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Maximum-likelihood estimation of nonlinear models with fixed effects is subject to the incidental-
parameter problem. This typically implies that point estimates suffer from large bias and confidence
intervals have poor coverage. This article presents a jackknife method to reduce this bias and to obtain
confidence intervals that are correctly centred under rectangular-array asymptotics. The method is explicitly
designed to handle dynamics in the data, and yields estimators that are straightforward to implement and
can be readily applied to a range of models and estimands. We provide distribution theory for estimators
of model parameters and average effects, present validity tests for the jackknife, and consider extensions
to higher-order bias correction and to two-step estimation problems. An empirical illustration relating to
female labour-force participation is also provided.
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1. INTRODUCTION

The analysis of panel data plays an important role in empirical economics. Starting with classic
work on investment @) and production functions (lM_lmd]_ald h_%_]]; IHQ_QH h_%j), panel

data have been used to investigate a variety of research questions, including the patent—-R&D

relationship (Hausman e afl, [1984), the dynamics of earnings (Lillard and Willid [1978) and
health m M) female labour-force participation m
@, m, @,), consumption and transitory income m @) addiction

and price effects h&%l) legalized abortion and crime (]]lmghue_ani]_@ad
@Ii production frontiers m @) FDI and productivity spillovers
o, (1993 Gavorci] D00, the spatial dynarmics of FDI (Elomigen erall

), and cross-country growth convergence m, @). An important aspect of empirical
panel data models is that they typically feature unit-specific effects meant to capture unobserved
heterogeneity.

991

020Z Jaquieoa( gz uo Jasn esanbniiod eoljo1eD) apepIsioAiun 00910 Ad v261.2G51/166/S/28/810118/pnisal/woo dno-olwspeoe//:sdny woJj pepeojumoq



992 REVIEW OF ECONOMIC STUDIES

Random-effect approaches to modelling unobserved heterogeneity often specify the
distribution of the unit-specific effects and how they relate to the observed covariates, which
may result in specification errors. The problem is further complicated in dynamic models by the
initial-condition problem (see e.g. IIiQkaad, (19814 andMosﬂ_dn’_dgd,lZDLﬂ for discussions).

Fixed-effect approaches, where the unit-specific effects are treated as parameters to be
estimated and inference is performed conditional on the initial observations, are conceptually
an attractive alternative. However, in fixed-effect models the incidental-parameter problem
arises (]N_Q;Lman_and_s_md, [1_%_8). That is, maximum-likelihood estimates of the parameters of
interest are typically not consistent under asymptotics where the number of units, N, grows
large but the number of observations per unit, 7', is held fixed. Attempts to solve the incidental-
parameter problem have been successful only in a few models, and the solutions generally do
not give guidance for estimating average marginal effects, which are quantities of substantial
interest. Furthermore, they typically restrict the fixed effects to be univariate, often entering
the model as location parameters. [Arellano and Honord (2001)) provide an overview of these

methods. Browning and Carrd ©007), Browning ez az] ©01d), and [Arellano and Bonhommd

M) discuss several examples where unit-specific location parameters cannot fully capture
the unobserved heterogeneity in the data. [Hospidd ©2012)) and [Carro and Traferri (2012)) present
empirical applications using models with multivariate fixed effects.

The incidental-parameter problem is most severe in short panels. Fortunately, in recent decades
longer data sets are becoming available. For example, the Panel Study of Income Dynamics has
been collecting waves since 1968 and the British Household Panel Survey since 1991. They now
feature a time-series dimension that can be considered statistically informative about unit-specific
parameters. The availability of more observations per unit does not necessarily solve the inference
problem, however, because confidence intervals centred at the maximum-likelihood estimate are
incorrect under rectangular-array asymptotics, i.e. as N, T — oo at the same rate (see e. g. Lierall
M) It has, however, motivated a recent body of literature in search of bias corrections to
maximum likelihood that have desirable properties under rectangular-array asymptotics for a
general class of fixed-effect models. IH.ah_[La.n_d_N_m&)] ©2004) and [Hahn and Kuersteined 2011)
provide such corrections for static and dynamic models, respectively.m (@,),m
2002), |Arellano and Hahn (2006), and|Arellano and Bonhommd M) propose estimators that
maximize modified objective functions and enjoy the same type of asymptotic properties. The
primary aim of these methods is to remove the leading bias from the maximum-likelihood
estimator and, thereby, to recentre its asymptotic distribution. The main difference between the
various methods lies in how the bias is estimated. With the exception of the delete-one panel
jackknife proposed in[Hahn and Newey (2004) for independent data, all existing methods require
analytical work that is both model and estimand specific and may be computationally complex.

In this article, we propose jackknife estimators that correct for incidental-parameter bias
in nonlinear dynamic fixed-effect models. In its simplest form, the jackknife estimates (and
subsequently removes) the bias by comparing the maximum-likelihood estimate from the
full panel with estimates computed from subpanels. Here, subpanels are panels with fewer
observations per unit. The subpanels are taken as blocks, so that they preserve the dependency
structure of the full panel. This jackknife estimator is very easy to implement. It requires only
a routine to compute maximum-likelihood estimates, and no analytical work is required. A key
feature of the jackknife is that, unlike analytical approaches to bias correction, the jackknife
does not need an explicit characterization of the incidental-parameter bias. Therefore, it can be
readily applied to estimate model parameters, average marginal effects, models with multiple
fixed effects per unit, and multiple-equation models. It can also deal with feedback from lagged
outcomes on covariates and with generated regressors, which arise, e.g. when accounting for
endogeneity or sample selection. Both types of complications are known to affect the expression
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of the incidental-parameter bias—seelBun and Kivief (]291)6) and|Ferndndez-Val and Velld dZDJ_ﬂ),

respectively—but pose no additional difficulty for the jackknife.

In Section B] we start with a discussion of the incidental-parameter problem and present
and motivate our framework. Section [3] introduces split-panel jackknife estimators of model
parameters, provides distribution theory, and compares the jackknife estimators with other bias-
correction methods by means of Monte Carlo simulations. In Section d] we examine the effect
of deviations from stationarity and present tests of the validity of the jackknife. Sections BHZ]
discuss extensions of the split-panel jackknife to average-effect estimators, higher-order bias
correction, and two-step estimators. SectionBlpresents an empirical illustration of bias-corrected
estimation in a model of female labour-force participation. We conclude the article with some
suggestions for future research. Proofs, technical details, and additional results are available as
Supplementary Appendix.

2. FIXED-EFFECT ESTIMATION AND INCIDENTAL-PARAMETER BIAS

Suppose that we are given data z;; for individual unitsi=1,2, ..., N and time periodst=1,2,...,T
Let z;; have density f(zir; 60, @ip), which is known up to the finite-dimensional parameters 6p € ©
and ;o € A. In line with the fixed-effect literature, we treat the individual effects «;( as fixed
parameters even though they may be generated by a random process, i.e. we condition on their
(unobserved) realizations. The fixed-effect estimator of 6y is = argmaxeegl(é) where 1(9) is
the (normalized) profile log-likelihood function:

T
. 1
16)= E E log f(zir; 0, @i()), ai(é))zargér_leaﬁfi log f(zit; 0, ).
! =1

zltl

It is well known that @ is often inconsistent for 6p under asymptotics where N — oo and
T remains fixed. That is, GszlimN_)oo/@\;é@o. This is the incidental-parameter problem
(]N_e_)Lmamand_SