,

1
which shows that BW has an interpretation of the IV estimator,
Yit =X+ o +up, i =1,2,... ., N;t=1,2...,T,
where x;; is instrumented by x;; — X;. Notice that by construction
E[(xit — %) o] =0,
so that an IV estimator is consistent provided that
E [(xit — %) ugt] =0,

which is satisfied by our assumption of strict exogeneity of x;. This route
may allow us to estimate the effect of time invariant variables in a general
context.

To describe this approach, consider the following model:

Yit = Xl,it/Bl+X2,it182+zl,i71+Z2,i72+ai+uit> L= 1) 27 ERRR) N7 = 1) 27 B T7
(2.26)
where we have four different groups of variables; x’s are varying over both
time periods and cross-section units, but z’s are varying only over cross-
section units and time-invariant.
In addition we assume that the 1 x k1 vector x1; and the 1 x g1 vector
z1,; are uncorrelated with oy:

1 & 1 &
plimN_mN Z X105 =0, PlimNﬁooN Z z1,0; =0,
i—1 i—1
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whereas the 1 x ko vector xa;; and the 1 x g2 vector zg; are correlated with
a; (k1 + ke =k and g1 + g2 = g). Under these assumptions, the fixed effects
estimation provides still consistent estimators for 3; and 35, but would not
identify «; and 7y,, since time-invariant variables z; ; and z3; are wiped out
by the within transformation.

2.4.1 Hausman and Taylor (1981) IV Estimator

Hausman and Taylor (1981) suggest to estimate (2.26) by IV using the
following variables as instruments:

X1,i¢ for X1 4, X2 — Xa; for Xg ¢, z1,; for z1;, and Xy ; for zo;,

that is, uncorrelated variables x1 ;; and z;; trivially serve as their own in-
struments, but xs;’s are instrumented by their deviation from individual
means as in the fixed effects estimation, and finally, zg; is instrumented by
the individual average of x1 ;;. Obviously the identification requires that the
number of x; ;¢ is as large as that of z1 4, (k1 > ¢1).

The resulting estimator, Hausman-Talyor estimator, also allows us to
estimate «; and 7, consistently. If some of time-invariant variables are
believed to be correlated with «;, we require that sufficient time-varying
variables that are not correlated with «a; should be included for instruments.
In particular, the advantage of the Hausman and Taylor is that one does
not have to use external instruments, instruments can be obtained within
the model.

There are two versions of the Hausman-Taylor estimator, called HT-IV
and HT-GLS, respectively.

HT-IV estimator (consistent but less efficient)

We rewrite (2.26) in the matrix from

y = X +XoBy+Z1vi +Zyv, ot u (2.27)
XB+Zy+ a+u,

where X = (X1,X2), Z = (Z1,Z2), B = (8], 85) and v = (v}, 7}). We first
estimate by BW (within estimator), which is still consistent, and consider
the following averaged within residuals in matrix form:

P(y—X[B):Z7+{a+Pu+PX<[3—B)}, (2.28)

where PZ = Z and Pa = a. Applying the 2SLS to (2.28) and using the
instruments of (Xj,Z;), then we obtain the consistent estimate of v by

w = {ZPx, 22} {ZPx, 2, (v - XB) }.
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where

-1
Px, 7)) = (X1,Z1) {(X1,Z1) (X1,Z1)} ~ (X1,Zy)
is the orthogonal projection operator onto its column space. In sum, 9y,
exists and is consistent as N — oo if k&1 > g2. We need at least as many
instruments [X;, Z;] as regressors [Z1,Zs]. So you need at least as many
Xi's as Zi1’s.

HT-GLS estimator (consistent and efficient)
Transform (2.27) by V~1/2 as above (@ difference),

V 2y =V I12XB+V 22y + V2 (a4 1), (2.29)

then do 2SLS using the instruments of (QX, Z;,PX;) = (QX,QX,,Z;,PX;)

to obtain B¢ and 41.g, where QX are deviations from means of all time-

varying variables, PX; means of all time-varying variables not correlated

with effects, Z; time-invariant variables not correlated with effects.
Condition for existence of the estimator now becomes

k1+ko+g1+k1 (number of instruments) > k1+ka+g1+g2 (number of regressors)

or
kl > 92,

which is the same as for the simple estimator.

Summary of HT estimator

1. k1 < g2 (underidentification): By = Barg, but and 4y, and 441 do
not exist.

2. k1 = go (just-identification): By = Bars, and 4w = Yars-
3. k1 > go (over-identification): Bgrg, Farg are more efficient than By,
Yw -
An empirical application: Estimating returns to schooling See
Hausman and Taylor (1981).

2.4.2 Further Generalization

Amemiya and McCurdy (1986) and Breusch, Mizon and Schmidt (1989)
all consider the same random effects model correlated with some but not
all regressors, and suggest a larger set of instruments to improve upon the
efficiency of the Hausman and Taylor estimator. A basic question is how
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many explanatory variables or some linear combinations must be uncorre-
lated with the effects in order to improve on the within estimator and to
include time-invariant regressors.

Amemiya and McCurdy (1986) suggest the use of the time invariant
instruments, x1 ;1 — X1, ..., X1,7 — X1,4, for zo ;. This requires that

E [(xLit — )‘(Li)/ai] = 0 for each ¢,

which makes sense if the correlation between x1 ;; and o; is due to a time

invariant component in xi; such that for a given t, [x’l itai} does not

depend on t.
Breusch, Mizon and Schmidt (1989) summarise this literature suggesting
X241 — X2, ..., X247 — X2,; as additional instruments for zs ;.

2.5 Extension to two-way error components model

Consider the linear regression model with large N and large T'.
Yit = XitB + a; + A + wit, (2.30)

where «; denotes the unobservable individual effect and )\; denotes the un-
observable time effect.

2.5.1 The fixed effects model

Regress y on [X, dummy for individual, dummy for time], which is equiva-
lent to within transformation. Define the following means:

1 T 1 N 1 N T
vi = T;%tv Yt = N;yu, Yo = o D D Vit

i=1 t=1

Then, carry out the within transformation:

Yit = Yit — Yir — Yt T Yoo,

Xj, = Xit — Xj. — X + X...
Then, the within estimator is obtained from the regress y;; on xj;. Notice
that this transformation removes anything that does not vary over time (eg.,

«;) and anything that does not vary over individual (eg., A;). The within
estimator is unbiased, but consistency depends on.

2.5.2 The random effects model

Treat o; and A as 7id draws from N(0,02) and N(0,03%), and not correlated
with X. Then, the OLS estimator is unbiased and consistent as N — oo
and T — oo. The GLS estimator is more efficient. For details see Baltagi
(2008).
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Dynamic Panels

3.1 Dynamic Panels with Fixed T
Consider a dynamic panel with a lagged dependent variable as regressor,
Yit = OYir—1 + X+ €, t =1,.. . N, t=1,..,T, (3.1)
where we assume an error component specification,
Eit = 0 + Ut

where u; ~ iidN (0,02).

The motivation here is to distinguish the true dependence of y on lagged
y from “spurious” correlation due to unobserved heterogeneity (eg., earning
across generations). We also assume for simplicity that x;’s are not cor-
related with «;, and x;; is uncorrelated with u; for all ¢ = 1,...,T. Note,
however, that o; is still correlated with y; ;1 since y; ;—1 contains «;. Hence,
yit—1 is correlated with €;;. This renders the OLS estimator biased and in-
consistent even if u;’s are not serially correlated. Thus, OLS and GLS
estimators are biased and inconsistent.

Fixed effects would seem to be an obvious possibility, but the within
estimator is inconsistent as N — oo for fixed T'. To illustrate this problem,
consider a simple autoregressive model,!

Yit = (byit—l + U, 1= 17 "'7N7 t= 17 "'7T7 (32)

where we assume |¢| < 1. The fixed effects estimator is given by

Zz’]\il Zthl (Yit—1 — ¥i,—1) (Yit — Ui) (3.3)
SN S i1 — Fi1)?

! Extension to a dynamic panel with exogenous variables would be straightforward and
in this case we would obtain exactly the same result, at least asymptotically.

ow =

35
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where
1 & 1 &
Yi = T ;yi,ta Yi,—1 = T ;yi,t—la

and we assume that yo exists. Clearly, the within transformation (y; ;1 — ¥i,—1)
is uncorrelated with «;, but it is still correlated with u;; that is,

Tu
T 9

SN

Cov (Yit—1 — Yi,—1, Uit) = —

so the within estimator is biased and inconsistent as N — oo for a fixed T.
To analyze this, we can substitute (3.2) into (3.3) and get

N T _ _
Zi:l thl (uit—l - ui,—l) (yz‘t - yi)
N _
Zizl Zthl (yitfl - yi,71)2

In fact, the fixed effects estimator will be biased of O (T_l), and in partic-
ular, Nickell (1981) has shown that?

QBW:¢+

. (3.4)

N

T
, 1 _ _ o2 (T—1)—T¢+¢"
pth—)ooﬁ Z Z (wit—1 — Ui,—1) (Yit — i) = T (1 ¢)2 .
i=1 t=1

(3.5)
Therefore, for a typical panel where N is large and T is fixed, the fixed
effects estimator is biased and inconsistent.? Only if T — oo, the fixed
effects estimator will be consistent for the dynamic error components model.

3.1.1 The Anderson and Hsiao (1981) First-difference IV Es-
timation

Fortunately, there is a relatively easy way to fix the inconsistency prob-
lem. Alternative transformation that wipes out the individual effects yet
does not create the above problem in dynamic panels is the first difference
transformation. Take first difference of (3.2) to get rid of «; and obtain

Ayit = ¢Ayit71 + Auit> t= 27 ey Ta (36)

where we note that Awu; is an MA(1) process with unit root. The OLS
estimator obtained from (4.4) will be inconsistent since Ay;;—1 and Aug
or more precisely y;+—1 and wu;—1 are by definition correlated. Anderson
and Hsiao suggested Ay;;—o or y;;—o as an instrument for Ay;;—1. These
instruments will not be correlated with Awu;; as long as the u;; are not serially

2See p.328 in Verbeek (2010) for actual magnitude of the bias for a fixed T and for
different values of ¢. See also Phillips and Sul (2003).
3The same inconsistency problem occurs with the random effects GLS estimator.
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correlated. For example, when using y;;—o as an instrument for Ay;;_1, then
we obtain the following (consistent) IV estimator:

N T
Zi:1 Zt:l Yit—2 Ayit
N T :
22:1 Etzl yz‘tdﬁyitq

Since Auj; = ujp — Uj¢—1, any of y; 5, s <t — 2 can be used as legitimate
instruments.

Sry = (3.7)

3.1.2 The Arellano and Bond (1991) IV-GMM Estimator

It is well-known that imposing more moment conditions increases the ef-
ficiency of the estimators provided the additional moment conditions are
valid. Arellano and Bond (1991) show that the list of instruments can be
extended by exploiting additional moment conditions and letting their num-
ber vary with ¢. In particular, they argue that additional instruments can
be obtained if one utilizes the orthogonality conditions that exist between
lagged values of y;; and ;.

Consider the simple autoregressive panel (3.2) and its first-difference
version (4.4). For t = 3, we observe (note here ¢t = 2, ..., so the observation
starts from y;1, not y;o)

Ayiz = ¢Ayin + Auys,

and thus ;1 is a valid instrument since it is highly correlated with Agy;o but
not correlated with Awu;3. Note when ¢t = 4, then

Ayis = ¢AyYiz3 + Ay,

and y;2 as well as y;1 are valid instruments for Agy;s since both are not
correlated with Aw;y. Continuing in this fashion, for the period 7', the set
of valid instruments becomes (y;1, Y2, -, YiT—2)-

Define the (T'—2) x (1 +2+ -+ T — 2) matrix,

(vi1) 0 0
0 (yin,%i2) -+ 0
W, = , (v o ) , , : (3.8)
0 0 o (Yits Yizs oo YiT—2)

as the matrix of instruments, where each row contains the instruments that
are valid for a given period. Consequently, the set of all moment conditions

* A necessary condition for consistency is that

TR
plimNHooﬁ Z Zyit_gAuit =0.

i=1 t=2
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can be written concisely as
E (WjAu;) =0,
where Au; = (Aus, ..., Aur)’ or alternatively,
E (W; (Ay; — ¢Ay; 1)) =0,

where Ay; = (Ays,...,Ayr) and Ay; 1 = (Ays,...,Ayr_1) are T x 2
vectors, respectively. A total number of moment conditions adds up to
(1+2+---4+T7T—2). Next, define the N(T'—2) x (1+2+---+T —2)
matrix of instruments by

W,
w=| : |,
Wy

and rewrite (4.4) in the matrix form as

Ay = ¢Ay_1 + Au, (3.9)
where
Ay, AY1,71 Auyg
Ay = : LAy 1 = : ,Au = :
Ayn N(T—2)x1 AyN,-1 N(T—2)x1 Auy N(T—2)x1

Pre-multiplying (3.9) by W/,
WAy = ¢W'Ay_; + W/Au. (3.10)

The Arellano and Bond’s suggested estimator is the GLS estimator ap-
plied to (3.10); that is,

bors = {Ay  WVTIWAY 1} {Ay WV 'W/Ay}, (3.11)

where V. = Var (W’'Au). They propose the two feasible GLS estimators.
First, under the assumption that u; is ¢¢d over both ¢ and ¢, it is easily seen
that

E (Auw;Au)) =02 (Iy ® G),

where Aw; = (Aus, ..., Aur)’ and G is the matrix given by

2 -1 0 0 O

-1 2 -1 0 0
G = :

0 0 0 2 -1

0 0 0 -1 2

(T—2)x(T—2)
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Then,
V =Var (W'Au) = ocZW' (Iy ® G) W.

Therefore, we obtain one-step Arellano and Bond (GMM) estimator by

~ o -1
brapss = {AYLW[W (Iyo @)W 'Way i} (3.12)

X {AyL1W (W (Ix @ G) W] _1W'Ay} .

Since G is a fixed matrix, the optimal GMM estimator can be computed in
one step if u;’s are assumed to be homoskedastic and exhibit no autocorre-
lation.

In general, the GMM approach does not impose that w;; is iid over both
cross-section units and time periods. In this case V or V™! can be estimated
without imposing these restrictions.” Now, we need to replace

N
W (Iy®G)W=> WiGW,,
i=1

N
Vy =) WiAwAuW,.
=1

Since Au; is unobservable, we obtain the two-step Arellano and Bond GMM
estimator by

~ ~ -1 ~—1
brars2 = {Ayl—lvalwlAY—l} {Ayl—lva W,AY} ;o (3.13)

where
N
At = Ayi — dporsiAy-1 and Vil =) WIAGAGW,.
i=1

This GMM estimator requires no knowledge concerning the initial conditions
or the distributions of u; and «;. In general, the GMM estimator for ¢ is
asymptotically normal with its covariance given by

VAR (&FGLS,Q) - {Ay’_ 1W\7;V1W’Ay_1}_1.

®The absence of autocorrelation is necessary for the validity of moment conditions.
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GMM estimator in models with exogenous variables

Now we consider a more general dynamic panel model,
Vit = Yit—1 + XS+ +uy, 1 =1,...,N, t =1,....T, (3.14)
where x;; is the k x 1 vector of regressors. Its first-difference version becomes
Ayt = ¢AYit—1 + Axit 3 + Auyt. (3.15)

Suppose that the k& dimensional regressors x;; are strictly exogenous such
that
E (x;tuis) =0 forallt,s=1,...,T,

and assume that all x;; are not correlated with the individual effects «;.
Then, all x;; are valid instruments for (3.15) in which case the 1 x kT vector
defined by

X; = (X1, %42, o, X4T')

should be added to each diagonal element of W, in (3.8); that is, we have
the (T —2) x [(1+2+ -+ T —2)+ kT (T — 2)] instrument matrix,

(yi1,x}) 0 0
W, = X)) , (3.16)
0 0 o (Wit Yis e YiT—2, X))

Writing (3.15) in the matrix form and premultiplying it by W', we obtain
WAy = ¢W'Ay_1 + WAXSE + W/Au, (3.17)

where Ay, Ay_1, Au are defined just after equation (3.9), and AX is the
stacked N (T'— 2) x k matrix of observations on Ax;. The two-step GLS
estimator can then be obtained by

~ N —1 ~
Prars2 | _ ( Az’WVR,lW’AZ) (Az’WVgIlWIAy> , (3.18)
BrcLsz2

where W = (W}, ..., W), Az = (Ay_;, AX) and \A/'R,l is estimated simi-
larly as in (3.13).
Next, if x;; are not strictly exogenous but predetermined such that

E (xituis) # 0 for s < t,

(and still assuming that all x;; are not correlated with «;), then only (x;1, X;2,
are valid instruments for (3.15) at period s. Thus, we get the (T —2) x

o Xis 1)
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(1+2+---+T—-2)+k(2+3+ -+ T — 1)] matrix of instruments,

(yi1, Xi1, Xi2) 0 e 0
W, — 0 (yilainaXz:lyxi%XiB) e 0
0 0 o (Yily e YiT -2, Xily ooy XiT—1)
(3.19)
and the two-step GLS estimator of < g > can be obtained by (3.18), but

with the choice of W, given by (3.19).

In empirical studies a combination of both exogenous and predetermined
regressors may occur rather than two extreme cases, and one can adjust the
matrix of instruments W accordingly. In the case where only subset of
X;¢+ are correlated with «;, then we can also extend the Hausman-Taylor
estimation procedure. See Baltagi (2008, section 8.2).

3.1.3 The Arellano and Bover (1995) Study

Arellano and Bover (1995) develop a unifying IV-GMM framework for dy-
namic panel data models, which also includes the Hausman and Taylor type
estimator as a special case. Consider the following static panels:

vit = XS+ ziy +ei, i =1,2,...,N,;t=1,2,...,T, (3.20)
where B is k x 1, v is ¢ x 1 and
Eit = O + Ut
In the vector from,
yi=XiB+Ziy+e =8 +te, (3.21)

€; = qer + u;,

where

Yi1 Xi1 z; €i1
Yi = ) X’L = ) Zl == y, €7 = )

Yir | pyq XiT 1y Zi |7xg SiT | pyq

1 Uil
Si:[Xi7Zi]T><(k+g)7 0= |: :| , er = : , Uy =
Y Jktg)x1 1 w
Tx1 T 71

Arellano and Bover transform (3.21) using the following nonsingular matrix
transformation:
H = [ c

e’IT/T :|T><T’



42 CHAPTER 3. DYNAMIC PANELS

where C is any (T'— 1) x T matrix of rank (7'— 1) such that Cer = 0.
For example, C could be the first rows of the within group operator (see
definition of Q) or the first difference operator. Premultiplying e; by C,
then we obtain the transformed disturbances,

(3.22)

sf—Hsi—[Csi].

&g

For example, this class of transformation performs a decomposition between
‘within-group’ and ‘between-group’ variation which is helpful in order to
implement moment conditions implied by the model. Notice that the first
(T'—1) transformed disturbances are free of the individual effects «; by
construction. Hence, all exogenous variables are valid instruments for the
first (T'— 1) equations in (3.21).

Define the 1 x (kKT + g) vector w; = (X;1, ..., XiT, Z;), and let m; denote
the row vector of subset of variables of w; assumed to be uncorrelated with
a; such that dim (m;) = m > dim (v) = ¢g. Then, a valid instrument matrix
becomes

w;, 0 -~ 0
W, = R ) (3.23)
0 W; 0
00 0 my Tx(kT+g+m)
and the moment conditions are given by
E (WiHe;) = 0. (3.24)
Write (3.21) in matrix form,
y =S50 +e¢, (3.25)
S1 €1
S = s E =
SN | NTx(htg) EN 1 NTx1

Defining the matrix of instruments,

W,
W — : ,

W ] Nrx (kT+g+m)

and premultiplying (3.25) by WH, where H = Iy ®H is a NT x NT matrix,
then we obtain the following complete transformed system:

W'Hy = WHSS + W He. (3.26)
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The Arellano-Bover optimal GMM estimator of § based on moment condi-
tion (3.24) is the GLS estimator applied to (3.26) given by

dars = (S’I_{WV_1W’I_{S)_1 (s’ﬁWV‘lw’ﬁy> , (3.27)

where
Var (E) =Iy®F (r—:ie;) =Iy®Q,
V =Var (WII:I&') = WH (In ® ) HW =W’ (IN ® HQHI) W.

The feasible GLS estimator is obtained by replacing HQH' or V by its
consistent estimator. First, unrestricted estimator of HQH’ takes the form,

N
1 Ak Ax/
N €&,
=1

where &7 are the residuals based on consistent preliminary estimates, in
which case we have

~ _ ~_ _ -1 _ ~_ _
Srorns = (S’HWV 1W’Hs) (S’HWV 1W’Hy) , (3.28)
where
. 1 X
V=W (IN ® (N Zaf@%")) w
=1

Alternatively, we consider a restricted estimate of €2,

-~ .
Q= U(ZleTeT + JzIT,

where 62 and &2 are the consistent estimators of o2 and o2 (recall random
effects model). Thus, we have

- o _ o\l L _
drars = (S'HWV 1W’Hs) (s'HWV 1W’Hy) , (3.29)
where _ y
V=W (IN®HQH)W.
Consider the Hausman and Taylor model again,
Yit = Xl,it,B1+X2,it,32+zl,i’71+22,i’72+ai+uit7 1= 17 27 ey N7 5 t= 17 27 ceey T7
(3.30)
where the 1 x k1 vector x1 ;; and the 1 x g1 vector z; are uncorrelated with
a;, but the 1 x koy vector xa;; and the 1 X ga vector zy ; are correlated with «;

(k1 + k2 = k and g1 + g2 = g). Using the Arellano-Bover transformation, it
is easily seen that m; include the set of and variables x; ;; and z1 ;, namely,

m; = (Xl,ila -'-,X1,z‘T,Z1,i)-
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Then, the Hausman and Taylor is equivalent to d pgrg in (3.29).

Because the set of instruments W, is block-diagonal, it can be shown
that & FGQLS Or B FGLS 1s invariant to the choice olf the transformation matrix
C. Another advantage is that the form of Q72 (for GLS transformation)
need not be known. Hence, this approach generalises the HT, AM and BMS
type estimators to a more general form than that of error components, and
it is easily extends to the dynamic panels.

Consider the dynamic panels:

Yit = OYi—1 + xXpB+ 2y +ei, i =1,2,...,N;;t=1,2,..., T, (3.31)
where 3 is k x 1, v is g x 1 and
€it = 04 + Ujt.
In the vector from,
Yi=Yi-10+ X8+ Ziy+ & =S50 + ¢, (3.32)

€ = qjer + u;,

wheref
Yi1 Yio X1 z;
yi = : y Yi—1= : , X = : , L = , €i =
YiT | pyq YiT-1 Xl | ke Zi Jpyy
¢ 1 Uil
Si = [Yi,—17 Xi7 Zi]TX(l—i—k—i—g) ) 0= /3 , €r = y Ui =
Y 1 atk+g)x1 1 Ui

Provided there are enough valid instruments to ensure identification of all
parameters, the GMM estimator defined in (3.27) still provides a consistent
estimator of 4 in (3.32). Now, the matrix of instruments W is basically the
same as in (3.23), where 1 x (k (T + 1) 4 g) vector w; = (X0, X1, -, XiT', Z;)
and m; is the row vector of subset of variables of w; assumed to be uncorre-
lated with «; such that dim (m;) = m > dim () = g. (The only difference
is that ¢t = 0 is now our first time period observed.) But, notice that y; _; is
excluded despite its presence in S;, because y; —1 is generally regarded as en-
dogenous unless u;; is serially uncorrelated (see below). Then, the previous
steps of consistent estimation follow.

Finally, consider the case where u;; is not serially correlated, so that
yit—1 is predetermined. In this case we could obtain additional orthogonality
restrictions under the additional condition that the transformation matrix

5We assume that Yio exists.
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C is upper triangular. In this case the transformed error in the equation for
period t is independent of «; and (w1, ..., ui—1) so that (vio, Yi1, ..., Yit—1) are
additional valid instruments. Thus, a valid instrument matrix now becomes

(Wi, yio) 0 e 0

Wl — . . tee : s (333)
0 (Wi, Yio, Yi1, - Yit—2) 0
0 0 0 m;

T x (KT+g+m)

and the consistent GMM estimation follows accordingly.

3.1.4 Further Readings

There are a few paper worth reading for further studies. Ahn and Schmidt
(1995) observed that the standard IV-GMM estimator suggested by Arel-
lano and Bond (1991) neglects quite a lot of information and is therefore
inefficient. They explain how these more moment conditions arise for the
simple dynamic model and show how they can be utilized in a GMM frame-
work. Ahn and Schmidt also consider the dynamic model with exogenous
regressors and show how one can make efficient use of exogenous variables
as instruments. Holtz-Eakin et. al (1988) discuss the VAR in panels and
Blundell and Bond (1998) examine initial conditions and moment conditions
in dynamic panels.

3.2 Dynamic Panels When Both N and 7" are Large

In recent years there has been an upsurge in the availability and use of panel
data sets where both V and T are sufficiently large. For example Summers
and Heston’s large multi-country panel data has been and still is the focus
of much empirical work in the area of macroeconomic growth. Furthermore,
as time progresses, micro panel data sets such as the British Household
Panel Survey (BHPS), where T is not currently so large, are being updated
to incorporate new time series observations as they become available. It is
recognized that large panels can be hugely informative about the unknown
parameters of economic models and yield very powerful tests of hypotheses
nested within these models.

These large N, large T panels raise a number of issues. First of all,
since it is possible to estimate a separate regression for each group, which
is not possible in the small T' case, it is natural to think of heterogeneous
panels where the parameters can differ over groups. One can then test for
equality of the parameters, rather than having to assume it, as one is forced
to do in the small T case. When equality of parameters over groups is
tested it is very often rejected and the differences in the estimates between
groups can be large. Baltagi and Griffin (1997) discuss the dispersion in
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OECD country estimates for gasoline demand functions. Boyd and Smith
(2000) review possible explanations for the large dispersion in models of the
monetary transmission mechanism for 57 developing countries.

Secondly, since time-series data tend to be non-stationary, determining
the order of integration or cointegration of the variables becomes important.
Extending the estimation and testing procedures for integrated and cointe-
grated series to panels is thus a natural development. In fact, the tendency
of individual time series tend to reject Purchasing Power Parity has led the
emphasis to switch to testing PPP in panels.

Third, one needs to determine the asymptotic properties of standard
panel estimators when the data are non-stationary. These properties are
rather different from those of single time-series, in particular spurious re-
gression seems to be less of a problem. There is also a question about how
to do the asymptotic analysis as both NV and T can go to infinity. There are
a number of different ways that N and 7" can go to infinity and the relation
between these different ways remains a subject of research, see Smith and
Fluertes (2012).

3.2.1 The Mean Group Estimator

The conventional dynamic panel model with small T" focuses only on allowing
for intercept variation via individual effects. In comparison little attention
has been paid to the implications of variation in slope parameters. There
are three justifications for analyzing the dynamic heterogeneous panels.

First, the slope heterogeneity does not matter when the primary interest
lies in obtaining an unbiased estimator of the average effect of exogenous
variables. Zellner (1969) showed that when the regressors are exogenous but
their coefficients differ randomly across groups, the pooled estimators such
as the fixed and random effects estimator will provide unbiased estimator
of the average effect. However, Pesaran and Smith (1995) showed that such
results do not extend to dynamic models with lagged dependent variables.

Second, in the case where only relatively small time periods were avail-
able, the scope for analysing the slope heterogeneity explicitly appeared
limited, e.g. seminal paper by Balestra and Nerlove (1966). Considering
now that panels with a reasonable time dimension are available and that
the evidence of slope heterogeneity in panels are pervasive, it is a high time
to examine the implications of slope heterogeneity directly.

A third possible justification is that the long-run responses which are
often the primary focus of analysis are less likely to be subject to slope het-
erogeneity than the short-run adjustment patterns across groups. Therefore,
it is interesting to see how the time-series, cross-section and panel estimates
of such long-run coefficients can be compared.

In practice the extent of cross-sectional heterogeneity may be so large as
to preclude the use of pooling. An approach that is becoming increasingly
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popular in this context is to focus estimation and inference on so called
mean group quantities that are “averages” across panel units, see Pesaran
and Smith (1995) and Im, Pesaran and Shin (2003).

Consider the following dynamic heterogeneous panels,

Yit = d)z’yit—l + xitﬁi + Eit, 7 = 1, ...,N, t = 1, ...,T, (334)
where we assume:

1. x;; and ¢;5 are uncorrelated each other for all ¢ and s.
2. ¢; ~ iidN (¢,w?) .
3. B; ~iidN (3,€2) .

4. ¢; and B; are independently distributed with y1;,x;; and g for all ¢.

5. The k-dimensional vector x;; are covariance stationary processes.”

Under the second and third assumptions this can be regarded as the
standard random coefficients model, see Swamy (1970). Under this scenario
Pesaran and Smith (1995) have investigated the asymptotic as well as small
sample properties of the following three alternative estimators:

1. The pooled (within) estimator, which involves pooling the data by
imposing homogeneous slope coefficients, allowing for fixed or random
effects.

2. The cross-section (between) estimator, which involves averaging the
data over time per each group and estimating the cross-section re-
gression based on the group mean data. Notice that many works on
endogenous growth follow this approach, e.g. Barro (1991).

3. The mean group estimator suggested by Pesaran and Smith (1995),
which involves estimating separate regression for each group and av-
eraging the individual estimates over groups, that is,

N
Buc=N"> B (3.35)
=1

where BZ is the OLS estimator of 3;.

Notice that all the above procedures will provide an estimate of the
average coefficient but main difference is that in the first two cases the
averaging is implicit while in the third case it is explicit.

In general most of the results follow when x;+ are unit root processes.
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1. When T is small (even if N is large), all the procedures yield incon-
sistent estimators.

2. When both 7" and N are large, both the cross-section (between) esti-
mator and the mean group estimator yield consistent estimators of ¢
and (3.

3. The pooled (within) estimator is not consistent for the expected values
of 3; and 7, even when both 7' and N are large.®

To see that the within estimator is inconsistent we rewrite (3.34) as’

Yit = QYit—1 + XiB + vit, (3.36)

where
Vit = €t + (N — N yir—1 +xi (B; — B) .

Then it is easily seen that v;; is now correlated with all present and past
values of y;;1-s and x;_, for all s > 0. This correlation renders the
OLS estimator inconsistent. Furthermore, the fact that v;; is correlated
with y;;—1—-s and x;_, for all s > 0 rules out the possibility of choosing
lagged values of y;;—1 and x;; as legitimate instruments. This composite
disturbance v will also be serially correlated, if x; is serially correlated, as
it usually is, and will not be independent of the lagged dependent variable.
This heterogeneity bias, which depends on the serial correlation in the x and
the variance of the random parameters, can be quite severe.

3.2.2 Pooled mean group estimation in dynamic heteroge-
neous panels

To date, there have been three alternative estimation procedures for dynamic
panels, differing in the relative magnitudes of N and T

1. (Small N and large T') When N = 1, the traditional approach was to
estimate an autoregressive distributed lag (ARDL) model. For N > 1,
the seemingly unrelated regression equation (SURE) procedure is often
used. The main attraction of the SURE procedure lies in the fact that
it allows the contemporaneous error covariances to be freely estimated.
However, this is possible only when N is reasonably small relative to
T. When N is of the same order of magnitude as T, the case we are
interested in, SURE is not feasible.

8This inconsistency in heterogenous dynamic panel models was first noted by Robertson
and Symonds (1992).

“Remind that if 8, = 8 and v, = v, then the fixed effect estimators are consistent only
as T — oo, for fixed N. However, they are inconsistent as N — oo for fixed T'. The latter
is the result of the fact that the lagged dependent variable bias arising from the initial
conditions, is not removed by increasing N.
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2. (Small T and large N) Pesaran and Smith (1995) show that the
traditional procedures for estimation of pooled models such as the
fixed effects, the random effects, the instrumental variables (IV) or
the Generalized Method of Moments (GMM) estimators can produce
inconsistent, and potentially very misleading estimates of the average
values of the parameters unless the slope coefficients are homogeneous.
In most panels of this sort, however, tests indicate that these parame-
ters differ significantly across groups.

3. (The Bayes and empirical Bayes estimators) Hsiao, Pesaran and
Tahmiscioglu (1998) consider Bayes estimation of short-run coefficients
in dynamic heterogenous panels, and establish the asymptotic equiv-
alence of the Bayes estimator (Swamy, 1970)) and the mean group
estimator, showing that the mean group estimator is asymptotically
normal for large N and large T so long as v N /T — 0 as both N and
T — oo.

When both N and T are sufficiently large, there have been two extreme
approaches to analyzing dynamic panels. At one extreme are the traditional
pooled estimators, such as the fixed and random effects estimators, where
only the intercepts are allowed to differ across groups while all other coef-
ficients and error variances are constrained to be the same. At the other
extreme, one can estimate separate equations for each group and examine
the distribution of the estimated coeflicients across groups. Of particular
interest is the mean group estimator by Pesaran and Smith (1995).

There are often good reasons to expect the long-run equilibrium rela-
tionships between variables to be similar across groups, due to budget or
solvency constraints, arbitrage conditions or common technologies influenc-
ing all groups in a similar way. However, the reasons for assuming that
short-run dynamics and error variances should be the same tend to be less
compelling. On this ground Pesaran, Shin and Smith (1999) provide an
intermediate estimator called the pooled mean group estimator (PMGE)
which involves both pooling and averaging. This estimator allows the inter-
cepts, short-run coefficients and error variances to differ freely across groups,
but only the long-run coefficients are constrained to be the same.

We extend the single time series ARDL modelling to the dynamic panel
data model,

p q
Yit = E AijYit—j + E X;t—j0i5 + o + €it,
j=1 j=0

where o represent the fixed effects, x;¢ is a 1 X k vector of regressors, and
Aij, ;5 are scalar and k£ x 1 vector of parameters. It is convenient to work
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with the following (unrestricted) error correction form of (3.37):

p—1 q—1
Ayir = dir—1 + Xl + > NAYi— + Y AXiy 05 + p; + €ir, (3.38)
j=1 =0

where

q
(ﬁi = — (1 — Z)\”) and Bz = Zdw
7=0

Jj=1

If we stack the time-series observations for each group, (3.38) can be written
as

p—1 q—1
Ayi = ¢yi1+XiB + Y AAY -+ Y AX; 8% + pier + €, (3.39)
j=1 J=0
where
Vi1 X1 1 €i1
yi = , X = : , tr=| ¢ , € =
YT 11 XiT | pxk L P SV NS

We now assume:

e Assumption 1. €;’s are independently distributed across ¢ and ¢, with
Z€ro means, variances 022 > 0, and finite fourth-order moments. They
are also distributed independently of the regressors, x;;.

e Assumption 2. The ARDL(p,q,q,...,q) model (3.37) is stable in that
the roots of

P
> Agrl =1,i=1,2,..,N,
j=1

lie outside the unit circle. This assumption ensures that
¢; <0 foralli=1,2,...,N,

and hence there exists a long-run relationship between y; and x;

defined by

Yit = 0iXit + Ny,
where 0; = —3./¢, are long-run coefficients and 7, is a stationary
process.

e Assumption 3. (Long-run homogeneity) The long-run coefficients 6;
are the same across the groups, i.e.

0,=0,i=12.N. (3.40)
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Under Assumptions 2 and 3, (3.39) can be written compactly as
Ay; = ¢;€,(0)+ W;k; +¢€;, i =1,2,...,N, (3.41)

where we highlight the dependence of the error correction term on 8 as

E’L(O) =Yi-1— Xlav L= 17 27 ey N? (342)
Wi = (AYi,—la ceey AYi,—p+1a AX“ AXi,—l, caey AXZ'7_q+1, LT), and K; — (A?l, ..
;’K(S’ ;‘k{v"" ;",/q—h:ui)/'

We adopt a likelihood approach. Since the parameters of interest are
the long-run effects and adjustment coefficients, we directly work with the
concentrated log-likelihood function given by

N

T 1 1
tr(e) =—5 > In2ro] — 5 > g((A}’z‘ — ¢:£(0)) H; (Ayi — 9;€,(0)) ,
i=1
(3.43)

=1 ¢

where
H;, =Ir - W;(W/W,)'W]
Y= (0/7¢/70-/)/7 ¢: (¢17¢27"'>¢N)/7 o = (0%70%7“'70?\7)/'
The maximum likelihood (ML) estimators of the long-run coefficients,
6, and the group-specific error-correction coefficients, ¢;, will be referred
to as the “pooled mean group” (PMG) estimators in order to highlight
both the pooling implied by the homogeneity restrictions on the long-run

coeflicients and the averaging across groups used to obtain means of the
short-run parameters of the model.

The Case of Stationary Regressors In this case under fairly standard
conditions the consistency and the asymptotic normality of The ML estima-
tors of ein (3.43) can be easily established.

The Case of Non-Stationary Regressors The asymptotic analysis in
this case is more complicated, but we can still show that the ML estimator of
the short-run coefficients ¢ and o in the dynamic heterogeneous panel data
model (3.41) are VT consistent, and the ML estimator of 8 is T' consistent.
Furthermore, for a fixed N and as T — 0o, the ML estimator of ¥ = (8', ¢')’
asymptotically has the (mixture) normal distribution.

In sum, for the common long-run coefficients, 8, the pooled ML estimator
is comnsistent so long as T — oo, irrespective of whether IV is large or not,
but # will not be consistent for finite T, even if N — oo.

Once the pooled ML estimator of the long run parameters, 9, is es-
timated, all other short run coefficients can be consistently estimated by
running the individual OLS regressions,

Ay; = ¢lél + W;k; +error, 1 =1,..., N,

*
5 Aip—15
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where

Ei =Yi-1— X,;0.
In this case the mean of the error correction coeflicients and the other short
run parameters can be estimated consistently by the MGE,

N N
o =N"1>¢; and hkyc=N1> k.
i=1 1=1
Empirical Applications: The Consumption Function in the OECD

See Pesaran, Shin and Smith (1999). For further empirical application see
Fedderke, Shin and Vaze (2012).

3.3 Estimation and Inference in Panels with Non-
stationary Variables

See Panel Time-Series by Smith and Fuertes (2012).



Chapter 4

Threshold Regression
Models in Dynamic Panels

4.1 Introduction

We have observed many stylized facts about economic time series as follows:

1.

Business cycles are asymmetric in nature, e.g. Burns and Mitchell
(1946); namely recessions last longer than expansion.

. Asset pricing model under noise trading and transaction costs: The

larger are the pricing errors, the larger is the expected degree of ar-
bitrage and hence the speedier is the price response to disequilibrium
and vice versa.

Asymmetries are intrinsic to microeconomic behavior. For instance,
costs of hiring and firing are asymmetric at the firm level.

Asymmetries can result from capital constraints on the goods market.

. Imperfect competition and\or government interventions cause rigidi-

ties on credit, goods and labour markets that affect the dynamics of
the economy.

It is increasingly recognised that the implications of linear modes are
problematic in dealing with the above observations reflected in various eco-
nomics and finance applications. In particular, the followings are question-

able:

e Linearity, invariance of dynamic multipliers with respect to the size

and the sign of the shock and the history of the system.

e Time invariance of the parameters.

Consequently, a great deal of interest has been made in modelling non-
linearities and asymmetries in economic time series.

53
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4.2 Regime Switching Models

Most attention has fallen almost exclusively on regime-switching models,
though there is no consensus suggesting a unique approach for specifying
econometric models that embed various types of change in regimes.

e Regime shifts are not considered as singular deterministic events but
the unobservable regime is assumed to be governed by an exogenous
or predetermined stochastic processes. Thus regime shifts of the past
are expected to occur in the future in a similar fashion.

e Regime switching models characterise a nonlinear data generating process
as piecewise linear by restricting the process to be linear in each regime.

e The models differ in their assumptions concerning the stochastic process
generating the regime; TAR, STAR, MS-AR, etc.
4.2.1 Structural break models

Suppose that the structural break occurs at time ¢ = 7 and we have

o+ 0 Bry—i+e fort <7
- 0 . , (4.1)
az+ Y i Boyi—i +ep fort>T

where & ~ iid (0,0?). Then, (4.1) can be written as
P p
Yo = <a1 + 2 Bliyti> (L—=1I(t7))+ <042 + X 52@%@') I(t;7) + e,
i=1 =1

where I (¢;7) is the indicator function given by
0 fort<r

I(t’T)_{ 1 fort>r }
Two different assumptions have been made:

The break point 7 is known So break is deterministic. To estimate
(4.1), split the sample and apply OLS to each regime. Tests of 3{; = B9,
i = 1,...,p, will follow the standard x? distribution asymptotically. See
Perron (1989) for unit root tests subject to structural breaks.

The break point 7 is unknown So break is stochastic and 7 needs to
be estimated as follow:

= i RSS
! TE o dbasry o ()

) 5 L
pu— 1 _
s TE[O.II?JI“%.SBT] [701 (T) +( T) 0% (T>] ;
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where RSS stands for residual sum of squares, and the grid search is over
7 € [0.157",0.85T] in practice.

Notice that tests of 3;; = fg;, % = 1, ..., p, does not follow the standard x?
distribution asymptotically, but has a nonstandard asymptotic distribution
due to the Davies (1987) problem that nuisance parameter (break point
7) is not identified under the null. Most solutions to this problem involve
integrating out unidentified parameters from the test statistics. This is
usually achieved by calculating test statistics over a grid set of possible
values of nuisance parameter and constructing the summary statistics such
as sup (maximum) and exponential average, see Andrews and Plobegrer
(1994).

Threshold models This is a popular class of nonlinear regime-switching
models with each regime determined by observed variables.

Threshold Autoregressive (TAR) model

Now the regime shifts are triggered by an observable, exogenous transition
variable z; crossing threshold ¢, and consider the two-regime TAR model:

e+ Y Briy—i + & for zp < ¢ (vegime 1)
t= P 4 : , (4.2)
ag + Y 0 4 Boiyi—i + ¢ for x; > ¢ (regime 2)

where €; ~ iid ((), 02). Alternatively,

p P
Yt = (al + > Buytz’) 1{z < c}+ (Otz + > 52¢yti> (1 —1{z < c})te,
i=1 i=1
(4.3)
where 1 {z; < ¢} is the indicator function.
Self-Exciting Threshold Autoregressive (SETAR) model

If we use as the transition variable a lagged endogenous variable y;_4 with
delay d > 1, we obtain the two-regime SETAR model as follow:

Yt = <Oé1 + f: Buytz’) 1{yi—q < c}+ <a2 + zp: B%yti) (1 =1{yi—q < c})+ey,

i=1 i=1
(4.4)
where €; ~ iid ((), 02).
Notice that (4.4) can be written alternatively as

yr = a (s¢) + iﬁi (5¢) Ye—i + €1, (4.5)

where the probability of the unobservable regime 1 is given by

Pr(s; = 1|S¢-1,Yi—1) = 1{yr—qa < ¢},
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where S;_1 = {s¢—1,5¢—2,...} and Y;—1 = {ys—1,y¢—2,...y+—p}. This shows
that SETAR and MS-AR models can be observationally equivalent, see Car-
rasco (1994).

Estimation

ML estimation under normality can be carried over the grid search over d
and c: select the pair(d, ¢) that minimises the residual sum of squares:

M
argmin . Tp,62,,
(dzc) m=1
where Ty, and 62, are the number of observations and the residual variance
in regime m. Usually the grid search is restricted such that min T, > 0.157.

Three-regime SETAR model

We now extend to consider the three-regime SETAR model:

p

P
Yy = (Oél + 2 51iyt—z‘> H{yia <} + <a2 + 2 /Bziyt—z) 1{c1 <y4—q < c2}

=1 =1

p
+ (Oés + > 53¢yt—z‘> 1{co < yr—a} +et, (4.6)
=1

where g; ~ 1id (0, 02), and ¢ and ¢y are threshold parameters and ¢; < cs.

Example 7 Trade Cost Model by Sercu, Uppal and van Hulle (1995, Jour-
nal of Finance).

4.2.2 Smooth Transition Autoregressive (STAR) Models

If our aim is to distinguish between the effects of negative and positive de-
viations (or large and small) from the equilibrium, then TAR models are
appropriate. STAR models have attracted more attention. The basic moti-
vation behind it is that prices are expected to adjust more smoothly as is
predicted by TAR models. One explanation is: nonlinear asymmetric behav-
ior of heterogeneous market participants will be smoother at the aggregate
level.
Granger and Terasvirta (1993) advance the following STAR model:

p p
Y = (al + > 51iyt—i> {1-F (%;970)}4—(042 + > ﬂQil}t—i) F(z;0,c¢)+es,
=1 =1

(4.7)
where e; ~ iid (0,02). The transition function F' (z;6,¢) is a continuous
function determining the weights of regime and usually bounded between 0
and 1. ¢ and 6 are the threshold and smoothness parameters.

The transition variable z; can be:
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e a lagged endogenous variable (z; = y—q),
e an exogenous variable (z; = ),
e or a function such as (z; = g (yt—d, Tt))-

e For z; = t, we obtain a model with smoothly changing parameters, see
Lin and Terasvirta (1994).

The STAR model exhibits:

e two regimes associated with the extreme values of the transition func-
tion: F'(z4;6,¢) =1 and F (2460, ¢) = 0;

e transition from one regime to the other is gradual, not abrupt as in
TAR;

e the regime occurring at time ¢ is observable and determined by F' (z; 6, ¢) .

Logistic Smooth Transition Autoregressive (LSTAR) model

We consider as the transition function in (4.7) the logistic CDF:

1

F(Zt;07 C) = 14+ exp{—0 (zt - C)}

(4.8)

This model can deal with asymmetric behavior for positive vs negative values
of z relative to c. We note:

e As 0 — oo, LSTAR — TAR, since F'(z;0,¢) = I (z; > c).

e As @ — 0, LSTAR — linear AR, since F' (z;60,¢) = 1/2.

The second order logistic CDF is also considered:

1
F (230, c) = 1+exp{—0(z —c1) (2t — o)} (4.9)

We note:

o Asf — oo, L2STAR — 3 regime TAR, since F' (z;60,¢) = 1—1 (c1 < 2 < ¢2).

e As 6 — 0, L2STAR — linear AR, since F' (z;60,¢) = 1/2.
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Exponential Smooth Transition Autoregressive (ESTAR) model

We consider as the transition function in (4.7) the exponential function:

F (z4;0,c) = 1—exp{—9 (zt—c)Q}, (4.10)

where we assume 6 > 0 for identification. This model can deal with asym-
metric behavior for small vs large deviations of z; from the threshold c.

The exponential transition function is bounded between zero and 1, i.e.
F : R — [0, 1] has the properties:

F(0)=0; lim F(z)=1,

r—Fo00

and is symmetrically U-shaped around zero.

As § — o0 and 8 — 0, ESTAR — linear AR, since F (z¢;60,¢) = 1 and
F (z4;0,c) = 0, respectively.
Estimation

Nonlinear least squares or ML estimation method via numerical optimisation
procedure can be applied, but it also involves the grid search over (d,c) as
in TAR models. However, the precise estimation of 6 is somewhat difficult
in practice.

e For large value of 6, the shape of the logistic function changes only
little.

e Accurate estimation of 6 requires many observations in the immediate
neighborhood of c.

e Insignificance of 6 should not be interpreted as evidence against the
presence of STAR nonlinearity, see Bates and Watts (1988).

4.2.3 Markov-Switching Autoregressive (MS-AR) Models

Now the regime s; is generated by a hidden discrete-state homogeneous and
ergodic Markov chain:

Pr(s¢|S;-1,Yi-1) = Pr (s¢]Si-1; p)
defined by the transition probabilities,
pij = Pr(se41 = jlst = j),
where Sy—1 = {s¢—1, 812, ...}, i1 = {¥t—1, ¥1—2, ...Yt—p} and p are unknown

parameters.
The conditional process is a AR(p) model with
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e shift in mean (MSM-AR): once-and-for-all jump in time series:
P
Yo — p(se) = 32 B (st) (Ye—i — p(s1-i)) + &, (4.11)
i=1
e shift in intercept (MSI-AR): smooth adjustment of time series:

v = a(s) + ;ﬂ (50) yoi + <. (4.12)

Example 8 MS-AR models of US GNP. Hamilton (1989) consider the 2-
regime MS-AR model for the quarterly growth rate of US GNP:

4
Ay — p(st) = ; Bi (st) (Ayt—i — p(st—i)) + &t (4.13)
etlse ~ iidN (0,07).

Two regimes are defined by

(51) = wy >0 if sg =1 (expansion)
B = to <0 if sy =2 (contraction) |’

which are generated by an ergodic Markov chain
p12 = Pr (contraction in t|expansion in t — 1)
p21 = Pr (ezpansion in t|contraction in t — 1)

e The statistical analysis of MS-AR models is based on the state-space
form. Then, general concepts such as the likelihood principle and a
recursive filtering algorithm can be used.

e In contrast to TAR and STAR models MS-AR models include the pos-
sibility that the threshold depends on the last regime, i.e., the thresh-
old staying in regime 2 is different from the threshold for switching
from regime 1 to regime 2.

4.2.4 Linearity Tests for TAR/STAR Specification

Here the null model is that
p
Ho:ye=a+ Y Biyi—i + &, (4.14)
i=1

so the model is linear, whilst the alternative models are either

Hi1rar: TAR model given by (4.3), (4.15)
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or
Hi star : TAR model given by (4.7). (4.16)

More specifically, against the TAR model we have
Hy: a1 =agand By; = fy; foralli=1,...,p, (4.17)
whilst against the STAR model we have
Hy:0=0. (4.18)

However, due to the Davies (1987) problem that nuisance parameters in
transition function - namely, threshold parameter ¢ in TAR and smoothness
parameter # and threshold parameter in STAR - are not identified under
the null, we could not use the standard asymptotic x? distribution.

1. Sup test approach for TAR models: We should obtain a supre-
mum of a number of dependent test statistics over the grid over c:
sup F', sup Wald, sup LR and sup LM tests with nonstandard limiting
distribution. To obtain the p-value, we need to run the bootstrapping
simulations. See Hansen (1997,2000).

2. Taylor approximation approach for STAR models: Approxi-
mate smooth transition function with a first-order expansion around
@ = 0. Then, using the derived auxiliary regression, we obtain the
LM-type tests with a standard x? limiting distribution. See Luukko-
nen, Saikkonen and Terasvirta (1988) for LSTAR and Saikkonen and
Luukkonen (1988) for ESTAR.

4.3 Nonlinear Unit Root Tests in Regime Switch-
ing Models

Balke and Fomby (1997) have popularised a joint analysis of nonstationarity
and nonlinearity in the context of threshold cointegration. The threshold
cointegrating process is defined as a globally stationary process such that
it might follow a unit root in the middle regime, but it is dampened in
outer regimes. Importantly, they have shown via Monte Carlo experiments
that the power of the DF unit root tests falls dramatically with threshold
parameters. See also Pippenger and Goering (1993).

As a response, there is a growing literature proposing tests for unit
roots against threshold autoregressive (TAR) alternatives, e.g. Enders and
Granger (1998), Caner and Hansen (2001), Kapetanios, Shin and Snell
(2003), Bec, Guay and Guerre (2004) and Kapetanios and Shin (2006).
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4.3.1 Unit Root Tests in Two-regime TAR Framework

Enders and Granger (1998) have addressed this issue using a two-regime
TAR model with implicitly known threshold value,

Bryi—1 +ur of yr—1 <0
A - y ) t: 1727'~-7T7 419
v { Boyt—1+ur if ye—1 >0 (4.19)

and suggested an F-statistic for 5; = 5 = 0 in (4.19).

Despite the main aim to derive a more powerful test, their simulation
evidence shows that the proposed F test is less powerful than the DF test
that ignores the threshold nature of this two regime alternative. But they
also provided simulation results showing that the F-test may have higher
power than the DF test against the three regime asymmetric TAR models.
See also Berben and van Dijk (1999).

There has also been an alternative line of studies. Caner and Hansen
(2001) have considered the following two-regime TAR model:

Ayt = Oﬁxt,ll{AyFlgr} + 0,2Xt*11{Ayt71>7’} + Ct, t= 1, 2, ...,T, (420)

where x; 1 = (ys_1,1, Ays_1, ..., Ay;_)’, 7 is an unknown threshold para-
meter, and e; is an itd error. They have first developed tests for threshold
nonlinearity when y; follows a unit root, and then unit root tests when the
threshold nonlinearity is either present or absent. Limitation of this ap-
proach is that these tests rely on the stationarity of the transition variable.

4.3.2 Unit Root Tests in Three-regime TAR Framework
Kapetanios and Shin (2006)

Suppose that a univariate series y; follows the three-regime self-exciting
threshold autoregressive (SETAR) model:

O1yt—1 + if ye—1 <11
Yt = ¢Oyt—1 + u Zf r < Yt—1 S T2 3 t= 17 27 "'7T7 (421)
Go¥t—1 + Uy if yr—1 > 72

where wu; is assumed to follow an 4id sequence with zero mean, constant
variance 03 and finite 4 + § moments for some § > 0, r; and 79 are thresh-
old parameters and r; < ro. Here, the lagged dependent variable is used
as the transition variable with the delay parameter set to 1 for simplicity.
The intuitive appeal of the scheme in (4.21) is that it allows the speed of
adjustment to vary asymmetrically with regimes. Suppose that

o =1, |#1], [¢of < 1. (4.22)

The series are then locally nonstationary, but globally ergodic.



62CHAPTER 4. THRESHOLD REGRESSION MODELS IN DYNAMIC PANELS

Following the maintained assumption in the literature, we now impose
¢o = 1in (4.21), which implies that y; follows a random walk in the corridor
regime. Then, defining 1y, as a binary indicator function, (4.21) can be
compactly written as

Ayt = 51%_11{%—19“1} + BQyt—ll{yt—1>T2} + ug, (4'23>

where 8y = ¢ — 1, By = ¢ — 1, and yp—11y¢y,  <p} and yi—1lyy, >,y are
orthogonal to each other by construction.
We consider the (joint) null hypothesis of unit root as

Ho: 1 =By =0, (4.24)
against the alternative hypothesis of threshold stationarity,
H;:5,<0; 8y <0. (4.25)

Then, the joint null hypothesis of linear unit root against the nonlinear
threshold stationarity can be tested using the Wald statistic denoted by
Wiry,r2)» Which has a nonstandard limiting distribution.

To deal with the Davies problem that threshold parameters r; and ro
are not defined under the null, we consider the supremum, the average and
the exponential average of the Wald statistic defined by

(i) 1 & 1 & W v
) ) 1,72
Weup = ?grr‘) W(Tlvrz)’ Wavg = #I Z W(Tlﬁz)’ Wesp = #I Z exp 2 ’
i=1 =1
(4.26)

where W((i) 2) is the Wald statistic obtained from the i-th point of the

threshold parameters grid set, I' and #I" is the number of elements of I'.
Unlike the stationary TAR models, the selection of the grid of thresh-

old parameters needs more attention. The threshold parameters ;1 and 7o

usually take on the values in the interval

(ri,m2) € T ={(r1,1,71,2), s (ri;1, 73,2)5 s (T 1, T7,2) 1

where rpin <71, 4 =1, #, and Tmax > 152, @ = 1, . F#L. ryin and rmax
are picked so that Pr(y;—1 < rmin) = 71 > 0 and Pr (y;—1 > rmax) = m2 < L.
The particular choice for w1 and w9 is somewhat arbitrary, and in practice
must be guided by the consideration that each regime needs to have sufficient
observations to identify the underlying regression parameters.

However, since our approach assumes that the coefficient on the lagged
dependent variable is set to zero in the corridor regime (r; < y—1 < ra),
we can assign arbitrarily small samples (relative to total sample) to the
corridor regime. Notice also that the threshold parameters exist only under
the alternative hypothesis in which the process is stationary and therefore
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bounded in probability. This observation leads us to make an assumption
that the grid for unknown threshold parameters should be selected such
that the selected corridor regime be of finite width both under the null and
under the alternative. Noticing that a random walk process will stay within

a corridor regime of finite width for O, (ﬁ > periods only, then setting

T =7 —¢/T° and my = 7 + ¢/T°,

where 7 is the sample quantile corresponding to zero and 6 > 1/2, guarantees
that the grid set will be of finite width under the null hypothesis. In practice,
c can be chosen so as to give a reasonable coverage of each regime in samples
of sizes usually encountered. For example, for 7' = 100 and 6 = 1/2, ¢ can
be set to 3 to give a 60% coverage of the sample for the grid.

The small sample performance of our suggested tests is compared to that
of the DF test via Monte Carlo experiments. We find that both average and
exponential average tests have reasonably correct size, but the supremum
test tends to display significant size distortions in small samples. As ex-
pected, both average and exponential average tests eventually dominate the
power of the DF test as the threshold band widens.

KS illustrate the usefulness of our proposed tests by examining the sta-
tionarity of bilateral real exchange rates for the G7 countries (excluding
France). In sum, our proposed (asymmetry) Wald tests reject the null three
times out of five cases, while the DF test rejects the null only once.

Bec, Ben Salem and Carrasco (2004) and Bec, Guay and Gurre
(2004)

A three-regime SETAR model (4.21) can be compactly written as

Ayt = 8191110y, 1 <ry FB0Yt—11{r <yp 1 <ra} T B2Yt—11y, 1 5rpy tus, (4.27)
where 17} is a binary indicator function, 5 = ¢; — 1, By = ¢g — 1, By =
¢ — 1, and ye1lyy, <mys Ye—11l{r <y 1<ro}s Yt—11{y,_,>r,} are orthogonal
to each other by construction. BBC and BGG have considered the three-
regime SETAR model (4.27), and proposed the supremum-based Wald test
procedure for the joint hypothesis of 5; = 55 = S5 = 0 in (4.27).

BBC take the quantile-based approach, assuming that r = v/T'\ where
71| = |r2| = r (symmetric outer regimes).! Then they derive the asymptotic
distribution of the Wald statistic, denoted by W5BY (r), for 8, = B, = 0 in
(4.27) after imposing ; = (5, which depends on the nuisance parameter,
A/6 LR, where 61 is the long-run variance of Ay, obtained under the null.
To avoid the Davies problem, they suggest to use the supremum-based tests:

WEBC = sup  WPBC(r). (4.28)

re ['r'miny'rmax]

!The assumption that r = v/T§ guarantees that the probability being in the corridor
regime is always positive. On the other if r is fixed, this probability becomes zero.
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On the other hand, BGG develop an adaptive consistent unit root tests
based on the symmetric three regime TAR model (4.27) with 5; = 5 and
propose an adaptive choice of the grid set which restricts the grid to remain
bounded under the null but to become unbounded under the alternative.
They suggest to use the following grid set:

o)

Tmin = [Yl3) + Tmax = [y](3) + oo max (1,tapr), (4.29)

Kmax(l,tADF)’
where |y|(j)’s are the ordered variables of |y;|, j =1,...,7 — 1, £ is a length
parameter to be determined empirically, t4pr is the ADF t-statistic, and
&% = ﬁ Zthl (yt —a— éﬁyt,l)Q with a and gAb being the OLS estimates.
This adaptive choice of the grid set is aimed to boost the power of the tests.
First, if the set I' = [rmin, Tmax) is small under the null, then the associated
critical values of the stflgc test statistic will be small too. Second, it will
make a larger class of alternatives including the linear stationary model.
Using the simulation evidence BGG argue that the former provides the most
important contribution of the improved power performance of the WBBC

sup
test when the grid set is selected by (4.29).

4.3.3 Unit Root Tests in ESTAR Framework (Kapetanios,
Shin and Snell, 2003)

Consider a univariate smooth transition autoregressive of order 1, ESTAR(1)
model,

Yo = Byr—1 +vye—1 [1 —exp (—0u7 4)] + e, (4.30)

where €; ~ iid (0,02), B and 7 are unknown parameters, and we assume
that # > 0, and d > 1 is the delay parameter. (4.30) can be conveniently
reparameterised as:

Ayt = dye1 + vy [1—exp (=0y7_ )| + &1, (4.31)

where ¢ = —1. If 0 is positive, then it determines the speed of mean rever-
sion. The representation (4.31) makes economic sense in that many economic
models predict that the underlying system tends to display a dampened be-
havior towards an attractor when it is (sufficiently far) away from it, but
that it shows some instability within the locality of that attractor.

We prove under 6 > 0 that the condition we need for geometric ergodicity
of the model (4.30) or (4.31) is in fact |8+ 7| < 1 or |¢ + 7| < 0.

Remark 1 The application that motivates our model is that of Sercu et al.
(1995) and of Michael et al. (1997). These authors analyse nonlinearities in
the PPP relationship. They adopt a null of a unit root for real exchange rates
and have an alternative hypothesis of stationarity i.e. the long run PPP.
Their theory suggests that the larger the deviation from PPP, the stronger the
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tendency to move back to equilibrium. In the context of our model, this would
imply that while ¢ > 0 is possible, we must have v < 0 and ¢+ < 0 for the
process to be globally stationary. Under these conditions, the process might
display unit root or explosive behaviour in the middle regime for small yf_d,
but for large ytzfd, it has stable dynamics and is geometrically ergodic. They
claim that the ADF test may lack power against such stationary alternatives
and one of our contributions is to provide an alternative test designed to have
a power against such an ESTAR processes.

Imposing ¢ = 0 and d = 1 gives our specific ESTAR model (4.31) as

Ay = yyr-1 {1 —exp (—0y71) } + &1 (4.32)

Our test directly focuses on a specific parameter, 6, which is zero under the
null and positive under the alternative. Hence we test

Hy:60=0, (4.33)

against the alternative
Hy:0>0. (4.34)

Obviously, testing the null hypothesis (4.45) directly is not feasible, since ~
is not identified under the null.

To overcome this problem we follow Luukkonen et al. (1988), and derive
a t-type test statistic. If we compute a first-order Talyor series approxima-
tion to the EST AR model under the null we get the auxiliary regression

Ay; = dy3 | + error. (4.35)

This suggests that we could obtain the t-statistic for § = 0 against § < 0 as
tNL = S/S.e. <8\) s (4.36)

where 9 is the OLS estimate of 6 and s.e. (0) is the standard error of 9.

Our test is motivated by the fact that the auxiliary regression is testing
the significance of the score vector from the quasi-likelihood function of the
ESTAR model, evaluated at 6 = 0.

Unlike the case of testing linearity against nonlinearity for the station-
ary process, the ¢ty test does not have an asymptotic standard normal
distribution. KSS find inter alia that under the alternative of a globally
stationary ESTAR process, our test has better power in cases where the
nonlinear adjustment is relatively important.

KSS also provide an application to ex post real interest rates and bilateral
real exchange rates from eleven major OECD countries, and in particular
find that our proposed test is able to reject a unit root in some cases where
the linear ADF tests fails to do so, providing a limited evidence of of non-
linear mean-reversion in both real interest and exchange rates.
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4.4 Nonlinear Error Correction Models

Clearly, many stylised facts can be evoked to account for the asymmetric
adjusting behavior. In financial markets prices are constrained to persistent
short-run disequilibria due to information barriers, transaction costs, noise
trading, market segmentation, etc.

e A first strand of the literature is based on a generalisation of the
usual concept of cointegration. Notions such as ‘attractors’, ‘tran-
sients’, ‘Lyapunov stability’, ‘equilibration’ have been introduced in
an attempt to capture richer dynamics than is allowed by linear coin-
tegration models.

e Another approach aims to clarify the concept of cointegration. If the
two processes have the same order of integration, they may be cointe-
grated if their combination (either linear or nonlinear) is mixing. But,
one must impose the bound conditions on the nonlinear functions.

e A third part of the literature is centred on nonlinear co-trending. Non-
linear trends are modelled as general polynomial functions that allows
multiple representations of nonlinear trends. Co-trending means that
the combination of nonlinear trends provides linear trends.

We assume that the attractor is linear but that the adjustment towards
the long-run equilibrium is nonlinear. The NEC model is written as

p q
Ay = DT 8 Ay + D viAx s + A1 + f (201, 0) + uy, (4.37)
i=1 i=1

Ayt = V¢,
2 =y — 'xy.
Assume that (i) u; and vy are mixing processes with finite second-order mo-

ments and cross moments; (ii) f is a nonlinear function that is continuously
differentiable and satisfies some regularity condition:

< Of (z-1,0)
0z4—1

(iii) the roots of |1 —YF , 6;L*| = 0 all lie outside the unit circle; and (iv)

u; is a martingale difference sequence with zero mean and constant variance.

Under this assumption Escribano and Mira (2002) prove that z; is NED
and y; and x; are cointegrated. The cointegration hypothesis is tested as:

Hy: f(z-1,0) = 0 against Hy : f (24-1,60) # 0.

—1 <1

Hp means that the adjustment mechanism is linear. Under H;j: it is not

sufficient that f(z;—1,0) # 0, but this function must characterize an EC

mechanism (hence the importance of the stability condition of f).
Estimation of (4.37) can be done in 4-steps:
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1. Obtain the OLS estimate of B from the regression of y; on x;. Con-
N
struct the estimate of error correction term by 2; = y; — 3 x.
2. Substitute Z,_q for z;—1 in f(24—1,0).
3. Use the NLS method to find an estimate of 6.

4. Estimate other coefficients of the model (4.37) by OLS.

In practice the great difficulty lies in finding an appropriate function that
satisfies the stability condition defined in Assumption (ii). The following
functional forms are employed in Dufrénot and Mignon (2002):

e Logistic Smooth Transition Regression:

LF (z—1) = [1 +exp (=0 (z—1 — ¢))]

e Cubic Polynomial:

LF (z_1) = 01201 + 6222 1 + 0321

e Rational Polynomial:

LEF (Zt—l) _ (Zt—l + ’71)2 + 72 )

(2t-1+73)" + 74

Example 9 Rational or irrational bubbles? Many empirical studies find
that there is no cointegration between stock prices and dividends. This may
imply that the fluctuations in asset prices are too large to reflect changes
occurring in the fundamentals (here dividends). This excess volatility can
be regarded as a consequence of the presence of a (possibly) nonstationary
bubble. This paves the way for a nonlinear dynamic analysis as to how
to add to the usual arbitrage equation a monlinear component reflecting the
complexity of the short term dynamics between both variables.

4.4.1 Asymmetric TAR NEC Models
See Balke and Fomby (1997).

4.4.2 Asymmetric STR NEC Models

We begin with the following general nonlinear vector error correction model
for the n x 1 vector of I(1) stochastic processes, z;:

p
Azy=of'z1+g(B21)+ Y Tilzyi+e, t=1,2,.,T, (438)
i=1



68CHAPTER 4. THRESHOLD REGRESSION MODELS IN DYNAMIC PANELS

where a (n xr), B (nxr) and I'; (n X n) are parameter matrices with a
and B3 of full column rank and g : R — R” is a nonlinear function. See
Saikkonen (2004).

We aim to analyse at most one conditional long-run cointegrating rela-
tionship between g; and x;, and focus on the conditional modelling of the
scalar variable y; given the k-vector x; (kK =n — 1) and the past values of z;
and Zg, where we decompose z; = (y,x})’. For this we rewrite (4.38) as

p
Az = aug—1 + g (ue—1) + Z Az +e, t=1,2,...,T, (4.39)

=1

where ¢ is an n x 1 vector of adjustment parameters, and
Ut =Yt — ﬂ;xt, (4.40)

with 8, being a k£ x 1 vector of cointegrating parameters.
We now make the following assumption:

e 2(i) Partition o = (¢, )" and ¢ = (v, ¢l) conformably with z; =
(y¢,x})'. Then, a, = ¢, = 0.

e 2(ii) There is no cointegration among the k-vector of I(1) variables,
Xt.

e 2(iii) g (o) follows the exponential smooth transition regressive (ESTR)
functional form,?

g (u—1) = pug— (1 - 679(““170)2) ; (4.41)

where we assume 6 > 0 for identification purpose and c is a transition
parameter.

Assumption 2(i) and (ii) imply that the process x; are weakly exogenous
and therefore the parameters of interest in (4.43) are variation-free from the
parameters in (4.44), see Pesaran et al. (2001).

Next, partitioning e; conformably with z; as e, = (ey,€),)" and its
Oyy OTyx

> ), we may express €,; conditionally
O 1y xx

variance matrix as X = <

in terms of €, as
-1
Eyt = a'ymEm Ext + €, (442)

where e; ~ iid(0, Ug), O'z =0yy— aymE;Ilo-xy and e; is uncorrelated with €,
by construction. Substituting (4.42) and (4.41) into (4.39), partitioning I'; =
(7;i,I‘;i)’, 1 = 1,...,p, and under Assumption 2, we obtain the following
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conditional nonlinear error correction model for Ay, and the marginal VAR
model for Ax;:

p
Ayt = Qup—1 +YUs—1 (1 — e_e(ut_l_c)2) —i—w/AXt + Z ’lﬂ;AZt_i + e, (4.43)
=1

P
Ax; =Y Trpilzy ;i + g, (4.44)
i=1
where w = X 1o, and ¢} = Vyi — Wi, i=1,..,p.

We call (4.43) the (conditional) nonlinear STR error correction model.
The representation (4.43) makes economic sense in that many economic
models predict that the underlying system tends to display a dampened
behavior towards an attractor when it is (sufficiently far) away from it, but
shows some instability within the locality of that attractor.

Testing for Cointegration under STR ECM

To fix ideas for the motivation of the tests, we follow Kapetanios, Shin and
Snell (2003, hereafter KSS) and impose ¢ = 0 in (4.43), implying that u;
follows a unit root process in the middle regime, see also Balke and Fomby
(1997) in the context of threshold error correction models. Note that for
the operational versions of the tests we suggest below we consider both the
case ¢ = 0 and ¢ # 0. It is then straightforward to show that the test
of the null of no cointegration against the alternative of globally stationary
cointegration can be based on the null hypothesis of no cointegration as

Hy:60=0, (4.45)

against the alternative of nonlinear ESTR cointegration of Hy : 6 > 0, where
the positive value of 6 determines the stationarity properties of w;.

We propose a number of operational versions of the cointegration test
under the nonlinear STR-ECM framework given by (4.43). To this end
we follow Engle and Granger (1987) and take a pragmatic residual-based
two step approach. In the first stage, we obtain the residuals, u; = 3y —
fi;xt with ,@m being the OLS estimate of 3,. In the second stage and in
order to overcome the Davies problem that 7 in (4.43) is not identified
under the null, we follow Luukkonen, Saikkonen and Terédsvirta (1988) and
KSS and approximate (4.43) by a first-order Taylor series approximation to

(1 — efa(ut—lfcf), while allowing ¢ # 0 under the alternative hypothesis,
to get

p
Ay = 61up1 + 0uf  + s | + W' Axe+ Y Az +ep  (4.46)
=1
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For this model, we consider an F-type test for §; = do = d3 = 0 given by

(SSRy — SSR1) /3
SSRo/(T —4—p)’

Fygc = (4.47)

where SSRy and SSR; are the sum of squared residuals obtained from the
specification with and without imposing the restrictions d; = do = d3 = 0
in (4.46), respectively.

There are prior theoretical justifications for restricting the switch point, ¢
to be zero in many economic and financial applications in the ESTR, function
(4.41), in which case we obtain the following restricted auxiliary testing
regression:

p
Ayy = Gyiip—1 + 02} | + W/ Axy + > YAz +ey, (4.48)
=1

and obtain the following F-type statistic:

. (SSRo— SSRy) /2

where SSRy and SSR; are the sum of squared residuals obtained from the
specification with and without imposing 61 = d2 = 0 in (4.48), respectively.

Finally, under the further assumption that ¢ = 0 (which is the main-
tained assumption made in KSS), (4.48) is simplified to

p
Ay = 0ud | + W' Axy + > PiAzy i + e, (4.50)
=1

For this model, we propose a t-type statistic for 6 = 0 (no cointegration)
against § < 0 (ESTR cointegration), denoted by tnypc.

The asymptotic distributions of all these tests are nonstandard, and the
associated critical values have been tabulated via stochastic simulations.

The small sample performance of the suggested tests is compared to that
of the linear EG and Johansen (1995) tests via Monte Carlo experiments.
We find that our proposed nonlinear tests have good size and superior power
properties compared to the linear tests. In particular, both Fygc and tygc
tests are superior to both linear or nonlinear EG tests when the regressors
are weakly exogenous in a cointegrating regression. This supports similar
findings made in linear models that the EG test loses power relative to
ECM-based cointegration tests because of the loss of potentially valuable
information from the correlation between the regressors and the underlying
disturbances.

KSS provide an application to investigating the presence of cointegra-
tion of asset prices and dividends for eleven stock portfolios allowing for
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nonlinear STR adjustment to equilibrium. Interestingly, our new tests are
able to reject the null of no cointegration in majority cases whereas the
linear EG test rejects only twice. We also estimate adjustment parame-
ters under the alternative, and find that these estimates are well defined in
all cases. We further evaluate the impulse response functions of the error
correction term with respect to initial impulses of 1-4 standard deviation
shocks. The striking finding is that the time taken to recover one half of a
one standard deviation shock varies between five and twenty years, whereas
the time taken to recover one half of larger shocks varies between just 4 to
18 months. This implies that data periods dominated by extreme volatility
may display substantial reversion of prices towards their NPV relationship,
while in “calmer” times where the error in the NPV relationship takes on
smaller values, the process driving it may well look like a unit root.

4.4.3 MS NEC Models

Psaradakis, Sola and Spagnolo (2004) consider the following single equation-
based MS NEC model:

Yt +axy = 24, 20 = Q211 + €11, (4.51)

Yt + Bre = g, up = w1 + €2, (4.52)

where a # 0, 8 € R, ¢,, € (—1,1] and s; are the latent random variables on
{0,1}. Suppose that

bs, = G0+ (d1 — Po) 51, |dol <1, ¢y =1, (4.53)

where {s;} is a homogeneous irreducible and aperiodic Markov chain of order
1with state-space, S = {0,1} and transition probabilities

Dij = Pr {St = j|5t71 = ’L}, 1,7 € S. (454)

Deviations from equilibrium tend to decay to the mean level of 0 as long
as s; = 0; otherwise z; behaves like a nonstationary process. Despite the
occasional nonstaitoanry behavior of {z;} when s, = 1, the eq error can be
globally stationary, provided that pgg, pi11, ¢ and ¢, satisfy appropriate
restrictions. A necessary and sufficient condition is given by (Franq and
Zakoian, 2001)

Poody + p1167 + (1 — poo — p11) dadT < 1 and poody + prigs < 2. (4.55)

For an irreducible and aperiodic Markov chain, these conditions are easily
satisfied when |¢y| < 1 and ¢; = 1. See an application to the relationship
between stock prices and dividends in Psaradakis, Sola and Spagnolo (2004).
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We could also allow for {z;} to evolve according to the Markov switching
ARMA model,

m q
a=co+ > 00z i ton &+ > o, & (4.56)
i=1 j=1

where ¢, is a white noise with E¢, = 0 and E¢? = 0. A sufficient condition
for the 2nd order stationarity is that all the eigenvalues of the 2m? x 2m?
matrix,

- [ P00 (o ® ®o) 10 (Lo ® Po) ]
~ L o1 (1@ ®1) pin (P11 @ D)

lie on the open disk where

(bgl) ¢§L2) o ¢§Lm—1) ¢§Lm)
1 0 0 0
P, = 1 0 0 0 , hes.
0 0 1 0

Another useful extension is that it is reasonable to expect that the further
away from the equilibrium of the system is the higher the probability of
switching from an unstable noncorrecting regime to a stable error correcting
one. This allows the transition probabilities of the hidden Markov chain to
depend on the extent to which the system is out of long-run equilibrium.
Therefore,

exp (a; + bjzi—1)
1+ exp(a; + bizt_l) ’

Pr {St = i]st_l = i,Zt_l} = 1€ S, (457)

Pr{s; =jlst-1 =i,2e-1} =1 —Pr{s; =ilss_1 =4,2¢-1}, 1 €S, i #]
(4.58)
It is natural to consider testing the null of single-regime/no-coinetgration
against the alternative of cointegration with MEC adjustment. The testing
problem is nonstandard due to the presence of unit roots and the unidenti-
fiability of the transition probabilities under the null.

Testing for Cointegration under STR ECM
See Hu and Shin (2014).

4.5 Panel Threshold Regression Models

This is a summary of the paper by B. Hansen (1999, JOE, 93: 345-368)
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4.5.1 Model
The structural equation is

yit = p; + Bread (qi <) + Boxal (qi > ) + e, (4.59)
which can be written as

yit = p; + Bz (v) + e, (4.60)

zitd (qit > )
is required that z;; are not time invariant. e; is assumed to be iid, which
excludes lagged dependent variables from z;;. The analysis is asymptotic
with fixed T as n — oo.

) <
where z;t (7) = ( @iel (g < 7) ) and 8 = ( 1,6/2)/. For identification it

4.5.2 Estimation

Taking averages of (4.59),

Ui = u; + 87 () + &, (4.61)
where
T T
B 1 _ 1 1 ivztI ta < '.Y) )
Yi T Zi:l vit; Ti (7) T Zi:l it (7) = lel ( zitd (qit > )

and taking the difference between (4.60) and (4.61),

yi = By () + ey, (4.62)
where
Yir = Yir — Yis T (V) = @it (7) — @ (7) -
Let _ -
Yio zi ()
yi=1| * |s2i(v)= :
Yir | zip ()

denote the stacked data with one time period deleted. Then, let

Y= 1 |; X" (y) = :
Y zy, ()

denote the data stacked over all individuals. Then,

Y* = X*(7) B +e". (4.63)
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For given ~, 8 can be estimated by OLS;

* * -1 * *
Bly) = (X"() X" () X" (y)Y" (4.64)
Chan (1993) and Hansen (1999) recommend estimation of v by LS:
4 = argmin S; (v), (4.65)
v
where

S1(9) =& () & () = Y (1= X* () (X" () X* (1)) " X" (3)) v

) (4.66)
() =Y =X () B ()
Once # is obtained, o
B=B0); & =e(9);
1 . 1 .
e T R o

Since S () depends only on v through the indicator function, the sum
of SSE is a step function with most nT steps with the steps occurring at
distinct values of the observed threshold variable ¢g;;. Thus the minimisation
problem can be reduced to searching over the values of v equalling the (at
most nT') distinct values of g;; in the sample.

Sort the distinct values of the observations on ¢;;. Eliminate the smallest
and largest n%. The remaining N values constitute the values of v which
can be searched for 4. For each of N values regression are estimated yielding
the SSE. The smallest value yields the estimate 4. A simplifying shortcut is
to restrict search to a smallest set of values of «y. The search may be limited
to specific quintiles. This reduces the number of regressions performed in
the search. The estimation from such an approximation are likely to be
sufficiently precise. For the empirical work we used the grid {1%, 1.25%,
1.5%, 1.75%, 2%,...,99%} which contains 393 quantiles.

4.5.3 Inference
The hypothesis of no threshold is:
Ho : 5y = By

The FE (4.62) fall in the class of models considered by Hansen (1996) who
suggested a bootstrap to simulate the asymptotic distribution of the LR
test. Under the null of no threshold, the model is

Yir = p; + Bz + eir, (4.68)
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after the FE transformation, we have
yi = B1ay + ey, (4.69)
from which we obtain: Bl, ey, and Sp = eé*é*. The LR test is based on

_ 50— 51(3)

Fy
6_2

(4.70)
Hansen (1996) shows that a bootstrap procedure attains the first-order as-
ymptotic distribution, so p-values are asymptotically valid.

Treat z; and ¢; as given. Take the residuals, €j, and group them by
individual: e = (e, ...,€f;). Treat (€}, ...,€};) as the empirical distribution
to be used for bootstrapping. Draw (with replacement) a sample of size n
from the empirical distribution and use these errors to create a bootstrap
sample under Hy. Using the bootstrap sample estimate the model under the
null and the alternative and calculate the bootstrap value of the LR test F}.
Repeat this procedure a large number of times and calculate the percentage
of draws for which the simulated statistic exceeds the actual. This is the
bootstrap estimate of the asymptotic p-value for F; under Hy.

Hansen (1999) argues that the best way to form CI for v is to form the

no-rejection region using the LR test. To test Hy : v = v, we have

S1(v) =51 (’AY)'

LRy () = 52

(4.71)
Note that the statistic (4.71) is testing a different hypothesis from (4.70).
Theorem 1. Under Assumptions 1-8 and Hyp : v = 7,

LRy (7) —d ga

as n — 00, where £ is a random variable with distribution function,

X

P(¢{<z)= {1 — exp (—5)}2. (4.72)

Since the asymptotic distribution in Theorem 1 is pivotal, it may be used to
form valid asymptotic CIs. The distribution function (4.72) has the inverse:

c(a)=—-2log (1 -v1—a) (4.73)

from which it is easy to calculate critical values.

To form an asymptotic CI for v the non-rejection region of CI level 1 —«
is the set of values of v such that LR; (y) < ¢(«). This is a natural by-
product of model estimation. To find LSE of v the sequence of S; () were
calculated. LR; (vy) is a simple renormalization of these numbers and require
no further computation.
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Chan and Hansen show that the dependence on the threshold estimate
is not of first-order asymptotic importance, so inference on 3 can proceed
as if 4 were true value. Hence,

BAN(B,V),

where
n T -1
V= (Z Z zg () 23 (’AY),> &%,
i=1 t=1

If the errors are allowed to be conditional heteroskedastic, then

n T -1 n T n T -1
V= (Z Z iy (%) @3y (’AY)/> (Z Z zy () af (3) éfﬁ) <Z Z ziy () o3 ('AY)/> .

i=1 t=1 i=1 t=1 i=1 t=1

4.5.4 Multiple thresholds
The double threshold model takes the form:

Yit = p + Bzl (qie < v1) + Boxiel (v1 < qit < v2) + Byzied (gt > v2) + €ir-
(4.74)
For a given (7;,79) the concentrated SSE S1 (71, 79) is straightforward to
calculate. The joint LSE of (71, 75) are the values which jointly minimisation
S1(71:72)-
In the multiple changepoint model sequential estimation is consistent.
In the first stage let Sy () be the single threshold SSE and let 4; be the
estimate that minimisation S (). The analysis of Chong and Bai suggests
that 4, will be consistent for either v; or 7,5 (depending on which effect is
stronger). Fixing the first stage 944, the second stage criterion is

r S (Y1,%2) if 41 < 72 }
S. = e oA
2 (12) { S (J9,91) if A1 > 72

and the 2nd stage threshold estimate is
7 = argmin S (7).
V2

Bai (1997) showed that 44 is asymptotically efficient but 4, is not, and sug-
gested the following refinement estimator. Fixing 45, define the refinement
criterion
S(v,%)  if 1 <A
ST — { Al’ 2 . 1 A2 ’
FOU = 806 if 1> 4

and the refinement estimator

4] = arg ngiln ST (71) -
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Bai shows that the refinement estimator 4] is asymptotically efficient and
we expect similar results to hold in threshold regression.

The minimisation SSE from the 2nd stage threshold estimate is S5 (95)
with variance estimate, 6% = S5 (35) /n(T — 1). Thus an approximate LR
test of one vs two thresholds can be based on the statistic:

5y 51.G1) = S5 (33)

6,2

Since the null asymptotic distribution is non-pivotal we suggest using a
bootstrap procedure. Treat x;; and g as given. The bootstrap errors will
be drawn from the residuals calculated under the alternative, so the residuals
from (4.74). Group the residuals, €}, by individual: & = (é},...,€};) and
treat (€, ...,€;) as the empirical distribution to be used for bootstrapping.
Draw (with replacement) a sample of size n from the empirical distribution.
Let efﬁ be a generic T'x 1 draw. The dependent variable should be generated

under the null of a single threshold:

Al R ~ N
?Jﬁé = Bzl (qie <) + Boziel (qir > ) + e?f. (4.75)

From the bootstrap sample F5 may be calculated. Repeat this procedure a
large number of times to calculate the bootstrap p-value. The null sampling
distribution of F5 depends asymptotically on both v and /31, 85. This leads
us to expect that the bootstrap may not produce as accurate CV for Fs as
for F1, and neither is expected to be second-order accurate.

Let

_ S5() S5 (3B)

. . ST () = ST (A%
LR () 0y () = SIS0,

6’2

Asymptotic (1 — a) % CI for 4 and v, are the set of values of v such that
LR (7) < c(a) and LR} (7) < c(a).

4.5.5 Investment and financing constraints

We use the multiple threshold regression model:

L = ;4 01Qi—1+602Q% | +03Q% | +04Dis 1+ 05Qi1Dis 1
+581CF—1I (Dit—1 < 1) + BoCFy—1I (71 < Diz—1 < 75)
+B83CFit—11 (Dit—1 > v2) + €4t

where I;; is the ratio of investment to capital, ();; is the ratio of total market
value to assets, C'Fj; is the ratio of cash flow to assets and D;; is the ratio
of long term debt to assets, where the stock variables are defined at the end
of year.

See Table 5 for the results: what is unexpected is that the firm with the
highest debt levels have the smallest coefficient. Also in all three cases the
coefficients on cash flows are positive.
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4.6 Threshold Autoregressive Models in Dynamic
Panels

Increasing availability of large panel data sets, in conjunction with various
developments in time series analysis, has prompted more rigorous economet-
ric analyses of dynamic heterogeneous panels. Until recently most econo-
metric analysis has stopped short of studying the issues of nonlinear asym-
metric dynamic mechanisms explicitly within a panel data context. Hansen
(1999) develops the panel threshold regression model where regression co-
efficients can take on a small number of different values, depending on the
value of other exogenous stationary variable. Gonzdlez, Teridsvirta and van
Dijk (2005) generalise this approach and develop a panel smooth transition
regression model which allows the coefficients to change gradually from one
regime to another. See also Fok, van Dijk and Franses (2005). In a broad
context these models are a specific example of the panel data approach that
allows coefficients to vary randomly over time and across cross-sectional
units as surveyed by Hsiao (2003, Chapter 6). Both approaches are static
in nature, though they can be applied to the conventional panel data with
large N and fixed T

In general, there have been a rather small number of studies to adopt
these time-series technique into the dynamic panel data model with large
N and fixed T, though there is a huge literature on GMM estimation of
linear dynamic panels, e.g., Arellano and Bond (1991), Ahn and Schmidt
(1995), Arellano and Bover (1995), Blundell and Bond (1998), Blundell,
Bond and Windmeijer (2000), Alvarez and Arellano (2003) and Hayakawa
(2006). Further, there is no rigorous single study investigating the important
issue of nonlinear asymmetric dynamic mechanism in this context. We aim
to fill this gap so that we will be to address the issue as how best to model
nonlinear asymmetric dynamics mechanism and cross-sectional heterogene-
ity, simultaneously. This would use the time series techniques advanced by
Chan (1993) and Hansen (1996, 2000) with the existing GMM estimation
techniques in linear dynamic panels. We develop a threshold autoregressive
model in dynamic panels with large N and fixed T" and propose various GMM
estimation methodologies, namely the FD-GMM, the Level-GMM and the
System-GMM estimators. We also provide the bootstrap-based inference
procedure for the presence of threshold effects.

4.6.1 Model

Consider the following panel threshold autoregressive model:

Yit = ¢1yit—11 <Q’Lt < ’7) + ¢2yit—11 <Q’Lt > ’7) + €it, 1= 17 veey N7 t= 17 ceey T7
(4.76)
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where y;; is a a scalar stochastic variable of interest, 1(-) is an indicator
function, ¢;; is the transition variable with + being a threshold parameter,
¢, 9 are heterogeneous autoregressive parameters associated with different
regimes, and ¢;; consists of the error components

Eit = Qj + Vjt,

where «; is an unobserved individual effect and v;; is a zero mean idiosyn-
cratic random disturbance. This is a panel extension of the TAR model
popularised by Tong (1990).

We make the following assumptions:

Assumption 1. {v;} are iid and independent of 7; and y;; with
E (vit) = 0, Var (vi) = 0% and have the finite 4th moment.

Assumption 2. q; are iid with E («;) = 0, Var (o;) = 02 and have the
finite 4th moment.

Assumption 3. y;; is geometrically ergodic and the initial observations
satisfy the mean stationarity condition.

Assumption 4. The threshold variable, ¢;; is stationary and exogenous
or predetermined uncorrelated with «; and v;.

Assumption 5. N is large and T is fixed.

All these assumptions are fairly standard in the literature, e.g. Alvarez
and Arellano (2003) and Hansen (1999).

4.6.2 FD-GMM Estimator

It is well-established that the fixed effects estimator of the autoregressive
parameter is biased downward, e.g. Nickell (1981). To deal with the corre-
lation of the regressors with individual effects in (4.1), we follow Arellano
and Bond (1991) and consider the first-difference transformation. For con-
venience we define A\ (7) = 1(¢x < ) and write (4.1) as

Yit = O1Yii—1Nie () + davii—1 (L — Xie (7)) + €it, (4.77)

Taking the first difference of (4.77) to get rid of «;, we obtain

Ay = &1 (Wig—1Xie (V) — Yig—2Xie—1 (7)) (4.78)
+éo (Yii—1 (1 = Xit (7)) = Yii—2 (1 = Xip—1 (7)) + Avyy,

fori = 1,..,N and t = 2,...,T. The OLS estimator from (4.78) is bi-
ased since the transformed regressors are correlated with Aw;. To fix
this problem we need to find instruments for (y; ¢—1Ait (7) — Yit—2Xit—1 (7))
and (yie—1 (1 — Xt (7)) — ¥it—2 (1 — Xit—1 (7))). The obvious candidates are
Yit—2Nit—1 (7)s Yit—2 (1 — Xig—1 (7)) and their lagged values. These instru-
ments will not be correlated with Awv;; as long as the v;; are assumed to be
serially uncorrelated.
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To further simplify the notations we define

216 (V) = Yig—1 it (7) 5 221 (V) = vig—1 (1 = Xig (7)) 5
zit () = (21,0 (7), 22 (7); & = (¢1,02),

and write (4.77) and (4.78) respectively as
Yit = Zit (V) @ + €it, (4.79)
Ayir = Azit () ¢ + Aviy. (4.80)

When investigating the list of instruments by exploiting additional moment
conditions, it is straightforward to obtain the following IV matrices for
Azt (77) and Azg ¢ (7y) respectively for individual ¢ = 1,..., N:

21,2 (77) 0 o 0
0 21,32 () » 21,33 (v) - 0
Wlfi (v) = . : : : 7
O 0 . e 2177;2 (’)/) g ey Z]_7i7T—]. (’Y)
(4.81)
2242 (7) 0 o 0
0 2242 (7) s 2243 (7) - 0
ng (v) = : : : : 7
0 0 s 2040 () e 22,1011 ()
(4.82)

where the dimensions of W¢. (v) and WY, (v) are (T — 2) x mg with mg =
0.5(T —2) (T — 1). Combining them together we obtain the (7" — 2) x 2mg
moment matrix for individual ¢ =1, ..., V:

Wi (1) = (Wi (), Wi, (), (4.83)
and the N (T — 2) x 2my full matrix of instruments:

Wi ()
wigy=| | (4.84)
W% ()

Next, we write (4.80) in the matrix form as

Ay = AZ () ¢ + Av, (4.85)

Ay Az (7) Avy
Ay = : , AZ(y) = : ,Av = :

AYN | nr—gyx1 Azy (7) N(T—2)x2 AVN | n(r—g)x1

bl
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Ayis Aziz (v) Avjg
Ay; = , Az, (7) - JAv; = :
Ayir | (r_ayx1 Azir (V) | (7_2)x2 Avir | (r_9)x1
and express the set of all moment conditions concisely as
E <Wd () Av) ~ 0. (4.86)

The one-step FD-GMM estimator is then obtained by

$1() = {22 W VIE) WG AZ()} (48T)
< {AZ (1) W () Vi (1) W (1) Ay}
where
N
Vi) =Y W) GW(v),
=1

and G is a (T'— 2) x (T — 2) fixed matrix given by

2 -1 0 --- 0 0
-1 2 -1 --- 0 0
G = : : : : : :
0 0 o --- 2 -1
| 0 0 o - -1 2 |

If v;4’s are assumed to be homoskedastic, then the optimal GMM estimator
can be computed in one step. In a more general case where v;’s are het-
eroskedastic, the weighting matrix should be estimated without imposing
these restrictions. Thus the two-step FD-GMM estimator is obtained by

$2(1) = {AZ(YWIVER) WG AZ()} T (488)
< {AZ () W () V§ (7) " W (1) Ay},

where

N
V(1) = S WE () A% (7) A¥, (1) W (7), A% (7) = Ayi—Az (7) &1 (7).
=1

(4.89)

For given v and for large IV, ¢ can be consistently estimated by the FD-

GMM estimators derived in (4.87) and (4.88), and they are asymptotically
normally distributed with covariance matrices given respectively by

Var (31(0) = {82() Wi () V() T W) Az ()} (490)

Var ($3() = {AZ () W' (1) V() Wi () AZ (1)} . (491)
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4.6.3 System-GMM Estimator

Blundell and Bond (1998) demonstrate that the FD-GMM estimator is sub-
ject to weak instruments problem especially when the AR coefficient is close
to 1 and/or when the variance of the individual effects, 02 increases rela-
tive to the variance of the idiosyncratic error, 2. They propose the system
GMM approach by combining lagged differences as instruments for equa-
tions in levels, in addition to lagged levels as instruments for equations in
first differences.

We follow Arellano and Bover (1995) and Blundell and Bond (1998) and
consider the following additional first-difference moment conditions for the
level equations for individual ¢ =1, ..., N:

E(eitAzjit—s(y)) =0for j=1,2,t=3,...,Tand 0 <s<t—3, (4.92)

which is satisfied under the mean stationairty of the y;; process, see Assump-
tion 3. Using (4.92) we first derive a Level-GMM estimator. In this case we

obtain the IV matrices for z; 4 () and 224 (7) respectively for individual
i=1,...,N:

[ Azi43(7) 0 0
0 Azl’ig (’Y) ,AZI,M (7) T 0
Wllz (v) = : : : : 7
I 0 0 e Azl,ZS (")/) g eeey Azl7i7T (’7)
_ (4.93)
Az 3 (7) 0 o 0
0 AZQ’/L'S (’7) ,AZQ,M (7) e 0
Wi, () = : : : : ’
i 0 0 oo Azggs (’y) 5 eey AZQ,li,T (7)
(4.94)

where the dimension of W', (y) and W', (v) is (T —2) x m; with m; =
0.5(T —2) (T —1). Combining them together we have

Wi (7)
W) = (W (), Whi (), i = 1., N; W) = |
Wi (7)
(4.95)
Next, we write the level-equation, (4.79) in the matrix form as
y=Z(7)¢+e, (4.96)
where
Y1 z1 () €1
y = : N/ (’Y) = : € = : ’

YN 1 N(T-2)x1 zy (7) N(T—2)x2 EN I N(T-2)x1
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Vi3 zi3 () €3
yi=| , 2i () = : €= |
Yir 1 (r—2)x1 zir (7) (T—2)x2 SiT | (r_2)x1

Therefore, the set of all moment conditions for the level equation, (4.96) can
be written concisely as

E (Wl (»y)’s) ~0. (4.97)

We then obtain the one-step and two-step Level-GMM estimators by

)= {2 W VI W20} {Z26) W Vi) W )y}

(4.98)
B = {20 W VA W Y 2} {26) W) VEG) T W )y )
(4.99)
where
N
Vi) =Y Wi Wi,
=1
N ~1
Vo) =Y Wi & (Wi, & () =yi—2 (1) é1 (7).
=1

Hence, for given « and for large N, ¢ in (4.96) can be consistently esti-
mated by the Level-GMM estimators derived in (4.98) and (4.99), which are
asymptotically normally distributed with covariance matrices given by

Var (81 (1) = {2 W ) Vi W ' z()} L (@00)

Var (qblz (7)) = {Z (N W (1) V(1) W (1) Z (7)} . (4.101)

Next, we derive the system GMM estimator combining all the moment
conditions in both levels and first-differences equations. Combining (4.85)
and (4.96), we obtain the system equations:?

Y =X (1) é+u, (4.102)
where
Y [ Xi(7) ] w
Y = ) X (7) = U= ’
YN | nar-gyxi L XN () N(T—2)x2 UN | N(T-2)x1
A 3 [ AZZ' | AVZ'
Yi lor—2)x1 i\7) lor—2)x2 i lor—2)x1

?The definition in (4.102) matches the construction of instruments in what follows.
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We consider the three different versions of the system GMM estimator,
A min

denoted q}a” (7), ¢ (7) and &BB (7), respectively, e.g. Hayakawa (2006).

First, (%all (y) uses all the moment conditions given by (4.86) and (4.97). In
this case we have the following full moment matrix:

Wi (7)
a wW¢ 0 , a _
Wil (y) = 0(7) Wiy | 1= LN W () = :
WH (1)
(4.103)

Secondly, &mm (v) employs only the minimum necessary 2 (7' — 2) moment
conditions in levels and first-differences equations for individual i = 1, ..., V:

2j.i2 (7) 0 . 0
. 0 zjiz(y) .- 0
d,min _ 7> -
Wi () = 5 5 2 5 L j=1,2, (4.104)
0 0 e ZjaT—1 (7)
Azjiz (7) 0 o 0
) 0 Azjig(y) - 0
I,min . 75 .
W (7) = 5 5 5 E L i=1,2.
0 0 AZ]'JZ"T (’7)
(4.105)
We thus have the following moment matrix:
. Wmin v
min W;'me (7) 0 . min ' . ( )
Wi (7) - [, min y 1= 17 7N7 \i4 (7) - .
0 Wz (7) min
W™ (7)
(4.106)

~ BB
Thirdly, ¢  (v) combines the full set of moment conditions, W¢ () in
differences equations and a nonredundant subset of moment conditions,
WH™I () in Jevels equation. We then have:

WP ()

d 1

WP (7) = [ W"O(’Y) W@,Iﬁn ) } ci=1,..,N; WBB(y) = :
Z WP ()
(4.107)

Therefore, the one-step and two-step System-GMM estimators for h = all,
min and BB are obtained by?

B ) = (XYW VER) WY X () X ) W) VE) T W) Y )
(4.108)

31t is easily seen that the system GMM estimator is equivalent to the linear combination
of FD-GMM and Level-GMM estimators where the weights are different for different
moment matrices employed, e.g. Blundell et al. (2000).
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B () = (X)W () VEG) WY X ()} X)W ) V()T W () Y )
(4.109)
where N
Vi) =) Wi(y)HW] (y), H= [ o IT()?Q }
=1

N
VA () = S W () 6l (1) 8l (1) W (9), 8 () = Vi = Xi (1) 1 ().
=1

For given v and for large N, ¢ in (4.102) can be consistently estimated
by the System-GMM estimators derived above, and they are asymptotically
normally distributed with covariance matrices given respectively

Var (d>]f (7)) = {X () W () VI ()T W () X (’y)} , h = all, min, BB,
(4.110)

Var (‘b; (7)> = {X (7) W () Vi ()T W' () X (v)}_ . h = all, min, BB
(4.111)

4.6.4 Estimation of and Testing for Threshold Effects

We have developed the optimal estimation procedure for the threshold au-
toregressive model in dynamic panels under the implicit assumption that
the value of the threshold parameter, v is given. This section will address
consistent estimation of v and develop the bootstrap-based testing proce-
dure for the null of no threshold effects in dynamic panels. For convenience
we focus on the case of the FD-GMM estimator.*

We obtain the consistent estimator of 4 by (Chan, 1993; Hansen, 1999)

¥ = argmin Q1 (v), (4.112)
v
where @ () is the generalised minimum distance measure given by

Q1(7) =A% (1) W (7) V] (7) ' Wi () A¥ (), (4.113)

AV (7) = Ay — AZ (1) By (7).

Once 4 is obtained, we obtain

1
N (T -2)

~d ~d , .

by =y (3); AV =AY (§); 6% = Q1 (9)- (4.114)

Since Q1 () depends only on v through the indicator function, the sum of
SSE is a step function with most N (T — 2) steps with the steps occurring at

‘Estimation of the threshold parameter and test of threshold effects in the cases of
Level-GMM and System-GMM estimators proceed exactly as described in this section.
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distinct values of the observed threshold variable ¢g;;. Thus the minimisation
problem can be reduced to searching over the values of v equalling the
distinct values of ¢ in the sample. In practice we need to truncate the
smallest and largest 10% for example. The remaining values constitute the
values of v which can be searched for 4. For each of these values regression
are estimated yielding the SSE and the smallest value yields the estimate %
and @5 = &5 (4).

We follow Hansen (1996) and develop a bootstrap procedure to simulate
the asymptotic distribution of the LR test statistic for the null hypothesis
of no threshold:

Ho : ¢y = ¢o.
Under the null of no threshold, the model (4.80) reduces to

Yit = O1Yit—1 + Eit. (4.115)
Taking the FD transformation, we have
Ayt = 01 Ay -1 + Avg, (4.116)

from which we obtain the linear one-step and two-step FD-GMM estima-

~d ~d : .
tors denoted ¢; and ¢,, respectively. Then we obtain the the generalised
minimum distance measure under the null by

~ ~ -1 -
Qo = ATWH (Vg) WYAT, (4.117)

where Av = Ay — g?biZAy_l and W% and Vg are the corresponding instru-
ment matrix and optimal weighting matrix for the two-step linear FD-GMM
estimator. The LR test statistic is then given by
LR = QO;W (4.118)
o
The bootstrap p-value of the LR statistic is evaluated as follows:®> We
first take the residuals, AV (%) = (A% ), ..., AV (ﬁ)/)/ with AV; (§) =
(Adiz (3), ..., Ay (%)) and treat them as the empirical distribution to be
used. We then generate the jth bootstrap sample residual vector, denoted
Av0U) by drawing (with replacement) from the empirical distribution and
use these errors to create a bootstrap sample under Hy,

Ay =6 8y9)  + a0, j=1,..,B, (4.119)

fore=1,...,N and t = 3,...,T, where c}bl is the two-step GMM estimator
obtained from (4.116) and we treat the initial values y;1 and y;o as given.

SHansen (1996) shows that a bootstrap procedure attains the first-order asymptotic
distribution, so p-values are asymptotically valid.
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Using the bootstrap sample generated in (4.119) we estimate the model
under the null and under the alternative and calculate the bootstrap value
of the LR test at each replication. We set the number of replications, B =
1000 and calculate the percentage of draws for which the simulated statistic
exceeds the actual one. This is the bootstrap estimate of the asymptotic
p-value for LR under Hy.

4.6.5 Asymmetric capital structure adjustments: New evi-
dence from dynamic panel threshold models

Dang, Kim and Shin (2012) develop a dynamic panel threshold model of
capital structure to test the dynamic trade-off theory, allowing for asym-
metries in firms’ adjustments toward target leverage. Our novel estimation
approach is able to consistently estimate heterogeneous speeds of adjustment
in different regimes as well as to properly test for the threshold effect. We
consider several proxies for adjustment costs that affect the asymmetries in
capital structure adjustments and find evidence that firms with large financ-
ing imbalance (or a deficit), large investment or low earnings volatility adjust
faster than those with the opposite characteristics. Firms not only adjust
at different rates but also seem to adjust toward heterogeneous leverage tar-
gets. Moreover, we document a consistent pattern that firms undertaking
quick adjustment are over-levered with a financing deficit and rely heavily
on equity issues to make such adjustment.

Dynamic capital structure adjustment models The conventional econo-
metric specification to model firms’ adjustment toward target leverage takes
the form of a partial adjustment process:

Abyy =6 (E;kt — eitfl) + V4t

where ¢;; and ¢}, denote the actual (observed) and target leverage ratios for
firm 4 at time t. v; is an error component. ¢ is the speed of adjustment that
measures how fast firms move toward their target leverage. Target leverage
can be considered as a unique ratio determined by firms’ characteristics as:

;Ft = Blfﬂit
where x;; denotes the k x 1 vector of exogenous factors determining target
leverage with § being the structural parameters.
We turn to the one-stage procedure by combining the above two equa-

tions:
Uit = Plip—1 + 7'y + vig

SHere, we follow the literature and consider the five most commonly-used determi-
nants of leverage, namely (asset) tangibility, growth opportunities, non-debt tax shields,
profitability and firm size.
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where ¢ = 1—6, m = §3 and v is an one-way error component that includes
the individual firm fixed effects:

Vit = Qi + €4t

1%’ can

Both the short-run dynamics, g%, and the long-run coefficients, B =7

be jointly estimated in one stage.

Firms adjust at different rates according to the position of their actual
leverage relative to targets as well as the costs of their adjustment. To
capture this dynamic trade-off behavior, we develop the regime-switching,
dynamic threshold model:

Uit = (d1lit—1 + T12it) Lig<cp + (D2lit—1 + ToTit) Lig>cp + Vit

where 1 is an indicator function taking the value 1 if the event is true and
0 otherwise. Model represents an important extension of the (linear) partial
adjustment model, in that it allows for short-run asymmetries in two AR(1)
parameters (¢; and ¢,), the implied speeds of adjustment (61 =1 — ¢; and
02 = 1 — ¢,), and the short run coefficients (71 and 72) as well as long-run
asymmetries in the target leverage (8, and f35), conditional on the transition
variable, ¢;;, and the threshold parameter, c. For simplicity, the transition
variable, ¢;, is assumed to be stationary and exogenous.

Threshold partial adjustment models We derive the GMM estimators
and describe how the threshold parameter is estimated and its confidence
intervals are constructed. The fixed-effects (FE) estimates of ¢; and ¢, are
biased downward because the regressors are correlated with (unobserved)
firm fixed effects, o; (Nickell, 1981). This suggests that the FE estimator of
the speeds of adjustment, d; and - is biased upward.

To address this issue, we follow the GMM literature. Specifically, we
combine time series techniques on threshold modeling (Caner and Hansen,
2004; Hansen, 2000) with the existing GMM literature (Alvarez and Arel-
lano, 2003). We first rewrite:

Uit = (¢101,5—1 (¢) + mh@1it (¢))+(Paloit—1 (¢) + Thma (¢))+vit, vie = ites

where 617”_1 (C) = Eit—l 1{qit§0}, EQ,it—l (C) = git—ll{qit>c}' Next, to deal with
the correlation between the regressors and the firm fixed effects, we use the
first-difference transformation:

Al = ((ZslAgl,it—l (C) + 7r'1A3:17it (C)) + (¢2A£2,it—1 (C) + 7T/2Ax27it (C)) +Aej;

However, applying the pooled OLS estimator still produces biased estimates
since Al j1—1 (¢) and Aly ;1 (c) are correlated with Ae;;. Hence, we need
to find their instruments that satisfy the orthogonal condition with Ae;.
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Two obvious candidates for these instruments are ¢1 42 (¢) and f2.;:—2 (c),
as commonly used in the (just-identified) instrumental variable estimation
approach (AH-IV) (Anderson and Hsiao, 1982).

To improve the efficiency of the AH-IV estimator, we follow (Arellano
and Bond, 1991) and consider lagged values of {1 ;s (¢) and £3 42 (¢) as ad-
ditional instruments. We next construct the full GMM instrument matrices
for Al ;11 (c) and Aly 31 (c), denoted Wy;(c) and Woi(c), fori =1,..., N
and j =1,2:

Cjin (c)
Wli (C) = Ejvl]- (C) ,Ej,i2 (C)
Ciir—2(c), 4jir—2 (c)
We express the model in the matrix form:

Al =Z1(c)01+ Za(c)02+Ae=Z(c)0+ Ae
where Z (¢) = (Al1,-1(¢) ,AX1(¢)), Z2 (¢) = (Ala,—1(c) ,AX3(c)), Z (¢) =
(Zl (C) ) Z2 (C))a 91 = (¢1,7T/1)/, 92 = (¢2,7’[’/2)/, 0 = ( ! 0/), Al = (Ag’l’ . Agl )/,

!/
Al = (Db, M), D 1 () = (Aly 4 (€)M 1 (@), Mﬂ )=

! !

(Aggzl ( ) T AE;‘i,T—l (C)> ) AX] (C) = (Alel ( AX]/N )

(AXji2 (¢) s ..., AXjir () for j =1,2.

We can construct the associated instrument matrix for Z (c) as the fol-
lowing N(T' —2) x {(T — 2)(T — 1) 4+ 2K} matrix:

L AX;

W1 (C)

W(C) = , Wi (C) = (WM (C),AXU (C),ng (C),AXQZ' (C)), i=1,....N

WN (C)

By employing the moment conditions, E (W (c) Ae) = 0, we obtain a
GMM estimator of 6 (given a threshold parameter value, c) as:

f(c) = [z &)W () V()W (c)'Z(c)]_l [z W (@) V()W (c)'M]

The GMM theory suggests that an optimal (inverted) weighting matrix,
V' (¢), be given by the covariance matrix of the orthogonality conditions,
E (W (c) Ae) = 0.

Next, we derive the GMM estimator in two cases, with homoscedasticity
or heteroscedasticity. First, if e;; is independent and has homoscedastic
variance, o2, the GMM estimator can be simply computed in one step. The
covariance matrix of E (W (¢)’ Ae) = 0 is given by:

E (W; () Ae; AejW; () = Wi (¢) GW; (c)
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where G is a (T' — 2) x (T — 2) fixed matrix with 2’s on the main diagonal,
-1’s on the next sub-diagonals, and zeros otherwise. Thus, we obtain the
one-step GMM estimator by:

Ocrinn (€) = | Z () W (€) Varn (€)W (¢) Z (c)} - [Z (&) W (€) Varran (€)W (¢) Al

where Vg (¢) = 32, Wi (e) GWi (c).

If e;; is heteroscedastic, the one-step GMM estimator is inefficient. In
this more general case, we consider the following robust estimator of the
covariance matrix:

Varz (¢) =Y Wi (c) A& A&W; (o)

where Aé; = Al; (¢) — Z; (¢) Ocrnn (c) is the (T —2) x 1 vector of residuals
obtained from the one-step GMM estimation. We then obtain an efficient
two-step GMM estimator by:

. -1
Doz () = | Z/(e) W (€) Varnz () W (e) Z ()] |Z(0) W () Vanrarz (¢) W (e)f AL
Next, the threshold parameter, ¢, can be consistently estimated as:

¢ =argmin@ (c)
ceC

where C' is the grid set and Q(c) is the generalized distance measure:
20 -{Lwraco) {Limneo) {Lweaco
c) =1 yWile)Aé(e v Ve (¢ N W) Ae(e

where Aé (¢) = Al—Z (¢) Oz (¢). Since the model is linear in 6 for each
¢, we use a practical grid search algorithm to find a consistent threshold
estimate, ¢, over a grid set that consists of the support of the transition
variable, ¢. Following the literature, we use two cut-off points at the 15th and
85th percentiles to avoid potential extreme values of the transition variable
while ensuring there is a sufficient number of observations in each regime.

Under the maintained assumption that the transition variable, gy, is
stationary and exogenous, the GMM estimators of 6(c) are asymptotically
independent of the threshold estimate such that inference on 6 can proceed
as if ¢ were the true value, e.g., Hansen (1999, 200) and (Caner and Hansen,
2004). Hence, it is easily seen that the asymptotic distribution of Ocninia (c)
is normal with the covariance matrix estimated by:

Var <9GMM2 (c)) = [Z (e) W (¢) Vanrarz (€)W (¢) Z (c) o
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4.7 Dynamic Panels with Threshold Effect and En-
dogeneity

Seo and Shin (2014) address an important and challenging issue as how best
to model nonlinear asymmetric dynamics and cross-sectional heterogeneity,
simultaneously, in the dynamic threshold panel data framework, in which
both threshold variable and regressors are allowed to be endogenous. De-
pending on whether the threshold variable is strictly exogenous or not, we
propose two different estimation methods: first-differenced two-step least
squares and first-differenced GMM. The former exploits the fact that the
threshold variable is strictly exogenous to achieve the super-consistency of
the threshold estimator. We provide asymptotic distributions of both esti-
mators. The bootstrap-based test for the presence of threshold effect as well
as the exogeneity test of the threshold variable are also developed. Monte
Carlo studies provide a support for our theoretical predictions. Finally,
using the UK and the US company panel data, we provide two empirical
applications investigating an asymmetric sensitivity of investment to cash
flows and an asymmetric dividend smoothing.

4.7.1 The Model

Consider the following dynamic panel threshold regression model:

yir = (1, 25) ¢11 (i <)+ (L, 2%) dol (g > V) 4eir, i =1,.m; t=1,...,T,

(4.1)
where y;; is a scalar stochastic variable of interest, x; is the k1 x 1 vector
of time-varying regressors, that may include the lagged dependent variable,
1(-) is an indicator function, and g; is the transition variable. -~ is the
threshold parameter, and ¢; and ¢, the slope parameters associated with
different regimes. The regression error, €;; consists of the error components:

€it = Oy + Vi, (4.2)

where «; is an unobserved individual fixed effect and v; is a zero mean
idiosyncratic random disturbance. In particular, v; is assumed to be a
martingale difference sequence,

E (vit| Fi—1) =0,

where F; is a natural filtration at time ¢. It is worthwhile to mention that
we do not assume x;; or ¢;; to be measurable with respect to F;_1, thus
allowing endogeneity in both the regressor, x;; and the threshold variable,
q;t- But, as will be shown, efficient estimation depends on whether ¢;; is
exogenous or not. As we will consider the asymptotic experiment under large
n with a fixed T, the martingale difference assumption is just for expositional
simplicity. The sample is generated from random sampling across i.
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A leading example of interest is the self-exciting threshold autoregressive
(SETAR) model popularized by Tong (1990), in which case we have zj
consisting of the lagged y;’s and ¢t = i ¢—1.

We allow for both “fixed threshold effect” and “diminishing or small
threshold effect” for statistical inference for the threshold parameter, v by
defining (e.g. Hansen, 2000):

§ =0, =0dm “for0<a<1/2 (4.3)

It is well-established in the linear dynamic panel data literature that the
fixed effects estimator of the autoregressive parameters is biased downward
(e.g. Nickell, 1981). To deal with the correlation of the regressors with
individual effects in (4.1) and (4.2), we follow Arellano and Bond (1991)
and consider the first-difference transformation of (4.1) as follows:

Ayip = ' Ay + 6 X[, 13t (v) + Ay, (4.4)

where A is the first difference operator, 8 = (¢12, - ¢17k1+1)/, 6 =

k1x1 (k1+1)><1
¢9 — ¢, and

X,L' = ! and ]-i = R v > .
2% (1+k1) ( (171‘2,#1) 2t><(?/) < —1(git—1 > )

Let 0 = (ﬁ', 5, 7)/ and assume that 6 belongs to a compact set, @ = & xI" C
Rk, with k = 2k; + 2. It is worthwhile to note that the transformed model,
(4.4) consists of 4 regimes, which are generated by two threshold variables,
qi+ and ¢;+—1. This change in the model characteristic is relevant in inference
using the least squares estimation as discussed in Section 4.7.3.

The OLS estimator obtained from (4.4) is not unbiased since the trans-
formed regressors are now correlated with Aey. To fix this problem we need
to find an [ X 1 vector of instrument variables, (zgto, s ng)/ for 2 <ty <T,
such that either

/
E (2, A€itg, -, zipAcir) = 0, (4.5)
or, for each t = tg,...,T,

Notice that z; may include lagged values of (zj, ¢;¢) and lagged dependent
variables if not included in z;; or gi. The number of instruments may be
different for each time ¢.

4.7.2 Estimation

Depending upon whether ¢;; is endogenous or not and whether the con-
ditional moment restriction (4.6) holds or not, we will develop different
estimation methods.
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FD-GMM

We allow for the threshold variable ¢;; to be endogenous, and develop a
two-step GMM estimation. To this end we consider the [ x 1 vector of the
sample moment conditions:

5 (0) = >0 0),
=1

where , )
Zito (Ayity — B/ Awigy — 6 Xipo Lito )
9: (0) = : - (4.7)
zir (Ayir — B Azir — 6 XlpLir (7))
Also, let g; = g; (6o) = (thOAEito,-u,Z;TA&T), and Q = E(gig,) where Q
is assumed to be finite and positive definite. For a positive definite matrix,
W,, such that W,, - Q7L let

Jn (0) = Gn (0) Wign (0) . (4.8)

Then, the GMM estimator of 6 is given by
0= in J, (). 4.9
argmin Jy (9) (4.9)

Since the model is linear in ¢ for each v and the objective function .J,, (6)
is not continuous in v, the grid search algorithm is more practical. Let

_ 1 _ 1o
gin = = ng and  gan (7) = n Zgzz‘ ()
i=1 i=1

where
Zito AYit, Zity (Aity, Lite () Xity)
lgli = : y g2 () = :
X _
2 Ayir Sl ziv (Azir, Lir (7) Xir)

Then, the GMM estimator of # and §, for a given ~, is given by

(B0 500)) = (@20 (1) W 520 () ™" G20 () W 1.

A

Denoting the objective function evaluated at 3 (v) and & (v) by Jy, (v), we
obtain the GMM estimator of 6 by
~ .2 NN a N !
§=argminJ, (), and (5.8) = (B(3),6(3)) .
yerl
The asymptotic property of the GMM estimator, 4, which will be presented
in Section 4.7.3, is different from the conventional least squares estimator,

e.g. Chan (1993) and Hansen (2000).
The two-step optimal GMM estimator is obtained as follows:
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1. Estimate the model by minimizing .J,, () with either W,, = I; or

2 n . / —1 n . /
n > i Zito Zito n > i1 Zito Zito+1 0
-1 n . / 2 n . /
T 2ie Rito+1%5ty n >t Zito+1%4t0+1
. . —1 n . /
0 . : e D i1 ZT-1%p

Y ardp_y 2 Y wrdy
(4.10)

W, =

and collect residuals, Keit.
2. Estimate the parameter § by minimizing J,, (6) with

n

—1
1 o 1 n . n .
wo- (Aaa- hYava) . e
=1 =1

i=1

— — /
~ / !/
where §; = <A€it02¢t07 e AsiTziT> .

FD-2SLS

This subsection considers the case where the threshold variables, g;; and
git—1 in (4.4), are exogenous and the conditional moment restriction (4.6)
holds. That is, z; includes ¢;; and g;;—1. In this case, we can improve upon
the GMM estimator presented above. In particular, the threshold estimate,
4 can achieve the efficient rate of convergence, as obtained in the classical
regression model (e.g. Hansen, 2000), and the slope estimate, &5 can achieve
the semi-parametric efficiency bound (Chamberlain, 1987) under conditional
homoskedasticity as if the true threshold value, 7, is known. This strong
result can be obtained since the two sets of estimators are asymptotically
independent.

We consider two cases for the reduced form regression — the regression
of endogenous regressors on the instrumental variables: the first type of the
reduced form is a general non-linear regression where unknown parameters
can be estimated by the standard /n rate, and the second type is the
threshold regression with a common threshold.

The second case was also considered by Caner and Hansen (2004), albeit
in the single equation setup. Their approach consists of three steps; the first
two steps yield an estimate of the threshold value and the third step performs
the standard GMM for the linear regression within each subsample divided
by the threshold. However, this split-sample GMM approach does not work
with the panel data with a time varying threshold variable, ¢;;, because
it generates multiple regimes with cross regime restrictions. Furthermore,
their approach is not fully efficient. In this regard, we will develop a more
efficient estimation algorithm for the threshold value below.
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Reduced Form Here we consider general non-linear regressions for the
reduced form and later provide the asymptotic variance formula that cor-
rects the estimation error stemming from the reduced form regression. This
is practically relevant since the linear projection in the reduced form in-
validates the consistency of 6 when the structural form is the threshold
regression, e.g. Yu (2013).

The first-differenced model, (4.4) with the conditional moment condition,
(4.6) and the exogeneity of ¢, implies the following regression of Ay;; on z;:

E (Ayitlzit) = B'E (Azig]zit) + 6'E (Xjplzie) Lae (7) - (4.12)

Assume that the reduced form regressions are given by, for each ¢,

, I (.
E< 11’:}8’Lt |Zl-t) _ ( 17F1t (Z’Ltab].t) ) — Ft (z’it;bt)7 (413)

/ .
Thy 4 L, Fy, (23 bat) 2% (1+k1)

where by = (b),,bh;) is an unknown parameter vector and F is a known
function. Also let

Hi (zig;be) = E (Awmit|zie) = Fie (2ie; br) — For (zig; br) -

For instance, Caner and Hansen (2004) consider the linear regression and
the threshold regression for F;. If z;4_1 € z;, then Foy = 11

Note that there are two regressions for x;; due to the first difference
transformation and the possibility that z; varies over time. Furthermore,
it is not sufficient to consider the regression E (Ax;|z;;) only, due to the
threshold effect in the structural form (4.12).

The above representation in (4.12) and (4.13) motivates the following
two-step estimation procedure:

1. For each t, estimate the reduced form, (4.13) by the least squares, and
obtain the parameter estimates, b;, t = tg, ..., T, and the fitted values,

Fy=F (2z‘t; 3t>-

2. Estimate 6 by

. 1 2
o ﬁ Z Z €5t ((9, bt) s (414)
where
eit (0,br) = Ayir — B'Hy (zit;b¢) — 8" Fy (zig; br) Lit () -

This step can be done simply by the grid search as the model is linear
in 8 and 6 for a fixed 4. Thus, 3 () and 0 () can be obtained from
the pooled OLS of Ay;; on H;; and Fi'tlit (), and 4 is defined as the
minimizer of the profiled sum of squared errors, M, (7).
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This procedure produces a rate-optimal estimator for -, implying that
B and § can be estimated as if v, were known. In the special case with
T = tp, we end up estimating a linear regression model with a conditional
moment restriction. The above two-step estimation yields the optimal esti-
mate for 5 and ¢ provided that the model is conditionally homoskedastistic,
ie., E(Ac%|z) = 02, see Chamberlain (1987). While it requires to esti-
mate the conditional heteroskedasticity to fully exploit the implications of
the conditional moment restriction, (4.6) under more general setup, it is
reasonable to employ our two-step estimator and robustify the standard er-
rors for the heteroskedasticity. We will provide a heteroskedasticity-robust
standard error for B and 4. Further, the standard error is corrected for the
estimation error in the first step estimation of b.

Threshold Regression in Reduced Form  Suppose that z; includes
1 and z;;—1, 1 being the first element of z;, and

i = Tzl {g <7} + Dozl {gie > 7} + 13,
E (0;¢]2it) 0. (4.15)

This implies that

Ay = Mgzl {gie <7} + Mopziel {qie > 7} (4.16)
—Xgeziedl {qi—1 < v} — Nzl {qu—1 > 7} + ear,
E(e¢t|zit) = 0.
The parameters are subject to the constraints: A}, = (O,B'Flt), Ny, =
(61,09 2t), Ngyzie = B'wi—1, and Nyzip = @z — 01. Also, e =

Aeir + 15, (8 + 1{git > v} d2). Since the estimates of A and + are asymptot-
ically independent, we do not impose these constraints on A to estimate
to simplify the exposition.

Thus, we estimate the model as follows:

1. Estimate 7 by the pooled least square of (4.16), which can be done by
the grid search,” and denote the estimate by 7.

2. Fix v at 4 and estimate I'j, j = 1,2, in (4.15) by the OLS, for each t.

3. Estimate  and § in (4.12) by the OLS with v and the reduced form
parameters fixed at the estimates obtained from the preceding steps.
Denote these estimates by 3 and 4.

"That is, fix v and obtain &; (y) and S\jt (7), 3 =1,...,4 by the OLS for each . Then,
4 is the minimizer of the profiled sum of squared errors, >, , &2 (v) and Ajy = N\t (3) 5
j=1,..,4.
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Remark 2 OQur approach is different from that of Caner and Hansen, who
estimate the threshold parameter separately in the reduced and the structural
form. Their approach introduces dependence between the separate threshold
estimates, which invalidates their asymptotic distribution.® Intuitively, the
estimation error in the first step affects the second step estimation of vy since
the true thresholds are restricted to be the same in both reduced and structural
forms.

4.7.3 Asymptotic Distributions

This section develops asymptotic theories for the estimators presented in
the previous section. There are two frameworks in the literature. One is the
diminishing threshold assumption (Hansen, 2000) and the other the fixed
threshold assumption (Chan, 1993). For the GMM estimator we present the
asymptotics that accommodates both setups and for the 2SLS we develop
the asymptotic distribution only under Hansen’s framework. We also discuss
the estimation of unknown quantities in the asymptotic distributions such
as the asymptotic variances and the normalizing factors when an estimator
is not asymptotically normal.

FD-GMM

Partition 0 = ( '1,7),, where 61 = (3, (5’),. As the true value of 6 is J,,, the
true values of # and 6; are denoted by 6,, and 61, respectively. And define

—E (zity Al ) —E (it Lity (V) Xito)
G,B - ) . f(; (7) = )
Ixk —E (zir Azlp) x(k1+1) —E (ZiT]-iT () X; )
and
! i
{Eto—1 [2ito (L Zitg—1)" 17] Pto—1 () — Exy [2ite (L, mitg) |7] Pto (7) } 00
G"Y (")/) = : )
Ix1

{Er_1 [zir (L, zir—1)" |7] Pr—1 (’Y‘) — Er [zir (Lzir) |Y] pr () } S0

where E; [-|y] stands for the conditional expectation given ¢;; = v and p; (-)
denotes the density of ¢;;.

The true value of 3 is fixed at 3, while that of 6 depends on n, for which
we write d, = dgn~ ¢ for some 0 < o < 1/2 and 09 # 0. 6, are interior
points of ©. Furthermore, (2 is finite and positive definite.

8Lemma 1 in Caner and Hansen (2004) requires more restrictions. More specifically,
their (A.7) is true only when the threshold estimate is n-consistent, which is not the case
in the maintained diminishing threshold parameter setup. Accordingly, the high-level
assumption (17) in their Assumption 2 is no longer satisfied.
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This is a standard assumption for the threshold regression model as in
Hansen (2000).
(¢) The threshold variable, ¢;; has a continuous and bounded density, p;

such that p; (7)) > 0forallt =1,..., T (i) E¢ (zit (:L‘;t, :L‘;,tfl) |7) is contin-

uous at g, where E; (-|7) = E (*]gie = 7) and E; (zit (m;t,m;,t,l) |7) 0o #0
for some t.

The smoothness assumption on the distribution of the threshold variable
and some conditional moments are standard. However, we do not require
the discontinuity of the regression function at the change point. In other
words, the distribution of GMM estimator of the unknown threshold is in-
variant to the continuity of the regression function at the change point. This
is a novel feature of the GMM. Heuristically, the GMM criterion function
can be viewed as an extreme form of smoothing in the sense of Seo and
Linton (2007). As a consequence, we do not need a prior knowledge on the
continuity of the model to make inference for the threshold model.

Let G = (Gg,G5(79) Gy (7). Then, assume that G is of the full
column rank.

This is a standard rank condition in GMM. Then, we have:

Theorem 10 Under Assumptions 4.7.8-4.7.8, as n — 00,

b—p
vn < 53, ) “Lw (o, (Grata) ).
nl/2=2 (§ — )

The asymptotic variance matrix contains dg, and the convergence rate
of 4 hinges on the unknown quantity, a. These two quantities cannot be
consistently estimated in separation, but they cancel out in the construction
of t-statistic. Thus, confidence intervals for 6 can be constructed in the
standard manner. Let

where §; = g; (@) and

1 _1 y .
T n Lui=1 zltoAx n £Lui=1 ZZtO ito (’7) XZtO

éﬁz : , G5 =

TIL i=1 ZzTA$ — Z? 1 ZlleT (V)IXz'T

Then, G, may be estimated by the standard Nadaraya-Watson kernel es-
timator: that is, for some kernel K and bandwidth h (e.g. the Gaussian
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kernel and Silverman’s rule of thumb), let

AR Doit Fity [(Lﬂfz‘to—l)'K (L{O_l) — (L) K (%)} b
G, = :
S s [(L%‘T—l),K (qu*l) — (L, zir) K (L}?nﬂ 0
(4.17)
See Hardle and Linton (1994) for more detailed discussion on the choice of
kernel K and bandwidth h.
Furthermore, let V, = Q~1/2 (Gﬁ,Gg) and V, = Q_l/sz. Then, the
asymptotic variance-covariance matrix for the regression coefficient, 6; =

(8,0 ), can be consistently estimated by

N T
(vs’vs A4S v;vs> ,

while the t-statistic for v = 7 defined by

‘= V7 (¥ —70)
A UAAN

1.0 .7
!
ViV,

converges to the standard normal distribution. Therefore, the confidence
intervals can be constructed as in the standard GMM case.

Alternatively, the standard nonparametric bootstrap, which resamples
across ¢ with replacement, can be employed to construct the confidence
intervals. See Section 4.7.4 for further details.

FD-2SLS

This section presents the asymptotic theory for the 2SLS estimator of 6. A
few technical issues arise in the two-step estimation in the panel data such as
the multiple threshold variables, which is a consequence of the first difference
transformation. We begin with the case where the reduced form is the
regular nonlinear regression and the reduced form parameter estimates are
asymptotically normal. Next, we consider the case where the reduced form
also follows the threshold regression.

Since some elements of x;; may belong to z;, in which case the re-
duced form is identity, and some elements of F (z|z;) may be identical
to E (zit|zit+1) for some t, we collect all distinct reduced form regression
functions, Fy, t = ty, ..., T, that are not identities, and denote it as F'(z;,b),
where z; and b are the collections of all distinct elements of z; and by,
t = tg,...,T. Accordingly, we denote the collection of the corresponding
elements of x;;’s by §;, and write the reduced form as the multivariate cross
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section regression as follows:
§& = F(z;,b)+n,, (4.18)
E(nl=) = o.
Let b denote the least squares estimate, and we follow the convention
that F; (b) = F (z;,b), F; = F (2, bp), E=F (zi, l;) , etc, where by indicates
the true value of b, when there is no confusion. We consider two cases

explicitly. The first case is where bis asymptotically normal and the second
is the threshold regression.

Reduced Form This section considers the reduced forms, which allow
for stochastic linearization and thus the asymptotic normality of reduced
form parameter estimates. We directly assume the asymptotic normality of
b and the existence of a matrix-valued influence function, F below. More
primitive conditions to yield this asymptotic normality of b are provided in
the Appendix. Notice that |A| denotes the Euclidean norm if A is a vector,
and the vector induced norm if A is a matrix.

There exists a matrix-valued function, F (z;,b) such that E|F;|* < oo
and

Vv (b—1by) = (EF;F, Ly Fin; + o0, (1)
(=to) = (ERE) " 53 F

We begin with this high-level assumption because our main goal is to
illustrate how the estimation error in the first step affects the asymptotic
distribution of the estimator of the regression coefficients, 8 and ¢ and of
the threshold parameter, v in the second step. We introduce some more
notations. Recall the functions introduced in Section 4.7.2 and let

= Hi; (be) ]
;:47; ,b = ,
(ZIzl(Jl)xfi) [ Fit (by) L3t ()
for each ¢, and
Zi(1,0) = (Zitg (1, btg) » o B (7, b7)) -

(2k1+1)x(T—to+1)

Also, let e; be the vector stacking {Aaz-t + B4 (Azy — E(A«Tz‘t\zit))}tT:to-
Then, define

Mi(y) =E[E(7)E(v)], and Vily) =AM AW),
(2k1+1)><(2k1+1) (2k1+1)x(2k1+1)
where

Q (71,75) = B |(FP ) @i e

(2k141) ) % (21 1)+ Fin;

T
0 _ -1
A7) = (I(2k1+1)7 -E 9 Z (Hz(tﬁo) it (7)] (ERR) ) :
(2k1+1) X ((2k1+1)+kp) t=to
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For the asymptotic distribution of 4, we introduce:

T

Mz (1) = D [Be [((1F ) 80) ] e () + Bt [ (1 Fh0) 00)° 1] pes ()]

t=to

T
Va(y) = Z (Et [(6# (L Fl ;) 50)2 \7} pe (7) + Eiq [(ez‘t (1, F34) 50)2 |7] Di—1 (’Y))
t=to
T-1
+2 Z E¢ [eiteit—i-l (17 Fllzt) 90 (17 Fé,itJrl) 50’7] pe(7)-

t=to

Following the convention, we write V; = V;(vy) and M; = M; (v,) for
j=1,2.

We further assume:

The true value of 3 is fixed at 5, while that of § depends on n, for which
we write §,, = don~® for some 0 < aw < 1/2 and g # 0.

If a = 0, the asymptotic distribution for %4 is different from the one
obtained here. However, the convergence rate result in the proof of the
theorem is still valid.

(i) The threshold variable, g;; has a continuous and bounded density, p;,
such that p; (vg) > 0 forall t = 1,...,T; (i) E¢ (wit|7y) is continuous at -y, for

2
all ¢, and non-zero for some ¢, where wj; is either <eit (1, F{2t> 00 + €it+1 (1, F2’7it+1) (5[)) ,

((1,F1’7it> 50)2, or ((1 F) 50>2.

For some ¢ > 0 and some ¢ > 0, E (suptgml,,bo‘<€ |leit Fy (Zit,bt)|2+<) <
oo. Foralle > 0,E (SUPth,\bbeKe_ leit (Fy (zit, by) — Fy (zit))|2+<> =0 (¥79).

The minimum eigenvalue of the matrix, EZ;; () 2/, () is bounded below
by a positive value for all y e "'and t =1, ..., T.

The asymptotic confidence intervals can be constructed by inverting a
test statistic. In particular, Hansen (2000) advocates the LR inversion for
the construction of confidence intervals for the threshold value, 7, for which
we define the LR statistic as

LR, (1) = oM (7) — Mn (%)
M, (%)

Then, we present the main asymptotic results for the 2SLS estimator
and the LR statistic in the following Theorem:

Theorem 11 Let Assumptions 4.7.3-4.7.8 hold. Then,

Jn ( g: ?: ) L N0, M7 VMY (4.19)
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and Ny
nlT2 2 (5 — ) <, argmin <‘7"’ -w (7")) , (4.20)
Va reR 2

where W (r) is a two-sided standard Brownian motion and it is independent
of the limit variate in (4.19). Furthermore,

MQU
Va

where 02 = E (e%t).

=€ LR (y9) —5 inf (Ir] —2W (r)),

Note that the first step estimation error does not affect the asymptotic
distribution of 4, while it contributes the asymptotic variance of B and &
through 2. Estimation of the asymptotic variances of 3 and § is standard,
i.e. the same as in the linear regression due to the asymptotic independence.
The asymptotic distribution for 4 in (4.20) is symmetric around zero and
has a known distribution function,

1++/z/2mexp (—z/8) + (3/2) exp (z) © (—3v/z/2) — ((z + 5) /2) @ (Vz/2),

for x > 0, where ® is the standard normal distribution function. See Bhat-
tacharya and Brockwell (1976). The unknown normalizing factor n2aV2_U\/[22
can be estimated by V271M22, where

= S S () + ()9 ()]
= 33 (e () (M) ¢ e (020 ) (25 7))

_tO

4+ Z Z euas (1) 6 (1 iosr ) o (q —1 ) .

_tO

The normalization factor, V,~ Y Myo? for the LR statistic can be estimated

by Vi 'Mp62, where 62 = (n (T —to+1)) " 320, S/, é%. Notice that it

becomes 1 under the leading case of conditional homoskedasticity and the

martingale difference sequence assumption for e;. Hansen (2000) provides

the distribution function of the asymptotic distribution of the LR, statistic,
. . —z/2 2

which is (1 —e ) .

Threshold Regression in Reduced Form Now, consider the case where
the reduced form is a threshold regression, (4.15). The estimator, 0 is ob-
tained from the three-step procedure following (4.15). Despite the difference
in the estimation procedure, the asymptotic distributions of 0 can be pre-
sented by a slight modification of Theorem 11. In particular, the reduced
form regression (4.18) in the beginning of Section 4.7.3 is characterized by
the regression (4.15) given in Section 4.7.2.
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Corollary 12 Let Assumption 4.7.3 hold and \; = ( ;‘to7“" Q-T)/, ] =

1,...,4. Assume that A\{ — \o = n~%d1 for some non-zero vector 1. Assump-
tions, 4.7.3 and 4.7.8, hold with Fy 3 = Uieziel {qir < v} + Tarziel {qie > v}
and Fy iy = xy—1. Furthermore, assume that E]zit|4 < oo and Eeft < 0.
Then, the asymptotic distribution ofé 1s the same as in Theorem 11.

4.7.4 Testing
Testing for Linearity

The preceding asymptotic results provide ways to make inference for un-
known parameters and their functions. However, it is well-established that
the test for linearity or threshold effects requires us to develop the differ-
ent asymptotic theory due to the presence of unidentified parameters under
the null hypothesis (e.g. Davies, 1977). Specifically, we consider the null
hypothesis of interest as

Ho : 6o =0, for any v €T, (4.21)
against the alternative

Hy: 69 #0, for some vy eTl.
Then, a natural test statistic for the null hypothesis, Hy is

supW = sup W, (v)
yerl

where W,, () is the standard Wald statistic for each fixed =, that is,

Wa (7) =18 (7) S5 (7)1 (7),

where § (7) is the estimate of 4, given 7 by either the FD-GMM or FD-2SLS,
and Yj () is the corresponding consistent asymptotic variance estimator

. . . . —1
for ¢ (7). In the FD-GMM case, we employ X5 (7) = R (VS (v) Vs ('y)) R

where V; () is computed as in Section 4.7.3 with 4 = yand R = (0(k1+1)><k1 ,Ik1+1).
In the FD-2SLS case, we can simply use the same formula for the estima-

tion of the asymptotic variance of & () since the estimation error in v does

not affect the estimation of §. The supremum type statistic is an applica-

tion of the union-intersection principle commonly used in the literature, e.g.
Hansen (1996), and Lee et al. (2011).

The limiting distribution of supW depends on the associated estimation
methods. If § were estimated by FD-2SLS, as is well-known in the literature,
the limit is the supremum of the square of a Gaussian process with some
unknown covariance kernel, yielding non-pivotal asymptotic distribution. In
case of the FD-GMM, the Gaussian process is given by a simpler covariance
kernel, though it seems not easy to pivotalize the statistic.
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Theorem 13 (7) Conszder the FD-GMM estimation. Let G (y) = (Gg,Gs (7))
and D (7) = G (7)' Q71G (7). Suppose that inf,cr det (D (7)) > 0 and As-
sumption 4.7.8 (i) holds. Then, under the null (4.21), we have

d _ _ -1 _
spW % sup 2'G (7)' D ()" R [RD () ' R RD (1)1 G (1) Z,
ve
where Z ~ N (0,Q71).
(ii) Consider the 2SLS estimation. Suppose that Assumptions, 77, 77,
4.7.3(1), 4.7.3, and 4.7.3, hold. Then, under the null (4.21),

supW i>sug3(v)’M1 (7)™ R |[RMy ()" Vi (y) My () R’]_lRMl M 'B(),
yeE

where B (7y) is a mean-zero Gaussian process with the covariance kernel,
A7) Q2 (71,72) A7)

When the reduced form is also a threshold regression, however, our test
can be performed based on the model, (4.16). A null model in this case
might be that both reduced form and the structural equations are linear for
all ¢; that is,

Ho Mt — Aot = Agt — Ay =0, forally el and t =t,...,T. (4.22)

Repeating the discussion therein, the model, (4.16) is estimated by the
pooled OLS for each « and as such the construction of supW statistic is
standard (e.g. Hansen, 1996).

These limiting distributions are not asymptotically pivotal and critical
values cannot be tabulated. We bootstrap or simulate the asymptotic critical
values or p-values, see Hansen (1996) for the latter. Here we describe the
bootstrap procedure in details.

Let @ be either the FD-GMM or the FD-2SLS estimator and construct

— N N .
Agjr = Ayir — AzjyS — 0 Xjy L (9)
fori=1,...,n,and t = tg,...,T. Then,

1. Let ¢* be a random draw from {1,....n}, and X} = Xj=, ¢} = ¢i=t,
2l = zp¢ and Aej, = Agj. Then, generate

Ayl = Azl3 + Ael, for t=tg,...,T.
2. Repeat step 1 n times, and collect {(Ay}, X7, ¢, 25) i =1,...,n;t =tg, ..., T}.

3. Construct the supW statistic, say supW*, from the bootstrap sample
using the same estimation method for 6.

4. Repeat steps 1-3 B times, and evaluate the bootstrap p-values by the
frequency of supW* that exceeds the sample statistic, supW.

Note that when simulating the bootstrap samples, the null hypothesis is
imposed in step 1.
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Testing for Exogeneity

In this section we describe how to test for the exogeneity of the thresh-
old variable. Recently, Kapetanios (2010) develops the exogeneity test of
the regressors in threshold regression models, following the general prin-
ciple of the Hausman (1978) test (e.g. Pesaran et al., 1999). Similarly,
we can develop the Hausman type testing procedure for the validity of the
null hypothesis that the threshold variable is exogenous. Indeed, this is a
straightforward by-product obtained by combining FD-GMM and FD-2SLS
estimation methods and their asymptotic results.

Specifically, we propose the following t-statistic for the null hypothesis
that GMM estimate of the unknown threshold, ¥4/as, is equal to the 2SLS
estimate, Y995g:

vn (Yamm — YasLs)
A A A A A~ oAN—L oL
VIV, = Vs (V) Ve,

tg =

where the denominator is derived as in Section 4.1. Notice that
NN o~ AN —1 oA
YosLs = Yo + Op (”_1/2 (VVIVW - ViVs (‘/SIVS> Vs’vw>>

due to its super-consistency. Then, it is easily seen that the asymptotic dis-
tribution of the ¢-statistic is the standard normal under the null hypothesis
of strict exogeneity of the threshold variable, g;;.

4.7.5 Monte Carlo Experiments & Empirical Applications
See Seo and Shin (2014).

4.8 Bootstrap-based Bias Corrected Within Esti-
mation of Threshold Regression Models in Dy-
namic Panels

Dang, Kim and Shin (2010) propose new estimation procedure to analyze
asymmetric threshold effects in dynamic panels with unobserved individual
effects when the number of time periods is fixed by combining nonlinear
threshold regression techniques with FD-GMM estimation techniques. Kim
and Shin (2014) advance an alternative approach to an analysis of dynamic
panels with threshold effects, called the bias corrected within estimation
procedure based on an iterative bootstrap mechanism by extending the ap-
proach in linear dynamic panels applied by Everaert and Pozzi (2007). Con-
sidering that the over-fitting bias and the weak instrument problem associ-
ated with the FD-GMM estimators will become more serious in the thresh-
old dynamic panels, we expect that the proposed estimation procedure will
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achieve the higher efficiency relative to the FD-GMM estimators. Monte
Carlo simulation exercises confirm the validity of our proposed approach.
In an application to the dynamic threshold version of Tobin’s Q investment
function using the UK company panel data, we are able to find strong ev-
idence in favor of nonlinear dynamic threshold effects in firm’s investment
function.

4.8.1 Model

Consider the following dynamic panel threshold regression model:

Yit = (01yi—1 + B1xit) 1 (qie <) + (doyit—1 + Boxar) 1 (e > ) + €at,
(4.23)
fort=1,...,N; t=1,...,T, where y;; is a a scalar stochastic dependent vari-
able, x;; is a k x 1 vector of weakly exogenous variables, 1 () is an indicator
function, ¢;; is the transition variable with v being a threshold parameter,
¢, and B, for i = 1,2 are the corresponding heterogeneous parameters asso-
ciated with two different regimes, and ¢;; consists of the error components,’

€it = Qi + Vg,

where «; is an unobserved individual effect and v;; is a zero mean idio-
syncratic random disturbance. This is a panel extension of the dynamic
threshold regression model in time series.

We make the following assumptions:
Assumption 1. {v;} are iid and independent of 7, and y;; with E (vi) =0,
Var (vi) = 0% and have the finite 4th moment.
Assumption 2. «; are iid with F (o) = 0, Var (o;) = 02 and have the finite
4th moment.
Assumption 3. y;; is geometrically ergodic and the initial observations satisfy
the mean stationarity condition. Stability condition, |¢;| < 1 for i = 1,2 or
global stability condition, |¢; + ¢| < 2.
Assumption 4. Exogenous variables, x;; are either I(0) or I(1), correlated
with «; but not correlated with v;;.The threshold variable, ¢;; is stationary
and exogenous or predetermined uncorrelated with «; and v;.
Assumption 5. N is large and T is fixed.

All these assumptions are fairly standard in the literature, e.g. Alvarez
and Arellano (2003) and Hansen (1999).

To simplify the notations we write (4.23) as

i = 01213t (7) + 05223t (7) + €ie = 0'24¢ () + €ar, (4.24)
where
z1 () = [ yix’t;l ] X 1(qie <) 22,0 (7) = [ y;’t,zl ] x 1(qit >7);
‘A ‘A

9The extension to the panels with the time-specific dummy effects is straightforward.
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win= [ o= ] e[ o= 2]

Taking the within transformation of (4.24), we obtain

it = 0'Zit () + it (4.25)
where
Uit = Yit — Ui Zat (V) = 2at (V) — Zi (1) 5 Vit = vir — U3
T L ,)
5. — =1 .z _ 1 1,it
yz—T Zyzta Zz —T Z<Z2zt 7 >
=1 =1
Next, we write (4.25) in the matrix form:
y=7Z(y)0+v, (4.26)
where
y1 z1 () [ V1 ]
S’ = , L (7) = , V= ’
YN | nrxa zZy (7) NTx2(k+1) | VN | N
Jin 7y (7) [ o1 ]
yi= ’Zi(’y): , Vi =
- .
Zir (7) Tx2(k+1) L YT 171

Uir | poq

For given v and for large N and large T, § can be consistently estimated

by the following within estimator:
(4.27)

Suppose that the consistent estimator of the threshold parameter is available
and denoted, 4. Then inference on é can proceed if 4 were true value. Hence,

8 (7) VN (8,9),
where the consistent estimate of €2 can be obtained either by
N T -1
Ly mmmor) |
i=1 t=1
if the errors are assumed to be iid or by

X N T AQ N T -1
%ZZMWMO(ZZsz mﬂzzmwmﬁ,
=1 t=1

=1 t=1 i=1 t=1

where 0y, (§) = it — & (%) Zit (), if the errors are allowed to be conditional

heteroskedastic.
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4.8.2 Bootstrap-based Bias Corrected Within Estimator

It is well-established in the linear dynamic panels that the fixed effects esti-
mator of the autoregressive parameter is biased downward for fixed 7" (Nick-
ell, 1981). Recently, in order to deal with the correlation of the regressors
with individual effects, Dang, Kim and Shin (2012) adopt the FD-GMM and
System-GMM approaches, and propose the extended GMM methodologies
for consistently estimating the regime-specific parameters of the dynamic
panel threshold regression model. Seo and Shin (2014) extend this frame-
work further by allowing for both regressors and the threshold variable to
be endogenous.

Here, we follow Everaert and Pozzi (2007), and develop an alternative
bias corrected estimator based on an iterative bootstrap procedure. It is
well-established that the GMM estimators tend to have relatively large stan-
dard errors and are subject to substantial small sample biases due to too
many moment conditions, especially as T rises, e.g. Ziliak (1997). In this
regard, Everaert and Pozzi (2007) propose the bootstrap-based bias correct-
ing algorithm, which aims to reduce the bias of the within estimator while
maintaining its higher efficiency relative to GMM estimators. Furthermore,
Dang, Kim and Shin (2013) conduct a comprehensive empirical and simula-
tion study in the corporate capital-structure, so as to compare and evaluate
the finite-sample performance of all of the existing estimators for estimating
both the long-run target leverage relationship and the associated speed of
adjustment, in fixed T panels with unobserved individual effects, and doc-
ument strong evidence that the bootstrap bias corrected within estimator
outperforms the FD-GMM estimators in terms of estimation accuracy and
efficiency. Another main advantage of the bootstrap algorithm is that this
approach can be applied in a straightforward manner to the complex model
with higher-order lagged regressors in which analytic corrections are not
easily available.

For convenience we define & () = & without loss of generality. When T
is fixed, it is easily seen that

E (8) £ 6.

Suppose that using the repeated sampling experiment we are able to generate
P Ak
a sequence of J biased estimates, d; (9),...,0; (d). Then, it follows that

E()—hm 25

It is then clear that & will be an unbiased estimator of & if the following
condition holds:

J
6= lim Ez: (4.28)
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In other words, if we would sample repeatedly from a population with para-
meters & and calculate the estimate 3; (5) in each sample, & is an unbiased
estimator of § if the average of 5"; (1_5), j =1,...,J corresponds to the FE
estimate, & based on the original data. See also Tanazaki (2004).

A bias corrected estimate of d can be obtained by searching over the
parameter space until d is found that satisfies (4.28). This search is imple-
mented using the following iterative bootstrap algorithm: The core of this
algorithm consists of a bootstrap procedure which simulates the distribution
of the FE estimator when sampling from (4.24) with the initial values of a
parameter vector, denoted 5(0).

1. Estimate the individual effects by
&=(T-1)"'D (y-23q)).
where & = (a1,...,ayn), D = Iy ® er_1, Iy is an N x N identity
matrix and er_; = (1,...,1)" is the (T'— 1) x 1 vector of ones. Then
estimate the residual vector by
V=3 — Zd ),
or rescale them as (see MacKinnon, 2002)

- T .
fﬁk _ T—l Vit _ 1 Z Vis
= N1 2\ Jmy T-1 Vs |

s=2

where m;; is the ith diagonal element of the idempotent matrix, M =
N
Ty — 2/ (z’z) 7

2. We generate the bth bootstrap samples for b =1, ..., B as follows:

(a) Draw the bth bootstrap sample residual vector, denoted v® from
either v or v* and generate a bootstrap sample by

y® = Z(b)s(o) +Dé& + v,

where zgf) (v) = (zﬁ)t () ,zgi)t ('y)) = { 1(2)711 (qie <) ,yibt),ll (qit > 'Y)}

and we condition on the initial value, y;; such that yg)) = Y;1.

(b) Compute the FE estimator by (4.27), namely

5® (5(0)) _ (z(bwz(b))‘l 74000
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3. Repeat the step 2 B times and calculate the empirical mean by

B
_ B ~(b) (=
50)=8"Y8" (50)-
b=1
Define the difference between & and (_5(0) by

(a) If by =0, 5(0) will be an unbiased estimator of ¢ by the condi-
tion, (4.28).

(b) Otherwise update

5(k+1) = S(k) + b(k), k=0,1,2,...

and iterate the bootstrap procedures outlined in 1-3 until the
condition, (4.28) is satisfied.

Following Everaert and Pozzi (2007), we will set the number of bootstrap
samples B equal to 1000 and use the convergence criterion ‘b(k)‘ < 0.005
and set the upper bound on the number of iterations equal to 50. We also
use the FE estimator as 5(0).

We now discuss how to generate the residual vector, () in details. Re-
sampling ¥(®) in a nonparametric way has the advantage that it does not
require an explicit distributional assumption for v. As we may also allow for
temporal dependence in v we consider two alternative resampling schemes.
First, when v;; is assumed to be iid across 7 and over ¢, we resample from
~(b) (~

v, = (v

ter o Uiy tp) s i =1, N,

where the vectors of indices (i1, ...,in) and (t2, ..., tr) are obtained by draw-
ing with replacement randomly from (1,..., N )' and (2, ..., T)', respectively.
Second, if €;; exhibits temporal dependence, e.g. conditional heteroskedas-
ticity, we will use the wild bootstrap (Goncalves and Kilian, 2004) and
resample from

O = (1198, ooy Tir®ig) 5 i = 1,00, N,

where the index j is drawn with replacement from (1,..., N )/ and 74 is a
binomial random variable with mean 0 and variance 1 that takes on value
-1 and 1 respectively with probability 1/2. The advantage is that it is
asymptotically valid for either T, N or both grow large. We then collect all
the resampled residual vectors in

0 = (6@’, ...,v}f}”) .
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4.8.3 Estimation of and Testing for Threshold Effects

We have developed the optimal estimation procedure for the threshold au-
toregressive model in dynamic panels under the implicit assumption that the
value of the threshold parameter, v is given. This section will address con-
sistent estimation of v and develop the bootstrap-based testing procedure
for the null of no threshold effects in dynamic panels.

We follow Chan (1993) and Hansen (1999) and obtain the consistent
estimator of v in by

¥ = argmin @1 (7), (4.29)

where Q1 () is the generalised minimum distance measure given by

Q1(7) =¥ (¥ (), (4.30)

~ = +B ~B . .
where V(7)) =y —Z(y)0 (v) and 6 () is the bootstrap-bias corrected
estimator given ~. Once 4 is obtained, we obtain

57 5% () v=v(4): 6% = N(Tl_Q)Ql ). (4.31)
Since Q1 () depends only on ~ through the indicator function, this is a
step function with most N (T' — 2) steps with the steps occurring at distinct
values of the observed threshold variable ¢;;. Thus the minimisation problem
can be reduced to searching over the values of v equalling the distinct values
of g;; in the sample. In practice we need to truncate the smallest and largest
10% for example. The remaining values constitute the values of 4 which can
be searched for 4. For each of these values regression are estimated yielding
the SSE and the smallest value yields the estimate 4 and SB = 33 (9).

We follow Hansen (1996) and develop a bootstrap procedure to simulate
the asymptotic distribution of the LR test statistic for the null hypothesis
of no threshold:

HO : 61 == 52.

Under the null of no threshold, the model (4.23) reduces to
Yit = G1Yie—1 + B X + € = 0125, + €ir,
where z¥, = (yit_1,%},)". Taking the within transformation, we have
Jit = 0123 + i, (4.32)

where z}, =z}, — 71 ngzl z,, from which we obtain the bootstrap-bias cor-
rected estimator 51 , and the corresponding generalised minimum distance

measure:
I~
V,

Qo=+
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o~ ~ A~ - <Br_ ... .
where v = {vit} with 0 = 9i — 0, /th. The LR test statistic is then given
by

LR = (4.33)

Qo — Q1 (%)

&t
We take the residuals, ¥; = ¥; (%) (see (4.30)), group them by individual
i=1,...,N, namely ¥; = (92, ..., 0;7) and treat (¥1, ..., V) as the empirical
distribution to be used for bootstrapping. We then draw (with replacement)
a sample of size N from the empirical distribution and use these errors to
create a bootstrap sample under Hy and under the alternative, separately.
Treating the initial value y;; as given, we use the bootstrap sample and es-
timate the model under the null and under the alternative and calculate the
bootstrap value of the LR test at each replication. We repeat this proce-
dure a large number of times, e.g. 1000 times and calculate the percentage
of draws for which the simulated statistic exceeds the actual. This is the
bootstrap estimate of the asymptotic p-value for LR under Hy. Hansen
(1996) shows that a bootstrap procedure attains the first-order asymptotic
distribution, so p-values are asymptotically valid.

4.8.4 Empirical Application: To be filled.

Many studies in empirical corporate finance have employed dynamic panel
data models to examine the dynamic behavior of corporate financial policy
variables. However, a major difficulty in using these models is determining
how to obtain consistent and efficient estimates, especially in short panels
of company data, in the likely presence of (1) unobserved heterogeneity
and endogeneity, (2) residual serial correlation, or (3) fractional dependent
variables. Which estimators should researchers use in these contexts?

To address this important research question, Dang, Kim and Shin (2014)
investigate two classes of advanced econometric techniques for dynamic
panel data models, including (1) the instrumental variable (IV) approach,
the first-difference GMM (FD-GMM), the system GMM(SYS-GMM), and
the long difference GMM (LD- and LDP-GMM), and (2) the bias-corrected
estimators, based on either an analytical approach (LSDVC) or an itera-
tive bootstrap procedure (BC). Further, we consider an augmented Tobit
estimator (DPF) that accounts for the fractional nature of the dependent
variable. We conduct Monte Carlo simulation experiments and present two
empirical applications, to capital structure and cash holdings, to examine
the relative performance of the estimators.

Our simulation and empirical results show that the bias-corrected esti-
mators, BC and LSDVC, are generally most appropriate and robust for es-
timating dynamic panel data models in empirical corporate finance. These
methods can estimate the autoregressive coefficient and the coefficients on
the explanatory variables with the most accuracy and efficiency. In our
simulations, they are also robust to changes in the key control parameters,
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including the relative magnitude of the fixed effects and the relative ex-
planatory power of the regressors. Of these two methods, BC is generally
preferable to LSDVC because it performs well even in regressions with au-
tocorrelation, and in models with higher lag orders, such as the ARDL(2,1)
model. In the specific case where the dependent variable is a ratio, and
censored at 0 and 1, BC and LSDVC may still provide reasonable estimates,
although at a high level of censoring researchers should consider using DPF
instead. In our empirical applications using capital structure and cash hold-
ings, we find that BC and LSDVC produce the most plausible estimates of
the speeds of dynamic leverage and cash adjustments, as well as the most
reasonable estimates of the coefficients on the explanatory variables. Our
analysis thus provides additional insights into empirical research studying
target leverage and cash adjustment behaviors. Our results, obtained using
these appropriate estimators, suggest that firms adjust toward their target
leverage at a moderate rate, between 26% and 28%, but move toward their
target cash holdings more quickly, with a speed of 48%.

We find that the IV/GMM estimators generally perform poorly in our
simulation and empirical studies. Their estimates of the autoregressive co-
efficient tend to be biased and unreliable. Moreover, these methods are very
sensitive to the presence of unobserved heterogeneity, endogeneity, and, in
particular, serially correlated errors. Overall, our study suggests that the
IV/GMM estimators should be used with extreme care.

While our comprehensive simulations have systematically examined the
most important issues in the estimation of dynamic panel data models, we
cannot account for all of the specific settings and minor issues encountered
in the vast empirical research literature. In addition, while our simulation
results should generalize to many areas of corporate finance, our empiri-
cal applications are restricted to two topics, namely capital structure and
cash holdings. Hence, it would be useful for future research to verify our
simulation and empirical findings in other areas of corporate finance.

4.9 Further Issues

Threshold Error Correction Models in Dynamic Panels with Homoge-
neous Long-run Relationship

PMG Estimation of Threshold Dynamic (Heterogeneous) Panels

Smooth transition regression in dynamic heterogeneous panels

e Markov switching panel data models

Cross Section Dependence
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Chapter 5

Cross Sectionally Correlated
Panels

Cross-section dependence, CSD, seems pervasive in panels, it seems rare
that the covariance of the errors is zero. In recent years there has been much
progress in characterising and modelling CSD. Phillips and Sul (2003) note
the consequences of ignoring CSD can be serious: pooling may provide little
gain in efficiency over single equation estimation; estimates may be badly
biased and tests for unit roots and cointegration may be misleading. CSD
has always been central in spatial econometrics (discussed by Baltagi, 2005)
where there is a natural way to characterise dependence in terms of distance,
but for most economic problems there is no obvious distance measure. For
instance, trade between countries reflects not just geographical distance, but
transport costs (transport by sea may be cheaper than by land), common
language, policy and historical factors, such as colonial links. For large T,
it is straightforward to test for cross-section dependence either using the
squared correlations between the residuals, the Breusch-Pagan variant, or
the correlations themselves. Pesaran, Ullah and Yamagata (2007) survey
the various tests and propose new ones. Sarafidis, Yamagata and Robertson
(2009) suggest a test for the case where N is large relative to 7.

5.1 Overview on Cross-section Dependence

This section mainly consists of the summary of Chapters 7 and 8 in Smith
and Fuertes (2012).

5.1.1 Representations of CSD

There are various sources of CSD (neighborhood or network effects, the
influence of a dominant unit or the influence of common unobserved factors)
and various representations of CSD. Spatial models give the N x 1 vector of

115
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errors the structure
€t = W&t

where ¢, is cross-sectionally independent and W is a known (possibly time-
varying) matrix, reflecting, for instance, whether the units share a common
border. This can be used to represent spatial autoregressive, moving average
or error component models. Pesaran and Tosetti (2009) discuss the links
between the various forms of CSD and give more precise definitions.

Factor models have the errors reflect a vector of unobserved common
factors

Vit = 2z + Bimit + vife + it

where y;; is a scalar dependent variable, z; is a k, x 1 vector of variables
that do not differ over units, e.g. intercept and trend, x;; is a k, x 1 vector of
observed regressors which differ over units, f; is an 7 x 1 vector of unobserved
factors, which may influence each unit differently and which may be corre-
lated with the x;, and e; is an unobserved disturbance with F (g4) = 0,
E (51275) = o2, which is independently distributed across i and (possibly) t.
The covariance between the errors e; = ’yg ft + €4t is determined by the fac-
tor loadings 7,. Notice that if f; is correlated with x;, as is likely in many
economic applications such as global cycles, then not allowing for CSD by
omitting f; causes the estimates of 3; to be biased and inconsistent.

Infinite VARS treat the CSD as reflecting completely flexible interde-
pendence between the N x 1 vector of observations on each unit (variable)

Y = Pyp1 +wy

and consider approximations to this structure as N — oo (Chudik and
Pesaran, 2009).

Kapetanios, Mitchell and Shin (2010) have an interesting non-linear
model of endogenous cross-section dependence, which can capture aspects
of herding.

5.1.2 Weak and strong CSD

With weak CSD, the dependences are local and decline with V. This could
be the case with spatial correlations, where each cross-section unit is corre-
lated with near neighbors but not others; with strong CSD the dependences
influence all units. The distinction can be expressed in various ways. Sup-
pose the elements of y; are stationary, e.g. growth rates, and the weighted
average of the elements 4; = Zfil yit/IN, where the weights are ‘granular’,
go to zero as N — oco. Then with weak CSD the variance of ; goes to zero
as N — oo. If there is strong CSD it does not, for instance there may be a
global cycle in g;. If there is weak CSD the influence of the factors, sz\i1 2
is bounded as N — oo, if there is strong dependence it goes to infinity with
N. If there is weak dependence, all the eigenvalues of the covariance matrix
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of the errors are bounded as N — oo. If there is strong dependence, the
largest eigenvalue goes to infinity with N. Bailey, Kapetanios & Pesaran
(2012) who characterise the strength of the dependence in terms of the ex-
ponent of CSD, defined as a = In(n) = In(/N) where n is the number of
units (out of the total V) with non zero factor loadings. In the case of a
strong factor o = 1. Bailey et al. find that their estimates for a variety of
cases suggest a < 1.

CSD is central to all the issues discussed in these notes. For instance,
there is a growing literature on testing for structural change in panels. How-
ever, the apparent structural change may result from having left out an un-
observed global variable, f;. If f; is omitted and the correlation between f;
and z;; changes, this will change the estimate of 3; giving the appearance
of structural change. Similarly, an omitted factor may give the impression
of non-linearity.! Since unobserved factors play a major role in the treat-
ment of CSD, we begin by discussing the estimation of such factors. The
implications for estimation are different depending on whether f; are merely
regarded as nuisance parameters that we wish to control for in order to
get better estimates of or whether they are the parameters of interest: one
wishes to estimate f; as variables of economic interest in their own right.

5.1.3 The correlated common effect estimator

If one just wishes to treat the factors as nuisance parameters and remove
the effect of CSD, a simple and effective procedure, for large N and T,
is the correlated common effect, CCE, estimator of Pesaran (2006). This
involves adding the means of the dependent and independent variables to
the regression:
Yit = 210G + T B; + 00l + 03¢ + wit

To see the motivation, assume a single factor and average (33) across units
to give:

_ _ 15 — 7 _ — 5\ /

Je=za+TB+3fi+a+ N (8- B) zi

fim e — B —e - NS (5:- B) )

so the y; and z, provide a proxy for the unobserved factor. Notice that the
covariance between ¢; and €;; goes to zero with N, so for large N there is
no endogeneity problem. The CCE generalises to many factors and lagged
dependent variables, but requires that 74 or the vector equivalent, is non-zero.

This formulation assumes heterogeneous coefficients, there are homoge-
neous versions. There are sometimes economic reasons for adding averages,

' Cerrato, de Peretti and Sarantis (2007) extend the Kapetanios, Shin and Snell (2003)
test for a unit root against a non-linear ESTAR alternative to allow for cross-section
dependence.
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but in other cases the economic interpretation is not straightforward. In a
variety of circumstances estimating the factors by the means, as the CCE
does, seems to work better than estimating them directly by the principal
component estimator (Bai, 2009) and Westerlund & Urbain (2011) examine
why this should be the case.

5.1.4 Uses of factor models

One can distinguish two different types of problem that the factor models
are used for. The Pesaran approach to the role of unobserved factors in
panel data models is primarily motivated by the need to allow for "error"
cross-sectional dependence. The aim is to estimate the (mean) coefficient
of z;; allowing for the possibility of error cross-sectional dependence and/or
missing unobserved effects, irrespective of whether f; are I(0) or I(1).

Alternatively, in some applications it might be relevant to view the un-
observed factor as "missing" (omitted) common effects. An example of the
latter is "technology" in the aggregate production function. In modelling
error cross-sectional dependence the error of each cross section unit should
have mean zero (otherwise the model suffers from omitted variables) and
could be serially correlated. The errors could also be I(1). But if the aim is
to test for cointegration between observables, y;; and z;; (which could also
contain observed common effects such as oil prices), and if we maintain the
possibility that the errors of the relationship between y;; and x; can be I(1),
then it is clear that y;; and x; cannot cointegrate.

One could, hypothesize instead that y; and x; and f; are cointegrated
where f; is an "unobserved" factor. Even if such a possibility existed, it
may not be relevant if the economic relation of interest is between y;; and
Zit; e.g. in the case of PPP or UIP.

In the case where the common factor represents a missing variable, such
as the technological variable in the production function, the null of interest
to the economist is in fact that y; (log output per man fihour) ki (log
capital per man hour) and f; (global technology) are cointegrated. The role
of f; is not to model error cross-sectional dependence, but is an integral part
of the model explanation, which happens to be unobserved. In this case one
could try to obtain proxies for f; - some in the literature assume that f; is a
linear trend with a stationary component, others assume that it is a latent
variable and use HP type filter to identify and measure it. In the context of
growth convergence one might estimate f; by the cross sectional average of
y;t over ¢. But, given the unobserved nature of f;, there will be some degree
of arbitrariness associated with these choices. For example, how can we
establish that f; is I(1) or trend stationary? Not knowing whether f; is I(1)
or trend stationary, how can we test that y;, k; and f; are Cointeglrauted.2

2In the case of testing for panel unit roots, the cross-sectionally augmented CADF test,
CADF is a joint test of a unit root and a stationary f;.
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5.2 Factor models

The meaning of the term ‘factor’ depends very much on context and it has
a variety of different meanings in different areas. Here it means that some
observed variables x;, ¢ = 1,2,..., N are determined by some unobserved
factors, fj, j=1,...,r:

T
Tt = Nio + Z Xijfit + et
j=1
Aij are often called factor loadings, the e;; are idiosyncratic effects. Usually
r is much smaller than N so the variation in a large number of observed
variables can be reduced to a few unobserved factors which determine them.
Although the notation suggests a panel structure, this need not be the case.
T often is but need not be time periods, ¢ may index cross-section units,
variables, or other things.

5.2.1 Uses

Factor models are used in various applications:

e In economics the oldest is probably the decomposition of time series
into unobserved factors labelled trend, cycle, seasonals etc. This re-
mains a common quest.

e More generally, it may be believed that the observed series are gen-
erated by some underlying unobserved factors and the objective is to
measure them. This was developed most extensively in psychomet-
rics, where the z;; are answers to a variety of questions by a sample
of people. The underlying factors are aspects of personality, e.g. neu-
roticism, openness, conscientiousness, agreeableness and extroversion.
It has also been used in economics for unobserved variables like: de-
velopment, natural rates, permanent components, core inflation, etc.

e Factor models can be used to measure the dimension of the indepen-
dent variation in a set of data, e.g. how many factors are needed to
account for most of the variation in w;: For I(1) series these dimen-
sions may be the stochastic trends.

e Factor models can be used to reduce the dimensionality of a set of
possible explanatory variables in regression or forecasting models, i.e.
replace the large number of possible x;; by a few fj; which contain
most of the information in the ;. This may reduce omitted variable
problems.

e Factor models are used to model residual cross-section dependence in
panel data models.
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e Factor models have been used to choose instruments for IV or GMM
estimators when there is a large number of potential instruments.

5.2.2 Estimation Methods

There are various ways to estimate factors:

e Univariate (N = 1) filters (e.g. the Hodrick-Prescott filter for trends).

e Multivariate (N > 1) filters such as the Kalman filter used to es-
timate unobserved-component models, Canova (2007) discusses this
approach.

e Multivariate judgemental approaches, e.g. NBER cycle dating based
on many series.

e Using a priori weighted averages of the variables.

e Deriving estimates from a model, e.g. Beveridge Nelson decomposi-
tions which treat the unobserved variable as the long-horizon forecast
from a model.

e Principal component based methods.

The relative attractiveness of these methods depends on the number of
observed series, N, and the number of unobserved factors, r. The method
emphasised here is Principal Components, PC. This can be appropriate for
large N small r. Unobserved component models for small N tend to put
more parametric structure on the factors, which PCs do not. As always size
of N and T are crucial. It may be the case that there are some methods
that work for small N, other methods that work for large /N, but no obvious
methods for the medium sized N that we have in practice.

Factor models have a long history. In the early days of econometrics, it
was not clear whether the errors in variables model (observed data generated
by unobserved factors) or the errors in equation model was appropriate and
both models were used. From the late 1940s the errors in equations model
cam to dominate. The basic approach to measuring unobserved variables by
the principal components (PCs) of a data matrix was developed by Hotelling
(1933), then a Professor of Economics. Later, Richard Stone (1947) used
this method to show that most of the variation in a large number of national
accounts series could be accounted for by three factors, which could be
interpreted as trend, cycle and rate of change of the cycle. Factor analysis
was extensively developed in psychometrics and played relatively little role in
the development of econometrics, which focussed on the errors in equations
model. There are some exceptions, such as the use of it by the Adelman’s to
measure development, and factor interpretations of Friedman’s permanent
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income but they were relatively rare. However, in the last few years there
has been an explosion of papers on factor models in economics. The original
statistical theory was developed for cases where one dimension, say N was
fixed and the other say T went to infinity. It is only recently that the theory
for large panels, where where both dimensions can go to infinity, has been
developed.

5.3 Calculating Principal Components

5.3.1 Static Models

Suppose that we have a T x N data matrix, X with typical element x;,
observations on a variable for units ¢ = 1,..., N and periods t = 1,...,7T.
But, PCs can be applied to lots of other types of data. The direction in
which you take the factors could also be reversed, i.e. treat X asan N x T
matrix. We assume that the T' x N data matrix X is generated by a smaller
set of r unobserved factors stacked in the T'xr matrix F. In matrix notation,

X=FA+FE

where A is an r x N matrix of factor loadings and F is a T' x N matrix of
idiosyncratic components. Units can differ in the weight that is given to each
of the factors. Strictly factor analysis involves making some distributional
assumptions about e;; and applying, say ML to estimate the factor loadings,
but we will use a different approach and estimate the factors as the PCs of
the data matrix.

The Principal Components of X are the linear combinations of X that
have maximal variance and are orthogonal to (uncorrelated with) each other.
Often the X matrix is first standardised (subtracting the mean and dividing
by the standard deviation), to remove the effect of units of measurement on
the variance, X’X is then the correlation matrix. To obtain the first PC we
construct a T'x 1 vector fi = Xa; such that f]fi = o/ X' Xa; is maximised.
We need some normalisation, for this to make sense, so use aja; = 1. The
problem is then to choose a; to maximise the variance of f; subject to this
constraint. The Langrangian is

L = d/X'Xay — ¢y(aja; — 1)

oL
87011 = 2X’Xa,1 — 2¢1a1 =0
X/X(Il = ¢1a1

so aj is the first eigenvector of X’ X, (the one corresponding to the largest
eigenvalue, ¢) or the first eigenvector of the correlation matrix of X if the
data are standardised. This gives us the weights we need for the first PC.
The second PC fy = Xasy is the linear combination which has the second
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largest variance, subject to being uncorrelated with a; i.e. a’2a1 = 0; so ag is
the second eigenvector. If X is of full rank, there are N distinct eigenvalues
and associated eigenvectors and the number of PCs is N. Note AA" = Iy
so Al = A1,

We can stack the results:

X'XA=2oA

where A is the matrix of eigenvectors and is the diagonal matrix of eigen-
values. We can also write this

AX'XA = @
F'F = &

The eigenvalues can thus be used to calculate the proportion of the variation
in X that each principal component explains: ¢,/ > ¢,. If the data are
standardised ) ¢, = N, the total variance. Forming the PCs is a purely
mathematical operation replacing the T' x N matrix X by the T' x N matrix
F.

We define the PCs as F' = X A, but we can also write X = F'A’ defining
X in terms of the PCs: Usually we want to reduce the number of PCs that
we use, to reduce the dimensionality of the problem so we can write it

X = A + R A

where the T" x r matrix F} contains the r < N largest PCs, the r x N matrix
Al contains the first  eigenvectors corresponding to the largest eigenvalues.
We treat Fy as the common factors corresponding to the fj;, and F>A5 as
the idiosyncratic factors corresponding to the e;; in (35). While it is an
abuse of this notation, we will usually write F} as F and FyAL as E.

5.3.2 Dynamic Models

Suppose that t does represent time and we write the factor model in time
series form:
Tt = Aft + €t

where x; is an N x 1 vector, an N X r matrix of loadings, f; a r x 1 vector
of factors and e; an N x 1 vector of errors. In using PCs to calculate the
factors we have ignored all the information in the lagged values of ;. It may
be that some lagged elements of z;_; contain information that help predict
xi; e.g. factors influence the variables at different times. Standard PCs,
which just extract the information from the covariance matrix, are often
called static factor models, because they ignore the dynamic information in
the autocorrelations and the idiosyncratic component, e;, may be serially
correlated. There are also dynamic factor models which extract the PCs of
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the long-run covariance matrix or spectral density matrix, Forni et al. (2000,
2003, 2005). Journal of Econometrics, 119, (2004) has a set of papers on
dynamic factor models. The spectral density matrix is estimated using some
weight function, like the Bartlett or Parzen windows, with some truncation
lag.

The dynamic factor model gives us different factors, say

xy=Nf +ef

where f; is a r* x 1 vector. In practice we can approximate the dynamic
factors in many applications by using lagged values of the static factors,

ry = A(L)fi + ¢

where A(L) is a pth order lag polynomial. This may be less efficient in the
sense that r < rp: one can get the same degree of fit with fewer parame-
ters using the dynamic factors than using current and lagged static factors.
Determining whether the dynamics in x; comes from an autoregression in
x¢, dynamics in f; or serial correlation in e; raises quite difficult issues of
identification.

Dynamic PCs are two sided filters, taking account of future as well as
past information, thus are less suitable for forecasting purposes. This prob-
lem does not arise with using current and lagged static factors. Forni et al.
(2003) discuss one sided dynamic PCs which can be used for forecasting.
Forecasting also includes ‘nowcasting’, where one has a series, say quarterly
GDP, produced with a lag but various monthly series produced very quickly,
such as industrial production and retail sales. PCs of the rapidly produced
series are then used to provide a ‘flash’ estimate of current GDP.

5.3.3 Issues in using PCs
How to choose r

How many factors to use, i.e. determining r; depends on statistical crite-
ria, the purpose of the exercise and the context (e.g. the relevant economic
theory). Traditional rules of thumb for determining r included choosing the
PCs that correspond to eigenvalues that are above average value or equiva-
lently greater than unity for standardised data or graphing the eigenvalues
and seeing where they drop off sharply, if they do. There are also various
tests and information criteria for N fixed T" going to infinity. Recently there
has been work on information criteria that can be used when both N and
T are large.
Write the relationship

!
Tt = Nift + e
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where f; are the observations on the r x 1 PCs corresponding to the largest
eigenvalues. By construction, these PCs minimise the unexplained variance

V)= (NT) D> (@i - Nf)?

Bai and Ng (2002) review a number of criteria and show that the number of
factors r can be estimated consistently as min(N,T) — oo by minimising
one of the following information criteria:

ICy(r) =log(V(r)) +r (NN+TT> log (NN+TT)

N+T
NT

Although the Bai and Ng criteria have been widely used, they may not work
well when N or T are small, leading to too many factors being estimated,
e.g. always choosing the maximum number allowed.

Having chosen r denote the estimates

ICy(r) =log(V(r)) +r ( ) log (min (N, T))

€it = Tit — A;ft

E=X-AF
where E is N x r and F is 7 x T. If they are constructed from standardised
data: F'F/T = I. Bai (2003) provides formulae for estimating covariance
matrices of the estimated factors and loadings.

Kapetanios (2004a) suggests using the largest eigenvalue to choose the
number of factors. Onatski (2009) suggests another function of the largest
eigenvalues of the spectral density matrix at a specified frequency. The sta-
tistical properties of the various tests, information criteria and other meth-
ods of choosing r for economic data is still a matter of research. Of course

the choice of r will depend not just on statistical criteria but also the purpose
of the exercise and the context.

How to choose N

One may have very large amounts of potential data available (e.g. thousands
of time series on different economic, social, and demographic variables for
different countries) and an issue is how many of them you should use in
constructing the principal components. It may seem that more information
is better so one should include as many as possible, but this may not be the
case. Adding variables that are weakly dependent on the common factors
will add very little information.

To calculate the PCs the weights on the series have to be estimated and
adding more series adds more parameters to be estimated. This increases the
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noise due to parameter estimation error. If the series have little information
on the factors of interest, they just add noise, worsening the estimation
problem. The series may be determined by different factors, increasing the
number of factors needed to explain the variance. They may also have
outliers or idiosyncratic jumps and this will introduce a lot of variance which
may be picked up by the estimated factors. Many of the disputes in the
literature about the relevant number of factors reflect the range of series
used to construct the PCs. If the series are mainly different sort of price
and output measures, two factors may be adequate; but if one adds financial
series such as stock prices and interest rates, or international series such as
foreign variables, more factors may be needed. One may be able to look at
the factor loading matrix and see whether it has a block structure, certain
factors loading on certain sets of variables. If this is the case one may want
to split the data using different data-sets to estimate different factors. But
in practice it may be difficult to determine the structure of the factor loading
matrix.

N may be larger than the number of variables, if transformations of
the variables (e.g. logarithms, powers, first differences, etc.) are also in-
cluded. This trade-off between the size of the information set and the errors
introduced by estimation may be a particular issue in forecasting, where
parsimony tends to produce better forecasting models. Then using more
data may not improve forecasts, e.g. Mitchell et al. (2005) and Elliott and
Timmerman (2008). Notice that in forecasting we would need to update our
estimates of Fy, and perhaps r the number of factors, as T our sample size
changes.

How to Identify and interpret factors

To interpret the factors requires just identifying restrictions. Suppose that
we have obtained estimates:

X=FA+FE

Then for any non-singular matrix P; the new factors and loadings (F P)(P~!A)
are observationally equivalent to FA. The new loadings are A = P~1A and
factors are F' = FP. The just identifying restrictions, the P matrix, used
to calculate PCs are the unit length and orthogonality normalisations which
come from treating it as an eigenvalue problem. Thus the factors are only
defined up to a non-singular transformation. In many cases a major prob-
lem in applications is to interpret the estimated PCs. Often in time-series
the first PC has roughly equal weights and corresponds to the mean of the
series. Looking at the factor loadings and the graphs of the PCs may help
interpret them. The choice of P, just identifying restrictions, called ‘rota-
tions’ in psychometrics, is an important part of traditional factor analysis.
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These are needed to provide some interpretation of the factors.?
The same identification issue arises in simple regression. For

y=XB+u
is observationally equivalent to the reparameterisation

y = (XPH(PH)+u
= Zé+u

For instance, Z could be the PCs, which have the advantage that they are
orthogonal and so the estimates of the factor coefficients are invariant to
which other factors are included. But there could be other P matrices. To
interpret the regression coefficients we need to choose a parameterisation,
k? restrictions that specify P. We tend to take the parameterisation for
granted in economics, so this is not usually called an identification problem.

For some purposes, e.g. forecasting, one may not need to identify the
factors, but for other purposes their interpretation is crucial. It is quite
often the case that one estimates the PCs and has no idea what they mean
or measure.

Estimated or imposed weights?

Factors are estimated as linear combinations of observed data series. Above
it has been assumed that the weights in the linear combination should be
estimated to optimise some criterion function, e.g. to maximise variance
explained in the case of PCs. However, in many cases there are possible
a priori weights that one might use instead, imposing the weights rather
than estimating them. Examples are equal weights as in the mean or trade
weights as in effective exchange rates. There is a bias-variance trade-off as
with imposing coefficients in regression. The imposed weights are almost
certainly biased, but have zero variance. The estimated weights may be
unbiased but may have large variance because of estimation error. The
imposed weights may be better than the estimated weights in the sense
of having smaller mean square error (bias squared plus variance) Forecast
evaluation of regression models indicates that simple models with imposed
coefficients tend to do very well. Measures constructed with imposed weights
are usually also much easier to interpret.

The most obvious candidate for imposed weights is to use equal weights,
a simple average (perhaps after having standardised the variable to have
mean zero and variance one). It was noted above that in many cases the

3Rotations in psychometrics are as controversial as just-identifying restrictions in eco-
nomics, so while many psychologists agree that there are five dimensions to personality,
r = 5; how they are described differs widely.
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first PC seems to have roughly equal weights and thus behave like an average
or sum.

Alternatively, economic theory may suggest suitable weights. For in-
stance, effective exchange rates for country i (weighted averages of exchange
rates with all other countries) use trade weights: exports plus imports of 4
with j as a share of total exports plus imports of country 7). PCs might
give a lot of weight to a set of countries which have very volatile exchange
rates (which would account for a lot of the variance) even though country
7 does not trade with them. Measures of core inflation give zero weights to
the inflation rates of certain volatile components of total expenditure, while
a PC might give a high weight to those volatile components because they
account for a lot of the variance. Monte Carlo evaluation of estimators that
allow for CSD indicate the methods that use imposed weights, like the CCE
estimator, often do much better than estimators that rely on estimating the
number of PCs and their weights.

Explanation using PCs

Suppose the model of interest is
y=XB+u

where 8 is an IV x 1 vector and you wish to reduce the dimension of X. This
could be because there are a very large number of candidate variables or
because there is multicollinearity. As seen above replacing X by all the PCs
F = X A is just a reparameterisation which does not change the statistical
relation

y=XAAB+u

y=Fé+u

However, we could reduce the number of PCs by writing it
y = F161 4+ Fada +u

where F) are the r < N largest PCs (corresponding to the largest eigenval-
ues) then setting 02 = AL = 0 to give

y:F151+U

If required the original coefficients could be recovered as f = A161. The
hypothesis do = 0 is testable (as long as N < T, which it may not be in
some applications) and should be tested if it can be. This has been suggested
as a way of dealing with multicollinearity, or choosing a set of instruments,
however there are some problems. First, it is quite possible that a PC
which has a small eigenvalue and explains a very small part of the total
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variation of X may explain a large part of the variation of y. The PCs are
chosen on the basis of their ability to explain X not y, but the regression
is designed to explain y. Secondly unless F} can be given an interpretation,
e.g. as an unobserved variable, it is not clear whether the hypothesis do =

L8 = 0 has prior plausibility or what the interpretation of the estimated
regression is. Thirdly, estimation error is being introduced by using F; and
these are generated regressors with implications for the estimation of the
standard errors of §;. As a result, until recently with the Factor augmented
VARS and ECMs discussed below, economists have tended not to use PCs
as explanatory variables in regressions. Instead multicollinearity tended to
be dealt with through the use of theoretical information, either explicitly
through Bayesian estimators or implicitly by a priori weights e.g. through
the construction of aggregates. Notice that we could include certain elements
of X directly and have others summarised in factors.

5.3.4 Factor Augmented VARS, FAVARs

The analysis of monetary policy often involves estimating a small VAR in
some focus variables, e.g. output, inflation and interest rates. Then the
VAR is used to examine the effect of a monetary shock to interest rates
on the time paths of the variables. These time paths are called impulse
response functions.

To identify the monetary shock involves making some short-run just
identifying assumptions, e.g. a Choleski decomposition imposes a recursive
causal ordering, in which some variables, e.g. output and inflation, are
assumed to respond slowly, and others, e.g. interest rates, to respond fast,
i.e. within the same period. VARs plus identifying assumptions are often
called structural VARS. Generalised Impulse Response Functions do not
require any just identifying assumptions but cannot be given a structural
interpretation.

Small VARs can give implausible impulse response functions, e.g. the
"price puzzle", that a contractionary monetary shock was followed by a price
increase rather than a price decrease as economic theory would predict.
This was interpreted as reflecting misspecification errors, the exclusion of
relevant conditioning information. One response was to add variables and
use larger VARs, but this route rapidly runs out of degrees of freedom,
since Central Bankers monitor hundreds of variables. The results are also
sensitive to the choice of which variables to add. Another response was
Factor Augmented VARs, FAVARS. These are used to measure US monetary
policy in Bernanke Boivin and Eliasz (2005), BBE; UK monetary policy in
Lagana and Mountford (2005), LM; US and Eurozone monetary policy in
Favero Marcellini and Neglia (2005), FMN. The technical econometric issues
are discussed in more detail by Stock and Watson (2005), SW.

Consider an M x 1 vector of observed focus variables Y;, a K x 1 vector



5.3. CALCULATING PRINCIPAL COMPONENTS 129

of unobserved factors F; with a VAR structure

F Fi )
=A(L +v
() =aw (5 )+
where A(L) is a polynomial in the lag operator. The unobserved factors F;

are related to an N x 1 vector X, which contains a large number (BBE use
N =120; LM N = 105) of potentially relevant observed variables by

X; =AF; + e

where F; are estimated as the principal components of X;, which may in-
clude Y;. Notice there is an identification problem, since X; = AF; + e; =
APP~'F, + e, = A*F} + ¢;. It is common to use an arbitrary statistical
assumption to identify the loadings as eigenvectors, but other assumptions
are possible. The standard practice used by most of these authors is to
difference the observable data so that they are stationary, I(0). The factors
are therefore also stationary. As noted above differencing loses levels infor-
mation about the level relationships, but if one does not difference one has
to take account of cointegration etc.

The argument is that (a) a small number of factors can account for
a large proportion of the variance of X; and thus parsimoniously reduce
omitted variable bias in the VAR ; (b) the factor structure for X; allows
one to calculate impulse response functions for all the elements of X; in
response to a (structural) shock in Y; transmitted through Fj; (c) the factors
may be better measures of underlying theoretical variables such as economic
activity than the observed proxies such as GDP or industrial production;
(d) FAVARs may forecast better than standard VARs (e) factor models can
approximate infinite dimensional VARs, Chudik and Pesaran (2010, 2011).

BBE conclude: "the results provide some support for the view that the
"price puzzle" results from the exclusion of conditioning information. The
conditioning information also leads to reasonable responses of monetary ag-
gregates".

The simplest approach (called the two step method) is to (1) estimate
K PCs from the X, (2) estimate the VAR treating the PCs as measures of
F; variables along with the M observed focus variables Y;. The standard
errors produced by the two-step estimates of the FAVAR are subject to the
generated regressor problem and thus can potentially lead to misleading
inference. In large samples F; can be treated as known, thus there is no
generated regressor problem, but it is not clear how good this approximation
is in practice.

Choosing M and K, the number of focus variables and the number of
factors, raises difficult issues. SW for the US and LM for the UK argue for
7 factors, BBE argue for smaller numbers e.g. M =3; K =1; or M = 1;
K = 3. They use monthly data with either output, inflation and the interest
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rate as focus variables and one factor or the interest rate as the only observed
focus variable and 3 unobserved factors, their preferred specification. If a
large number of factors are needed, it reduces the attraction of the procedure
and may make interpretation of the factors more difficult. The procedure is
sensitive to the choice of X;. Just making the set of variables large does not
solve the problem, because there may be factors that are very important in
explaining X;, but do not help in explaining Y; and vice versa. BBE motivate
the exercise with the standard 3 equation macro model with the unobserved
factors being the natural level of output and supply shocks. However, they
do not use this interpretation in the empirical work, just note the need to
interpret the estimated factors more explicitly. In subsequent work Boivin
and Giannoni (2006) do use the theory putting the factor model in the
context of a DSGE with imperfect measurement of the theoretical variables.

5.4 Estimation of Cross Sectionally Dependent Pan-
els

CSD has attracted considerable attention in recent years and a large number
of estimators have been suggested to deal with it. This chapter reviews some
of them. Currently, the market leader, according to Monte Carlo studies,
appears to be CCE type estimators. However, there are a number of issues
of interpretation.

It is common in a lot of time-series applications of PCs to transform the
data to make it stationary before calculating PCs, e.g. by differencing. If
one is trying to measure a stationary unobservable, e.g a. global trade cycle,
this is clearly sensible. It is equally clearly not sensible if one is trying to
measure a non-stationary unobservable, e.g. a global trend. Even in the
stationary case it is important that transformations beyond differencing be
considered, stationary transformations of levels variables, such as interest
rate spreads, may also contain valuable information. We now describe main
techniques for dealing with cross-section dependence.

5.4.1 SURE
Suppose that the model is heterogeneous:
yit = zj06 + 2B + fivi + e, i=1,..,N, t=1,.,T

where y;; is a scalar dependent variable, z; is a k, vector of variables that
do not differ over groups, e.g. intercept and trend, and x; is a k, x 1
vector of observed regressors which differ over groups, f; is an r x 1 vector
of unobserved factors and e;; is an unobserved disturbance with E(e;) = 0,
E(e%) = 02 which is independently distributed across i and ¢. Estimating

Yit = zéai + a:fitbl- +vyg, t=1,....,N, t=1,...,T
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will give inconsistent estimates of 3, if f; is correlated with z;; and inefficient
estimates even if f; is not correlated with z;;. In the latter case if N is
small, the equations can be estimated by SURE, but if N is large relative
to T', SURE is not feasible, because the estimated covariance matrix cannot
be inverted. Robertson and Symons (1999, 2007) suggest using the factor
structure to obtain an invertible covariance matrix. Their estimator is quite
complicated and will not be appropriate if the factors are correlated with
the regressors, which may be the case.

5.4.2 Time effects/demeaning

If B8, = B, and there is a single factor which influences each group in the
same way, i.e. 7; = 7, then including time effects, a dummy variable for
each period, i.e. the two way fixed effect estimator:

Vit = oy + o + Blwi 4 uy

will estimate f{y = a;. This can be implemented by using time-demeaned
data iy = yit — Uz, where g = N1 Zfil yit/N and similarly for Z;: Unlike
SURE the factor does not have to be distributed independently of z; for
this to work.

It is sometimes suggested (e.g. for unit root tests) that demeaned data
be used even in the case of heterogeneous slopes. Suppose we have hetero-
geneous random parameters and the model is

vit = fi+ Bz + ui
B, = B+mn

(including the intercept in z;;) averaging over groups for each period we get

N
e = fo+ Bz +u + N7 g
i=1
noting that
Bixit — BT = BiTit + 13T

demeaning, using ¥ = yit — ¥, gives us
~ ] ~ ~
Uit = BiTat + Uit + €t

N
e =0 — N1
i=1
This removes the common factor f; but has added new terms to the error
reflecting the effect of slope heterogeneity. If n; is independent of the regres-
sors, e; will have expected value zero and be independent of the regressors,
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so one can obtain large 7' consistent estimates of the f3;, but the variances
will be larger. One can compare the fit of the panels using the original data
y; and the demeaned data ;; to see which effect dominates, i.e. whether
the reduction in variance from eliminating f; is greater or less than the in-
crease in variance from adding e;;. This model assumes that the factor has
identical effects on each unit. Rather than demeaning, it is usually better
to include the means directly.

5.4.3 Including Means, the CCE estimator

The correlated common effect estimator of Pesaran (2006), discussed ear-
lier, suggests including the means of y;; and x;; as additional regressors, to
remove the effect of the factors, which are treated as nuisance parameters.
The CCE procedure is simple to apply, can handle multiple factors which are
I(0) or I(1), which can be correlated with the regressors, and handles serial
correlation in the errors. The consistency proof holds for any linear combi-
nation of the dependent variable and the regressors, not just the arithmetic
mean, subject to the assumptions that the weights w; satisfy

N N

(i) s w; = O (;) L (0) Y Jwil < K and (i) 3 wiy, #£0

i=1 =1

These clearly hold for the mean:

L X N N
Wi = z;|wz\ =1and ;wfyi :N_lz;% #0
1= 1= 1=

as long as the mean effect of the factor on the dependent variable is non-zero.
Notice that this procedure determines the weights a priori rather than
estimating them by PCs. Not estimating the weights seems to improve the
performance of the procedure. Kapetanios, Pesaran and Yamagata (2011)
show that this procedure is robust to a wide variety of data generation
processes including unit roots. See also Kapetanios and Pesaran (2007).

5.4.4 PANIC

Bai and Ng (2004) suggest what they call a Panel Analysis of Non-stationarity
in the Idiosyncratic and Common components (PANIC), which provides a
way to analyse unit roots and cointegration. The data are assumed to be
generated by

Tt = c; + Bit + NoFy + eq

Fot = amFre—1 + ume

€it = Pi€it—1 + Eit
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Factor ay, is stationary if «,, < 1; the idiosyncratic error e;; is stationary
if p; < 1. If e;; is stationary (I(1) z; cointegrate with I(1) factors) then the
PCs can consistently estimate the factors, whether they are I(0), I(1) or a
mixture. When e; is I(1), this cannot be done, since the first equation is
a spurious regression. However Bai and Ng suggest that the data can be
differenced and demeaned if there is a trend as above; the first difference of
the factors can be estimated by PCs, these can then be cumulated to give
the factors and the idiosyncratic error. Unit root tests can then be applied
to these to determine whether the variables are I(0) or I(1). Since removing
F; has removed the between group dependence, panel unit root tests can
be conducted on e;;. When F; contains I(1) elements, testing that e; is
I(1) is a test for x;; not cointegrating with the I(1) common factors. They
illustrate their procedure by extracting core inflation from 21 component
inflation series. Notice that since the factors are orthogonal, completely
uncorrelated with each other, they cannot cointegrate. I(1) variables that
cointegrate contain a common stochastic trend which cancels out in the
linear combination and thus must be correlated.

Westerlund and Larsson (2009) examine the issue of pooling the individ-
ual PANIC unit root tests. Bai & Ng (2010) extend the procedure. Breitung
and Das (2008) review testing for unit roots in panels with a factor struc-
ture. In all these cases, determining whether the unit root, comes from the
dynamics of the observed series being investigated (p; = 1) or from cointe-
gration with an I(1) unobserved factor (a;,, = 1) can be a delicate matter.
There is also the difficulty of determining the number of factors and the
increased variance from estimating the factor weights.

5.4.5 Residual Principal components

Coakley, Fuertes and Smith (2002) suggested estimating a first stage model:
Yir = bz + ey

and then estimating the factors as the principal components of é;, using
some test or information criteria to choose the number of factors, f;. These
factors are then included in a second stage regression

yie = Bitis + C;ft + Vit
Assume that the x;; are generated by

Tit = Q1ift + ozt + P3iXy + Vit

where x; are common factors that influence x;; but not y;;. So

Tp = O ft + oz + d3x; + Ut
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This estimate using the residual principal component (RPC) will be a con-
sistent estimator of §; (for large N and T') if either ¢;; = 0 or ¢3; = 0.
Otherwise using inconsistent estimates of é;; causes it to be biased. The
Coakley et al demonstration that the estimator was consistent had assumed
that ¢3; = 0. If ¢; = 0 this is a computationally convenient way to im-
plement an approximation to SURE. Pesaran (2006) shows that under the
case of a single regressor and a single factor the asymptotic the difference
between the RPC estimator and true value will be zero only if either the
factor is uncorrelated with z; or if the factor is perfectly correlated with
x¢. If as N gets large the factor is perfectly correlated with x;, then it is
obviously sensible to use Z;.

5.4.6 Interactive fixed effects
Bai (2009) considers the model:

Yie = X8+ MNFy + eir;
Y =XB+FAN +¢

where X/, is a p x 1 vector of observable regressors and F; is an r X 1
vector of unobserved factors. This model, is similar to that of the previous
subsection, the difference being it assumes homogeneous. Bai interprets it as
a generalisation of the usual additive two way fixed effect model, e.g. when
i = \;, then ay = X' Fy. The just identifying restrictions for the factors are
F'F/T = I, and A’A diagonal. Bai suggests a least squares estimator which,
rather than just using two steps as the RPC estimator above does, iterates
between estimation of F' and A by principal components and estimation of 53,
avoiding the inconsistency of the RPC estimator: Bai also considers various
extensions, including bias corrections. The issue of choosing r remains.

5.4.7 Further remarks

Coakley, Fuertes and Smith (2006) conduct Monte Carlo experiments to
contrast the finite sample properties of a large number of estimators in the
context of cross-section dependence. Attention is confined to static models
with strong exogeneity to establish some baseline results. The results for
the different settings suggests:

1. Averaging across spurious regressions gives an unbiased measure of
B in the presence of cross-sectional dependence also. This result is
of interest since the asymptotic theory in Phillips and Moon (1999)
builds on the assumption of cross-section independence.

2. The efficiency of the CS estimator improves in the I(1) case.
3. The CCE does very well across the board.
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Monte Carlo results should be treated with some caution since the DGP
used in the simulation may not reflect factors typical in real applications. See
Smith and Furetes (2012) for more details and the empirical applications.

5.5 Panel Gravity Models in the Presence of Cross
Section Dependence

5.5.1 Overview on the Euro’s Trade Effects

Recently, there has been an intense policy debate on the Euro effects on
trade flows between Euro and non-Euro nations. Baldwin (2006) offers an
extensive survey, covering the infamous Rose (2000)’s huge trading effect
over 200% as well as most recent studies reporting the relatively smaller
effects. It is widely acknowledged that the Rose’s estimate of the currency
union effect on trade is severely (upward) biased. In particular, his estimates
are heavily inflated by the presence of small (e.g. Ireland, Panama) or very
small (e.g. Kiribati, Greenland, Mayotte) countries. An important issue is
why a currency union raises trades so much. Thus, it is unclear whether one
can uncover similar findings for the European monetary union involving the
substantially large economies such as Germany and France.

The gravity model popularised by Rose (2000) attempts to provide the
main link between trade flows and trade barriers, though his original ap-
proach has attracted the number of strong criticisms. The main critiques
are classified as follows: inverse causality or endogeneity; missing or omit-
ted variables; and incorrect model specification (nonlinearity or threshold
effects). Nowadays, the general consensus is, once these methodological is-
sues have been accommodated appropriately, that the currency union effect
seems to be far less than those reported earlier by Rose and others, espe-
cially using the larger dataset including numerous smaller countries. We
still find that the range of the estimated Euro effects is very wide from 2%
to more than 70%.

There may be other third factors, such as common language, colonial
history, and political/institutional link, that may influence both currency
choice and trade link. In this regard, high correlations reported in earlier
studies may be spurious as an artifact of reverse causality. A related issue is
how the currency union is formed. Countries who decide to join a currency
union are self-selected on the basis of distinctive features shared by countries
that have been EU members during the pre-Furo period. Hence, countries
are likely to foster integration by enhancing standards of harmonization and
reducing regulatory barriers. To address this issue, a number of studies have
employed different techniques such as Heckman selection and instrumental
variables, though they still obtained the substantial Euro effects on trade.

A more important issue is omitted variables bias. Omitted pro-bilateral
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trade variables are likely to be correlated with the currency union dummy,
as the formation of currency unions is not random, but rather driven by
some factors which are likely to be omitted from the gravity regression. The
implication is that the Euro effect will capture general economic integration
among the member states, not merely the currency effect. Several studies
tried to reduce the endogenous effect of currency unions by introducing
country-pair and year fixed effects in the gravity regression.

Anderson and van Wincoop (2003) propose the ‘micro foundation’ of the
gravity equation by introducing the multilateral resistance terms, which are
relative trade barriers -the bilateral barrier relative to average trade barri-
ers that both countries face with all their trading partners. The empirical
gravity literature has simply added so-called remoteness variables, which are
defined as a weighted average distance from all trading partners with the
weights being based on the size of the trading partners, though such atheo-
retical remoteness indices fail to capture any of the relative trade barriers in
a coherent manner. Hence, the standard gravity model is seriously lacking
if multilateral resistance terms and/or trade costs are ignored or seriously
misspecified.

Furthermore, Baldwin (2006) stresses an importance of taking into ac-
count time-varying multilateral resistance terms, and criticises the conven-
tional fixed effect estimation technique because many of omitted pair-specific
variables clearly reflect time-varying factors such as multilateral trade costs.
The use of time-invariant effects only may still leave a times-series trace
in the residual, which is likely to be correlated with the currency union
dummy. An incomplete account of time variation in multilateral resistance
terms is likely to cause omitted-variable bias. Therefore, once such time-
varying effects are explicitly incorporated in the gravity model, the impact
of currency-union would be greatly reduced. A number of studies have at-
tempted to capture time-varying effects when estimating the FEuro’s trade
effect.

In sum, a large number of existing studies have established the impor-
tance of appropriately taking into account unobserved and time-varying mul-
tilateral resistance and bilateral heterogeneity, simultaneously. This imme-
diately raises another important issue of cross-section dependence among
trade flows, which has been so far neglected. Only recently, Herwartz and
Weber (2010) propose to capture both multilateral resistance terms and
omitted trade costs via unobserved time-varying country-pair specific ran-
dom walk factors, and develop the Kalman-filter extension of the gravity
model. They find that aggregate trade (export) within the Euro area in-
creases between 2000 and 2002 by 15 to 25 percent compared with trade with
non-members of the Euro area due to a decrease in long-lasting trade costs.
More importantly, Behrens et al. (2012) derive a quantity-based structural
gravity equation system in which both trade flows and error terms are al-
lowed to be cross-sectionally correlated, and propose the modified spatial
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techniques by adopting a broader definition of the spatial weight matrix,
called the interaction matrix, which can be derived directly from theoretical
model. By controlling for cross-sectional interdependence and thus directly
capturing multilateral resistance, they find that the measured Canada-US
border effects are significantly lower than paradoxically large estimates re-
ported by McCallum (1995). Behrens et al. (2012) also argue that their
approach - unconstrained linearized gravity equation with cross-sectionally
correlated trade flows - is better suited than the two-stage gravity equation
system with nonlinear constraints in unobservable price indices advanced by
Anderson and von Wincoop (2003).

Taken together, all of the above discussions may suggest that an Euro ef-
fect on trade is expected to be smaller in the future than previously thought
once multilateral resistance term is well-captured via the cross-sectional in-
terdependence of trade flows. In retrospect, Serlenga and Shin (2007) is the
first paper to introduce the cross-section dependence into the panel gravity
model, and to provide consistent estimation procedure for both time-varying
and time-invariant regressors. Employing the dataset over the period 1960-
2001, SS find that the introduction of a common currency does not exert any
significant effect on intra-EU trade, though their sample covers only three
years’ data since the introduction of the Euro in 1999. Given the availability
of a longer sample, we wish to redress this important issue by extending the
cross-sectionally dependent panel gravity model and addressing all of the
issues related to unobserved and time-varying multilateral resistance and
bilateral heterogeneity as surveyed above.

The fixed effect estimation has been most popular in the literature on
gravity models, though it fails to estimate coefficients on time-invariant vari-
ables such as distance, since the within transformation wipes out those vari-
ables. Another important issue is how to extend the fixed effect specification
into a more general case with individual-specific and time-varying effects,
both of which affect bilateral trade flows. The multilateral resistance func-
tion and trade costs are not only difficult to measure, but also likely to vary
over time. A number of approaches have been proposed. Simply, fixed time
dummies or time trends are added as a proxy for time-varying effects in
the gravity equation to allow to time trend coefficients to be heterogeneous
across country-pairs. Alternatively, some studies include ad hoc regional
remoteness indices, although these indices have no theoretical foundation
(Behrens et al., 2012).

5.5.2 Extended HT estimation

We now consider a more generalized panel data model advanced by SS and
Baltagi (2010):

Yit = /leit +’7/Zi + 7T§St +ep, t=1,....,N, t=1,....T, (51)
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it = i + Pi0: + uit, (5.2)

where x;; = (21,3t ...,xk,it)' is a k x 1 vector of variables that vary across
individuals and over time periods, s; = (sLt,...,sS,t)' is an s x 1 vector
of observed time-specific factors, z; = (21, ...,zg,i)/ is a g x 1 vector of
individual-specific variables, 8 = (81,....,31), ¥ = (fyl,...,fyg)/ and 7; =
(714, ...,7157,-)/ are conformably defined column vectors of parameters, «; is
an individual effect that might be correlated with explanatory variables x;;
and z;, 0 is the ¢ x 1 vector of unobserved common factors with conformable
parameter vector, ¢, = (cpl’i, vey gocyi),, and wu; is a zero mean idiosyncratic
uncorrelated random disturbance.

The distinguishing feature of this model is that it allows for both ob-
served and unobserved time effects both of which are cross-sectionally cor-
related. Both factors are expected to provide good proxy for any remain-
ing complex time-varying patterns associated with multilateral resistance
and globalisation trends, e.g. Mastromarco et al. (2013). Notice that the
cross-section dependence in (5.1) is explicitly allowed through heterogeneous
loadings, ¢;, see Pesaran (2006) and Bai (2009).* It is easily seen that most
specifications of the gravity equation in the literature can be expressed as
a variation of the model given by (5.1) and (5.2).> Hence, this factor-based
cross-sectionally dependent panel gravity model is expected to capture the
time-varying pattern of unobserved trading effects, such as the multilateral
resistance, in a robust manner.

The conventional panel data estimators of (5.1) would be seriously bi-
ased without properly accommodating the cross-sectionally dependent factor
structure given by (5.2). To explicitly address this issue, we consider the two
leading approaches proposed by Pesaran (2006) and Bai (2009). Following
Pesaran (2006) we first derive the cross-sectionally augmented regression of
(5.1) as follows:

v =OBxp+¥zi + AN+ +ufy, i=1,...,N, t=1,..,T, (5.3)

where £, = (s}, 7, %})" {= (fis ., fer)'} is the £ x 1 vector of augmented
time-specific factors with £ = s+ 1+ k and A; = (A1, .., Aei)'y Ut =
N 2511 Yit, Xe = N1 Zi\; Xit, )‘;‘ = (7"; — (@i/p) 7, (i) @), — (0;/P) B/)
with @ = N‘lZf\Llsoi and ® = N_lzi]ilwi, af = o — (p;/P)a —
(p;/?)¥'Z with @ = N~} Zfil a; and Z = N1 Zfilzi, and u}, = uy —
(0; /@)ty with 4y = N~! Zf\il u;t. Using (5.3), we can derive the CCEP

!/

*Chudik et al. (2011) show that these factor models exhibit the strong form of cross-
sectional dependence since the maximum eigenvalue of the covariance matrix for ;; tends
to infinity at rate N. On the other hand spatial econometric models, developed by Behrens
et al. (2012), display the weak form of cross-sectional dependence, which can be repre-
sented by an infinite number of weak factors and no idiosyncratic error.

’For example, the specification employed by Bun and Klaassen (2007) is obtained by
simply including ¢ as one element in s;, but without unobserved factors, ;.
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estimator of B in (5.4) by (5.4) below. Alternatively, 3 can be consis-
tently estimated by the principal component (PC) estimator proposed by
Bai (2009). Chudik et al. (2011) show that the PC estimator is similar
to the CCEP estimator, except that the cross section averages are replaced

by the estimated common factors (ét>, which are obtained using the Bai

) N/
and Ng (2002) procedure.’ In this case we have f;, = (s;,G:g) in (5.3).
Specifically, the CSD-consistent estimator of 3 is given by’

Besp = <2X§MTXi> (21 x/iMTyi> s Besp = Becep or Bpe (5:4)

where y; = (Yit, - vir), Xi = (Xi1, -y Xi7)’, Mp = Ip — Hy (HpHy) ™ HY,
Hy = (17,f), 17 = (1,...,1) and f = (f], ..., £})".

Both CCEP and PC estimators are unable to estimate the coefficients,
~ on time-invariant variables because they are the extended fixed effect
estimators. In this regard, SS combine the CCEP estimation with the in-
strumental variables estimation proposed by Hausman and Taylor (1981,
HT), and develop the CCEP-HT estimator. Baltagi (2010) further proposes
the CCEP-AM estimator by employing the additional instrument variables
proposed by Amemiya and MaCurdy (1986, AM). It is then straightfor-
ward to consider further additional set of instrument variables proposed by
Breusch, Mizon and Schmidt (1989, BMS), which we denote by the CCEP-
BMS estimator. We can also develop the corresponding counterparts, using
the Bai’s PC estimator, which we denote by PC-HT, PC-AM and PC-BMS
estimators, respectively.

Conformable with Hausman and Taylor (1981), we decompose x;; =
(x)ips x’%)' and z; = (z};, z’Qi)'7 where X1, Xo;; are k1 x 1 and kg X 1 vectors,
and zy4, Z9; are g1 X 1 and g x 1 vectors. Then, we can estimate « consistently
using instrumental variables in the following regression:

dit = ’7/1Z1i+’7,2Z27;+042<+U;} = M—F’)’,Zi-i-é;kt, i1=1,..N, t=1,...,T, (5.5)

*

~/ .
where dit = yit — BogpXit — Nif, = F(af) and €}, = (of — p) +uj, is a

zero mean process by construction. In matrix notation we have:

d=plny +Ziv, + Zoyy + €7, (5.6)

/

! !
whered = (d}, ..., dYy)', d; = (di1, ... di7)', Z; = ((zgl ® 1T) (z;.N ® 1T) ) ,

, /
j=1,2, 1y7 = (l’T,...,l’T)/, 17 = (1,...,1), and e* = (6’1",...,5}‘\,> with

b After applying the within transformation of the model, (5.1), we can extract the
factors from the within residuals in an iterative manner.

"Under fairly standard regularity conditions, Pesaran (2006) and Bai (2009) prove that
as (N, T) — oo jointly, ,@CSD is consistent and follows the asymptotic normal distribution.
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el = (e, zT) Replacing d by its consistent estimate, d = {Jit,i =1,.,.N, t=1,..,T, },
where diy = it — BrgpXit — M and A; are the OLS estimators of A;
consistently estimated from the regression of (yit — B,CS Dxit) on (1,f;) for

1=1,..., N, we now have:
d=plny +Ziy, +Zoys+e =Co+e™, (5.7)

where et = e*+ <€l — d), C=(1nNr,21,Z3) and 6 = (M77/177/2)/-
To deal with nonzero correlation between Zs and a, we need to find the
NT x (1+ g1 + h) matrix of instrument variables:

W = [1n7,Z1, W3],

where Wy is an N1 x h matrix of instrument variables for Zs with h > go
for identification. First, we follow SS and consider the NT x (k; +¢) HT
instrument matrix given by

Wé_IT = PX17 Pélv Pé?a ceey Péfi|

where P = D(D’D)~!D’ is the N7 x NT idempotent matrix with D = Iy ®
R /
17, Iy being an N x N identity matrix, and 53 ( jafl, )\ 2ff )\j7NfJ’-) ,

j=1,...¢, where f; = (fj1,..., fjr) with )\j,i being consistent estimate of
heterogenous factor loading, A;j;. Next, we follow Baltagi (2010) and derive
the NT x (k1 + ¢+ Tky + T¢) AM instrument matrix by

Wil = [WiT @x,), (Q&) . (Q&) . (Q&) ] 63)

matrix with QXy, = (QXyq;, ..., QXyy;)' .8 Finally, it is straightforward to
derive the NT x (k1 + ¢+ Tky + T¢ + Tke) BMS instrument matrix by

)
WS = Wi, (QX,)"]
9

where (QX,)" = (QXy;, QX .., QXop).
To derive the consistent estimator of §, we premultiply W’ by (5.7)

W'd=W'Cé+We. (5.9)

Therefore, the GLS estimator of § is obtained by

~ _ -1 _ /A

dcrs = [CWVIW'C] " C'WV W d, (5.10)

8Notice that the rank of (QX,)* is (T — 1)k1, because only (T — 1) deviations from
means are (linearly) independent since each variable (see BMS). Similarly for (Q£ )

9 (Qéé)
% As before, the rank of (QX,)* is only (T' — 1)ks.
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where V = Var (W’e™). To obtain the feasible GLS estimator we replace
V by its consistent estimator. In practice, estimates of § and V can be
obtained iteratively until convergence, see also SS for further details.

Notice that the HT-IV estimator employs only the mean of X; to be
uncorrelated with the effects, o] whereas the AM-IV estimator exploits such
moment conditions to be held at every time period. Hence, the validity of
the AM instruments requires a stronger exogeneity assumption for X, under
which the AM-IV estimator is more efficient than HT-IV. Furthermore, the
BMS instruments require uncorrelatedness of Xy with o separately at every
point in time. The validity of the AM and the BMS instruments can be
easily tested via the Hausman statistics testing for the difference between
HT-IV and AM-IV estimators and between AM-IV and BMS-IV estimators
as follows:

Hapy = (SAM - 3HT>I [VCLT (SHT) —Var (&Mﬂ - (SAM — 5HT>
Hpus = (3BMS - 3AM>/ [VCLT <3AM) —Var <3BMS>} - (SBMS — 3AM>

both of which follow the asymptotic X?; distribution with the degree of free-
dom ¢ being the number of coefficients tested.

5.5.3 MSS (2013) extension

Recently, an investigation of unobserved and time-varying multilateral re-
sistance and omitted trade determinants has assumed a prominent role in
order to measure the Euro effects on trades precisely. We implement two
methodologies: the factor-based gravity model by Serlenga and Shin (2013)
and the spatial-based techniques by Behrens, Ertur and Kock (2012, BEK),
both of which allow trade flows and error terms to be cross-sectionally cor-
related. Applying these approaches to the dataset over 1960-2008 for 190
country-pairs of 14 EU and 6 non-EU OECD countries, we find that the
Euro impact estimated by the factor-based model amounts to 4-5% only,
far less than 20% estimated by the spatial-based model. The cross-section
dependency test results also confirm that the factor-based model is more ap-
propriate in accommodating correlation between regressors, and unobserved
individual and time effects. Overall we may conclude that the trade-creating
effects of the Euro should be viewed in the proper historical and multilateral
perspective rather than in terms of the formation of a monetary union as
an isolated event.

Alternatively, we now investigate the issue of CSD among trade flows
through employing the spatial techniques. This approach assumes that the
structure of cross section correlation is related to the location and the dis-
tance among units on the basis of a pre-specified weight matrix. Hence, cross
section correlation is represented mainly by means of a spatial process, which
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explicitly relates each unit to its neighbours. A number of approaches for
modeling spatial dependence has been suggested in the spatial literature.
The most popular ones are the Spatial Autoregressive (SAR), the Spatial
Moving Average (SMA), and the Spatial Error Component (SEC) speci-
fications. The spatial panel data model is estimated using the maximum
likelihood (ML) or the generalized method of moments (GMM) techniques
(e.g., Elhorst, 2011). We follow BEK and consider a spatial panel data grav-
ity (SARAR) model, which combines a spatial lagged variable and a spatial
autoregressive error term:

Yit = py;kt +,6/Xit +'7/Zi + a; + Vit, T = 1, ...,N, t = 1, ...,T, (511)

Vit = )\U;} + Ut (5.12)

where y}, = Zé\;l w;jyj¢ is the spatial lagged variable, and v}, = ZJA;Z WiiVjt
is the spatial autoregressive error term, w;;’s are the spatial weight with the
row-sum normalisation, ) . w;; = 1, and u; is a zero mean idiosyncratic
disturbance with constant variance. This approach is especially designed to
deal with CSD across both variables and error terms in which p is the spatial
lag coefficient and A refers to the spatial error component coefficient. These
coefficients capture the spatial spillover effects and measure the influence
of the weighted average of neighboring observations on cross section units.
Chudik et al. (2011) show that a particular form of a weak cross dependent
process arises when pairwise correlations take non-zero values only across
finite units that do not spread widely as the sample size rises. A similar
case occurs in the spatial processes, where the local dependency exists only
among adjacent observations. In particular, Pesaran and Tosetti (2011)
show that spatial processes commonly used, such as the SAR or the SMA
process, can be represented by a process with an infinite number of weak
factors and no idiosyncratic error terms.

Both the factor- and the spatial-based models cannot estimate the coef-
ficients, v on time-invariant variables in the presence of fixed effects. In this
regard, we follow SS and combine these estimators with the instrumental
variables estimation. We denote such estimators by the PCCE-HT, PCCE-
AM, PCCE-BMS, PC-HT, PC-AM, PC-BMS, SARAR-HT, SARAR-AM,
and SARAR-BMS estimators, respectively.

In particular, we follow LeSage and Pace (2009), and discuss the esti-
mation results for the spatial gravity model in terms of direct and indirect
effects. To this end we rewrite (5.11):

Vi =pWy, + XyB+Zvy+¢e, t=1,..,T (5.13)

where yi = (yit, .., yne)’s, W = {wij}fvjzl is the N x N spatial weight
matrix, X; = (x4, ..., Xy;) is the N x k matrix of time-varying regressors,
Z = (z},...,2}y) is the N x g matrix of time-invariant regressors,and e; =
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(1t, .-, en¢)” with g5 = &; + vir. We then rewrite (5.13) as
vi = (In = pW) (KB +Zy + ). (5.14)

Then, the impacts of a change in the rth time-varying regressor corresponds
to the following N x N matrix of partial derivatives:

dyt
aX rt

Notice that diagonal elements of (5.15) (direct impacts), are different across
cross-section units; off-diagonal terms (indirect impacts) differ from zero,
and the matrix is not symmetric. We now have N direct effects and N(N —1)
indirect effects. To avoid such an interactive heterogeneity issue, LeSage
and Pace (2009) suggest to employ only three scalar measures to summarise
information contained in the matrix (5.15): the average of the N diagonal
elements as a measure of direct effects, the average of the N(N — 1) off-
diagonal elements as the average of the cumulative indirect effects and the
average total effect as the mean of total effects.

The estimation results for the factor-based model provide the following
stylised findings: First, the impacts of distance and common language on
trade are significantly negative and positive whereas the border impact is
insignificant. Further investigation of their time-varying coefficients reveals
that border and language effects started to fall more sharply after 1999.
More importantly, we find that both the Euro and the custom union im-
pacts on trade amounts to 4-5% and 11% only. These findings support
the thesis that the potential trade-creating effects of the Euro should be
viewed in terms of the proper historical and multilateral perspective rather
than simply in terms of the formation of a monetary union as an isolated
event. Next, the estimation results for the spatial-based gravity model in-
dicate that the impacts of the Euro and the custom union on trade rises to
20% and 30%, respectively, both significantly higher than those obtained by
the PCCE and the PC estimators. Furthermore, the CD test results con-
firm that the factor-based model is able to better accommodate correlation
between regressors, unobserved individual and time effects. This evidence
highlights an importance of appropriately controlling for CSD in the panel
gravity models of trade flows through the use of both observed and unob-
served factors in order to account for time-varying multilateral resistance,
trade costs and globalisation trends.

=(Iy—pW) '8, r=1,..k (5.15)

5.6 A Nonlinear Panel Data Model of Cross-Sectional
Dependence
Kapetanios, Mitchell and Shin (2014) propose a nonlinear panel data model

which can endogenously generate both ‘weak’ and ‘strong’ cross-sectional de-
pendence. The model’s distinguishing characteristic is that a given agent’s
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behaviour is influenced by an aggregation of the views or actions of those
around them. The model allows for considerable flexibility in terms of the
genesis of this herding or clustering type behaviour. At an econometric
level, the model is shown to nest various extant dynamic panel data models.
These include panel AR models, spatial models, which accommodate weak
dependence only, and panel models where cross-sectional averages or fac-
tors exogenously generate strong, but not weak, cross sectional dependence.
An important implication is that the appropriate model for the aggregate
series becomes intrinsically nonlinear, due to the clustering behaviour, and
thus requires the disaggregates to be simultaneously considered with the
aggregate. We provide the associated asymptotic theory for estimation and
inference. This is supplemented with Monte Carlo studies and two empirical
applications which indicate the utility of our proposed model as a vehicle to
model different types of cross-sectional dependence.

We propose nonlinear panel data models. The distinguishing charac-
teristic is the use of unit-specific aggregates/summaries of past values of
variables relating to other units that are ‘close’ in some sense to a given
unit, to model that unit. The nature of the models is dynamic:

N
Tit =P E Wij (l‘fi,tfl, ilii,tfl;’}/) Tjt—1+ €t 1=1,..N, t=1,..T,
Jj=1

(5.16)
where _; 1 = (T1,4,T2t, oy Ti—1.ty Tit1,ts - TNt) and Z;VZI Wij (T_jp—1,Tig—1;7) =
1. This form of the model is extremely general and simply signifies that x; ;
depends, possibly in a nonlinear fashion depending on how w;; is parame-
terised, on weighted averages of past values of x; = (214, ...,2 ~t), where the
weights depend on x;_1. We split 241 into z_;;—1 and x;;—1 to emphasise
the potentially special role of the own lag of x;; in the specification. One
particular motivation is structural and follows from the claim that it mimics
structural interactions between economic units. Another, more econometric,
justification simply notes that this model can accommodate generic forms
of cross-sectional dependence, including evolving clusters.

The model in (5.16) is extremely general as it encompasses a wide vari-
ety of nonlinear specifications. We consider a number of particular nonlinear
specifications for the construction of the unit specific aggregates. We place
particular emphasis on specifications where the weights depend on x;_1 only
through distances of the form |z;; 1 — x;;—1|. We choose a particular speci-
fication of this type that is easy to analyse, based on a threshold mechanism,
to illustrate the class of models we focus on. This model nests a variety of
dynamic panel data models, such as panel data AR models and panel models
where cross-sectional averages are used to pick up cross-sectional dependence
(e.g., Pesaran, 2006). Interestingly, it is also closely related to factor models,
that have received considerable attention recently (Bai, 2009).

Our models provide an intuitive means by which many forms of cross-
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sectional dependence can arise in a large panel dataset comprised of variables
of a ‘similar’ nature that relate to different agents/units. These variables
might be the disaggregates underlying often studied macroeconomic or fi-
nancial aggregates, such as economy-wide inflation or the S&P500 index. In
particular, the model allows these different economic units to cluster; and
for these clusters (including their number) to evolve over time. Such clus-
tering also has implications when modelling and forecasting the aggregate
of these units.

The degree of cross-sectional dependence in our models can vary, from
a case where it is similar to standard factor models, for which the largest
eigenvalue of the variance covariance matrix of the data tends to infinity at
rate N, to the case of very weak or no factor structure where this eigenvalue
is bounded as N — oo. Of course, all intermediate cases can arise as well.
Our work can be viewed as a particular instance of a large dimensional VAR,
but for the fact that our model is intrinsically nonlinear in nature.

We provide an analysis of the stochastic version of the model; and allow
for both threshold and smooth transition type nonlinearities. Our model
constitutes, to the best of our knowledge, the first attempt to introduce en-
dogenous cross-sectional dependence into a panel modelling framework. Our
work concentrates on the case where |p| < 1, and subsequently our model
has particular stationarity properties. We do briefly discuss the ‘unit root’
case where |p| = 1, but our treatment is indicative and not comprehensive.
We defer detailed treatment to future research.

5.6.1 Model

We propose a particular dynamic panel model for a multitude of agents.
Let x;; denote the variable of interest, such as the agent’s income or the
agent’s view of the future value of some macroeconomic variable, at time t,
for agent ¢. Then, we specify

N
P .
Tit = . ZI(‘@'M_1 — {Ejﬂg_l‘ < 7’) Tjt—1tE€it, t=2,...,7, 1=1,...,N,
1,t
b j:1
(5.17)
where N
mip = ZI(|$i,t71 —zji-1| <7),
Jj=1

{61‘775}?:1 is an error process, 7 (.) is the indicator function and —1 < p < 1.
Verbally, the above model states that x;; is influenced by the cross-sectional
average of a selection of ;;_1 and in particular that the relevant x;;_; are
those that lie closest to x;;—1. The model involves a K nearest neighbour
mechanism except that it is in the data generating process and not as a
technique to estimate an unknown function. This formalises the intuitive



146 CHAPTER 5. CROSS SECTIONALLY CORRELATED PANELS

idea that people are affected more by those with whom they share common
views or behaviour. The model may be equally viewed as a descriptive model
of agents’ behaviour, reflecting the fact that ‘similar’ agents are affected by
‘similar’ effects, or as a structural model of agents’ views whereby agents
use the past views of other agents, similar to them to form their own views.
The interaction term in (5.17) may then be thought of capturing the (cross-
sectional) local average or common component of their views. This idea
of commonality has various clear, motivating and concrete examples in a
variety of social science disciplines, such as psychology and politics. In
economics and finance, the herding could be rational (imitative herding) or
irrational.

A deterministic form of the above model has been analysed previously
in the mathematical and system engineering literature. In particular, they
have analysed a continuous form of the restricted version of (5.17) given by

1

mit

Tit =

)

N
S T(wig1 —wjea| < VDwjya, t=2,..,T, i=1,..,N,

j=1

(5.18)
where m;; = ijzlf(|:ci7t_1 —xj4-1| <1). To the best of our knowledge,
we are the first to introduce a stochastic term to this type of model and to
allow for an unknown value of the threshold parameter.

The model, (5.17), bears considerable resemblance to threshold autore-
gressive (TAR) models analysed in the time-series literature. However, un-
like straightforward extensions of TAR models to a panel setting, whereby
individual units/agents would not interact through the nonlinear specifica-
tion, the nonlinearity in (5.17) is inherently cross-sectional in nature; this
provides for the development of a dynamic network effect. In deterministic
contexts this has been shown to generate interesting behaviour like cluster-
ing.

5.6.2 Special cases

It is interesting to note the nature of restricted versions of the above model,
obtained by taking extreme values of the threshold parameter. By setting
r = 0, we obtain a simple panel autoregressive model

Tit = PTig—1 T €it- (5.19)

On the other hand, letting » — oo, we obtain the following model

Tip = % > w1t e, (5.20)

where past cross-sectional averages of opinions inform, in similar fashions,
current opinions. Recently, the use of such cross-sectional averages has been
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advocated by Pesaran (2006) as a means of modelling cross-sectional de-
pendence in the form of unobserved factors. However, unlike these models
where the use of cross-sectional averages is an approximation to the un-
known model, in our case this is a limiting case of a ‘structural’ nonlinear
model.

It is important to investigate the statistical properties of our model.
A number of results, stated and proved in the appendix, provide help in
this respect. Intuitively, as we show in Appendix, (5.17) is geometrically
ergodic, and therefore asymptotically stationary, if |p| < 1. This allows for
the analysis of estimators along traditional lines.

5.6.3 Cross-sectional dependence and factor models

In the factor literature the behaviour of the covariance matrix of x; =
(1,4, ...,xN,) is considered. Factor models have the property that both
the maximum eigenvalue and the row/column sum norm of the covariance
matrix tend to infinity at rate N, as N — oo. In contrast, for other models
of cross-sectional dependence such as, for example, spatial AR or M A mod-
els, these quantities are bounded, implying that they exhibit much lower
degrees of cross-sectional dependence than factor models.

We show that the column sum norm of the variance covariance matrix of
x; when z; follows (5.17) is O(N). Thus, the model is more similar to factor
models than spatial AR or M A models. Interestingly, there are versions
of (5.17) that resemble spatial models more than factor models. Another
finding is that (5.20) implies a variance covariance matrix for x; with a
column sum norm that is O(1). This is surprising, given the similarity
that cross-sectional average schemes have with factor models as detailed
in Pesaran (2006). In our case no exogenous factors exist and the cross-
sectional average is a primitive term that exists in the structure of the model.

It is important to restate here differences between our model and a factor
model. When a dataset has pronounced cross-sectional dependence exhib-
ited by, say, exploding eigenvalues or the column sum norm associated with
its covariance matrix, then a factor model should offer some fit, irrespective
of the structural form giving rise to this cross-sectional dependence. Prin-
cipal components, in particular, nonparametrically construct linear combi-
nations of the variables that capture (strong) cross-sectional dependence,
whatever its genesis. But when the data generating process resembles our
model, such that clusters emerge endogenously and their number varies over
time, a large number of factors may be required; and the number needed
may also have to change over time. Factor models are intrinsically reduced
form; they focus on modelling cross-sectional dependence using an exoge-
nously given number of unobserved factors. Since our model nests (5.20), it
is not surprising that it can approximate a factor model when r — oco. On
the other hand, our model has a clear parametric structure, which is a fea-
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ture shared by some classes of dynamic spatial model. But our models are
more general than spatial models, in the sense that the weighting schemes
are estimated endogenously, rather than assumed ex ante. Furthermore, it
is worth noting that the factor model cannot accommodate the weak cross-
sectional dependence seen in spatial models, in contrast to the extensions
of our nonlinear model. These extensions demonstrate that the nonlinear
model can, in general, be seen to lie between the two extremes characterised
by weakly cross-sectionally dependent spatial models and strongly cross-
sectionally dependent factor models.

5.6.4 General suggestions on the empirical applications in-
cluding the herding

Inflation expectations Here, we have considered the basic model
with fixed effects as:

p

mit

D T(mipr =] <7 w1+ € (5.21)
j=1

N
Tt = Vi +
where 7 is the one-quarter ahead CPI inflation rate forecast, v; ~ id(0, 02),
and obtained the within estimator of p along with the consistent estimator
of r. We can provide some economic interpretations for p and 7 in terms of
persistence or inertia and the relative distance of similarity.

Notable exceptions in the current application are to estimate two extreme
models, denoted PAR and CSA, respectively:

Tt = Vi + pTi—1+ €t (5.22)

it = Vi + pTi—1 + €t (5.23)

It is interesting to see how the estimates of p differ for each of three models,
along other statistical measures as discussed in the case with the the stock
return application. Assuming that the overall performance of the model,
(5.21), is superior and after carrying out further CDS analyses with the
exogenous factor structure, we then move to estimate the extension or gen-
eralisation as discussed in the model of the form, namely,

Tit = Vi+ p1Tit—1+ Pafiie_1 + €t (5.24)

where 7;;—1 and 7§, _; are the respective cross-section averages related to
K
similar and dissimilar forecasters given by

1 N

i1 = — Y T (mig—1 = a1 S 7) Wi
%t

J=1
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1 N
i > T(ITip1 = Tjea| > ) Wi

it—1 —
N — mw =

=1

In this context, we can also test the hypothesis of p, = 0 (non-informational
contents arising from dissimilar forecasters). If not, what’s the prior impli-
cation of the signs of p,? In other words, in forming the own forecast, how
does each forecaster use any (past) information from others? At least in this
context, we can avoid any contemporaneous endogeneity issue?

Next issue is to find a way of decomposing the (partial) aggregate para-
meter, p in (5.21) or p;in (5.24) into the own effect and the neighbor effect.
One obvious candidate is to consider

Tit = Vi + PoTit—1 + p17it—1 + € (5.25)
Tit = Vi + p1oMig—1 + priTig—1 + poTi 1 + €ig (5.26)
where
N
. 1
Tit—1= — E Z(|mip—1 — mja—1| <) w1
mizt . ‘.
J=1,37#i

In the spatial modelling literature, Anselin et al. (2008) distinguish
spatial dynamic models into four categories based on the following general
time-space-dynamic specification:

Tit = PoTit—1 + P Z w1+ B Z Wiy + Vi + €t (5.27)
JF#i J#i

Here, E#i wi;y;¢ and Z#i w;;yYjt—1 are a first order spatial lag and its time-
lagged value, respectively. The parameter, p,, captures serial dependence of
Zit, B represents the intensity of a contemporaneous spatial effect ,and p;
captures space time autoregressive dependence. Most studies focus on the
stable case. with |py + p; + | < 1, but Lee and Yu (2007) also develop the
unit root analysis of a spatial dynamic panel). This general specification,
(5.27), includes various special cases of spatial lag models on panel data
discussed in the literature:

o if po = p; = 0, we obtain a ‘pure-space recursive’ model in which
dependence results from the neighborhood locations in the previous
time period;

e if p; = 0, the model is reduced to a ‘time space recursive’ model in
which dependence relates to both the location itself (z;;—1) and its
neighbors in the previous time period Z#i Wi Tjt—1;

e if 3 =0, we obtain a ‘time space simultaneous’ model which includes
the time lag (z;+—1) and the spatial lag, Zj# Wi T t5
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e finally, if py = 8 = 0, we are dealing with a spatial autoregressive
model on panel data, while if py = p; = 8 = 0 we obtain a ‘simple’
dynamic model.

According to Anselin (2001) and Abreu et al. (2005), the addition of
a spatially lagged dependent variable causes simultaneity and endogeneity
problems and thus a candidate consistent estimator should lie between the
OLS and within estimates.

Notice that our model, (5.25), is similar to the time-space recursive model
considered in Korniotis (2010), who apply this model to investigate the issue
of internal vs external habit formation using the annual consumption data
for the U.S. states, and find that state consumption growth is not signif-
icantly affected by its own (lagged) consumption growth but it is affected
by lagged consumption growth of nearby states. Notice that the weight
w;; measures the importance of x;;—1 on x;. The weights are observed
quantities, which are known to the econometrician, and they are therefore
exogenous. Because the spatial lag, Zjvzl w;jTj i1, is a weighted average of
past consumption choices of other cross-sectional units, it is the measure of
the catching-up habit. The weights w;; are organized in the N x N spatial
matrix W.

Currently, there is a trade-off between the model, (5.25), and the time
space recursive model employed by Korniotis (2010). In (5.25), the neighbors
are selected endogenously but the equal weights are imposed to the selected
neighbors. By contrast, in the time space recursive model, the neighbors are
selected more or less exogenously but the weights, though not time-varying
mostly, are sometimes given in a flexible manner. In any case the application
of the model, (5.25) to similar issue of the consumption habit formation will
provide an interesting insight.'”

Unless py = 0, the model (5.26) should be more general.

Alternative decomposition I am considering how to relate or modify
the Sias’ (2004) approach to an analysis of herding. The idea is to estimate
p from (5.21), and find a way to decompose:

P = Pown t Pneighbor

following the the Sias’ approach. But the analogy is not quite one-to-one.
The potential advantage of this approach is the possible robustness of this
measure which can also be used for a finite T', as well.

100f course, we can allow the weights to be inversely proportional to the distance once
the threshold parameter is consistently estimated. See further discussions below.
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The few more suggestions As discussed above, we can allow differ-
ent weights to the selected neighbors as follows: We now generalise (5.21)

p
mit

N
D T(wir1 — mjpa| < P)wiage + e (5.28)
j=1

Tit =V;+

where we may consider the following weights
-2
i

=N 2’
Zj:l dij

(then, how we define wj;, just normalised to 1?). The estimation can be
done in two steps: first, the consistent estimate of r is obtained from (5.21).
Then, construct the weights and the associated cross-section averages and
estimate the model, (5.28). Or possibly more complicated due to the grid
search over r. If successful, then our approach is more general than the
spatial model as discussed above.

Next, we may consider the following extension of (5.21):

wij = dij = |Tit—1 — zj1-1]

N
Tit =V + p ZI (|xﬁaf — acjjt_l‘ < 7’) Tjt—1+ €y (5.29)
it S5
where 2% = max; x;; 1, such that the distance is measured with respect
to the best performer rather than the unit i. The alternative functional type
can also be considered. This may be the better example that those discussed
on p.19.

From the empirical point of view, the following consideration may be
useful: Suppose that the distance between x;;_1 and x;;_1 or more gener-
ally between g;; and ¢, can be regarded as the sort of similarity measure,
and that the parameter may measure the impact of the certain policy. We
then estimate the value of p’s under different values of r, and make a 2-
dimensional plot to investigate whether the relationship between p and r
is monotonic or nonlinear and so on. This approach may be related to the
recent GMM analytic approach where the sample moment condition is not
equal to zero for over-identified case.

5.7 Modelling Technical Efficiency in Cross Sec-
tionally Dependent Stochastic Frontier Panels

Mastromarco, Serlenga and Shin (2014) propose a unified framework for
accommodating both time- and cross-section dependence in modelling tech-
nical efficiency in stochastic frontier models. In particular, we adopt the
multi-step procedure advanced by Bailey et al. (2013) within the nonlinear
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panel data model advanced by Kapetanios et al. (2014, KMS). This ex-
tended KMS approach enables us to deal with both weak and strong forms
of cross section dependence by introducing exogenously driven common fac-
tors and an endogenous threshold selection mechanism. Using the dataset of
26 OECD countries over the period 1970-2010, we provide the satisfactory
estimation results for the production technology parameters and the asso-
ciated efficiency ranking of individual countries. We find positive spillover
effect on efficiency, supporting the hypothesis that knowledge spillover is
more likely to be induced by technological proximity. Furthermore, our ap-
proach enables us to identify efficiency clubs endogenously in the stochastic
frontier analysis.

We address an issue of modelling cross section dependence in the sto-
chastic frontier analysis (SFA), and begin with the standard Cobb-Douglas
production function:

Yit = ,BIXZ‘t + e, 1 =1, ...,N, t=1, ...,T, (530)

where y;; is a logarithm of output of country ¢ at time ¢, x;; a k x 1 vector of
(logged) production inputs, 3 a k x 1 vector of structural parameters, and
€4t is the composite stochastic errors including the idiosyncratic disturbance
(vit) and time varying (logged) technical inefficiency (u;):

Eit = Vit — Uit- (5.31)

Mastromarco et al. (2013) introduce the importance of a factor-based
production function which takes into account of strong cross section de-
pendence, and propose the panel stochastic frontier model with unobserved
time-varying factors for modelling the time-varying technical inefficiency,
Uit

i =c;+Afy, i=1,.,N, t=1,.,T, (5.32)

where «; is (unobserved) time-invariant individual effects, and f; is an r x 1
vector of unobserved factors that are expected to provide a proxy for non-
linear and complex trending patterns associated with globalisation and the
business-cycle. This factor approach clearly accommodates strong cross sec-
tion dependence (CSD). As will be clear, we observe the pervasive evidence
of strong CSD among technical inefficiency, ;.

Recent literature emphasises that the individual country’s total factor
productivity (TFP) is likely to be significantly affected by economic perfor-
mance of neighboring or frontier countries. To allow for such spatial depen-
dence structure, Ertur and Koch (2007) develop a growth model in which
technological interdependency is specified through spatial externalities as
the knowledge in one country produces externalities that may spillover into
other countries. They provide evidence that the spatially augmented Solow
model can produce the better prediction of the important role played by
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spillover effects in international growth and convergence. In particular, the
productivity shocks in SFA are assumed to be spatially correlated, typically,
as follows:

Er = pWEt + €, t= 1, ...,T, (533)
where ; = (e14,...,ent)’, W = {wij}gj:l is the N x N spatial weight
matrix with diagonal elements equal to zero, p is a spatial autoregressive
parameter, and ey = (e, ..., en¢) the vector of zero-mean idiosyncratic dis-
turbances. The key assumption here is that the elements in W are selected
exogenously on the basis of geographic or economic proximity measures such
as contiguity, physical/economic/climatic distances or dissimilarities.

The spatial models can only control for weak CSD whilst the factor-
based models can allow for strong CSD (Pesaran and Tosetti, 2011). In this
regard the spatial-based approach is likely to produce biased estimates in
the presence of strong CSD. While spatial autoregressive models which con-
trol for weak forms of CSD are generally estimated by MLE, Pesaran (2006)
and Bai (2009) develop two alternative consistent estimation methodolo-
gies in the presence of strong CSD. Pesaran proposes the Pooled Common
Correlated Effects (PCCE) by approximating unobserved common factors
by cross-sectional averages of dependent and independent variables. Bai al-
lows regressors to be correlated with both factors and loadings by including
additive and interactive fixed effects, and proposes an maximum likelihood
estimation method (IPC) in which unobservable common factors can be
consistently estimated by the principal components. These studies clearly
suggest that factors can play an important role in the cross sectionally cor-
related panels.

Nevertheless, factor-based models impose an assumption that the strong
CSD is mainly driven by an exogenously given unobserved factors. Recently,
KMS propose an alternative approach that allows the structure of CSD to
be determined endogenously. In this paper, we combine factor-based model
with the KMS approach and propose a consistent estimator of time varying
efficiency which controls for both strong and weak CSD. Bai and Pesaran
impose a common structure behind efficiency whilst KMS allow the efficiency
cluster to be determined endogenously.

5.7.1 The model

The distinguishing feature of our model is the use of unit-specific aggregates,
which summaries of past values of efficiency, and connects the units that are
close to the technology frontier (the best units). The product of a country 4
at time ¢, Yj;, is determined by the levels of labor input and private capital,
L;; and K. It is also affected by the Hicks-neutral multi-factor productivity
TFP. The production function is expressed:

Yit = TFPyF(Ly, Kit), (5.34)
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where TF Py depends on the technological progress. In the econometric
specification, we hypothesize that countries differ for the efficiency in factor
usage. The T'F P;; component can be decomposed into the level of technology
Aj+, a measurement error w;:, and the efficiency measure 7;; with 0 < 74 < 1:

TFPy = Aptywi. (5.35)
By writing (5.34) in log form:
Yit = o+ Brki + Balit — wir + vit, (5.36)
with the two-way error components structure given by
€it = Vit — Uit (5.37)

where vy = lnw;; and uwy; = —In(7y) is the term measuring the (time-
varying) technical inefficiency.

Specifically, we propose an inefficiency model which might be given a
behavioural interpretation such that innovators consider the behaviour of
other agents as:

wir = a; + pi(r) + Nifi. (5.38)
where
| X
it (r) = mitz;[ (Jury = wje—1| <) ujen, (5.39)
J:

and 7 is the threshold parameter that is determined endogenously and uy_; is
N
the efficiency of the best performing country and m;; = > I (‘uf_l — u]-t_l‘ < 7").
j=1

Model (5.38) extends (5.32) by including @;;(r). This interaction term may
then be thought of capturing the cross sectional local average of the best
practices or common technology.

The specification in (5.38) explicitly allows the dynamics of technical
inefficiency to be interacted spatially and enables us to address the spatial
spillover effects such as the diffusion of new technologies. A priori, we
expect that such externalities can be captured by a negative value of p. As
a by-product of the KMS approach, we can also identify the heterogeneous
technology clubs that may vary over time and across cross-section units; the
frontier cluster formed by technology leading countries and the other group
of countries substantially below the frontier.

To determine the production frontier, defined as the maximum attainable
output by given level of inputs, the inefficiency should be zero. We follow
Schmidt and Sickles (1984), Kumbhakar (1990) and attempt to measure
individual inefficiency:

eir = max (ui) — (u) = max (ai + pt(r) + )\;ft) — (CL/Z‘ + ptg(r) + )\gft)
(5.40)
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5.7.2 Econometric estimation

We discuss in details how to estimate the proposed model (5.36-5.38) in
SFA. For convenience we rewrite the model as follows:

Yit :ﬂ/Xit—FEit, 7= 1,...,N, t= 1,...,T, (541)
it = Vit — Uit, (5.42)
wi = a4+ pli(r) + Xify, (5.43)
N
Uzt(r ZI ‘Ut 1~ Ujt— 1| < 7“) Ujt—1, (5.44)

where «; is (unobserved) individual-specific effect, f; is an 7 x 1 vector of
unobserved factors and A; is an r x 1 vector of the heterogeneous loading;
@ () represents a cluster effect which is equal to the average efficiency of
countries which are close to the frontier where u;_; = min; (uj—1) and vy
is an idiosyncratic disturbance.

To obtain consistent estimate of inefficiency in equation (5. 40) we first
estimate 3 in (5.41) by PCCE or IPC, and derive &;; = y;; — Xlt/@PCCE PC
and Oy = vy — (,BPCCEJPC - B) Xit = Vit + 0p (1). Then, by normaliz-
ing with respect to the maximum we get a first proxy of inefficiency as
éir = max; (&) — (&). Next, following KMS, we consider the standard es-
timation procedure for a threshold model, where by a grid of values for r
is constructed. Then for all values on that grid the model is estimated by
least squares to obtain estimates of p. More specifically, we estimate 7 and
p jointly by minimising the following criterion function:

2

7“ ,0 —mlnzz €zt—P7

=1 t=1

- éjtfl‘ <r)éjr

(5.45)
The time-varying individual technical inefficiencies can be therefore consis-
tently estimated by

éir = max () — (G;) = max (az + Pl (7) + A ft) - (az N G EDY ft)

(5.46)

Finally, we will convert é;; to the time-varying individual technical efficiency
by

7A'Z't = exp(—éit). (5.47)

For empirical implementations, we follow Bailey et al. (2013) who pro-
pose a multi-step procedure to deal with both strong and weak forms of
CSD as follows:
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1. Test for the existence of CSD by applying the Pesaran (2013) CD test;

2. If the null of CSD is rejected, strong CSD is controlled for by applying
the factor model.

3. The Pesaran (2013) CD test applied to the (de-factored) residuals
again;

4. If the null of no CSD is still rejected, apply spatial or network mod-
elling to the residuals.

In particular, we adopt the multi-step procedure advanced by Bailey
et al. (2013) within the KMS nonlinear panel data model. This extended
KMS approach enables us to deal with both strong and weak forms of cross
section dependence jointly by combining the (exogenously driven) factor-
based approach with an endogenous threshold efficiency regime selection
mechanism in a rather flexible manner.

5.8 Further Issues

This summarises the concluding remarks by Smith and Fuertes (2012)

It should be emphasised, that this area is developing very rapidly, with
very many interesting and often surprising results emerging. There is also a
general pattern of extending issues in the standard time-series literature to
panels. Sometimes they extend relatively straightforwardly, sometime not
because problems interact.

It should also be remembered that theoretical and applied econometrics
are very different activities. Theoretical econometrics is a deductive activity
where you have no data, know the model and derive properties of estimators
and tests conditional on that model. There are right and wrong answers.
Applied econometrics is an inductive activity where you do have data, but
do not know the model or the questions let alone the answers. In applied
econometrics one must take account of not merely the statistical theory but
also the purpose of the activity and the economic context, which define the
parameters of interest. Different models may be appropriate for different
purposes, such as forecasting, policy analysis or testing hypotheses and pur-
pose and the economic context (theory, history, institutions) should guide
the choice of model.

However, even given this there appear to be some general points that ap-
plied workers might bear in mind when using large N large 1" panels. First,
one should be very careful about using standard pooled estimators such as
FE to estimate dynamic models, including lagged dependent variables, from
panel data. The dynamic parameters are subject to large potential biases
when the parameters differ across groups and the regressors are serially cor-
related. However, for some purposes, such as forecasting (where parsimony
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is crucial) or estimating long-run parameters (where the biases may can-
cel), the pooled estimators may perform well. It is desirable to use various
estimators and if they give very different estimates interpret why they do
S0.

Second, pooled (or cross-section) regressions can be measuring very dif-
ferent parameters from the averages of the corresponding parameters in
time-series regressions. In many cases this difference can be expressed as
a consequence of a dependence between the time-series parameters and the
regressors. The interpretation of this difference will depend on the theory
related to the substantive application. It is not primarily a matter of statis-
tical technique.

Third, the mechanical application of panel unit-root or cointegration
tests is to be avoided. To apply these tests requires that the hypotheses
involved are interesting in the context of the substantive application, which
is again a question of theory rather than statistics.

Fourthly, it is important to test and allow for between group dependence,
the CCE estimator is a good start, but you may also need to be able to give
the estimates an economic interpretation, which can be difficult.

Currently we are working on the STARDL, GVAR & so on...

A general check list of questions:

1. Why are you doing this? Purpose is crucial in determining parameters
of interest and appropriate estimators, e.g. a good forecasting model
may be quite different from a good structural model.

2. Do you know what the variables measure and how they measure it?
3. Have you examined the data carefully?

4. What does economic theory, history and context tell you?

5. Are the data best interpreted as cross-sections or time-series?

6. What do N and T allow you to do?

7. For this N and T what are the properties of the estimators and tests?

8. How different are the different estimators? Can you explain the differ-
ences between the estimators?

9. Single equation or system? Structural system or reduced form?
10. How much parameter heterogeneity is there? In what dimensions?
11. If I(1), is there homogeneous, heterogeneous or no cointegration?

12. How many cointegrating vectors? How do you identify the long-run
relations?
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13. If using a structural model, can you identify the short-run relations?

14. Can you interpret the results?
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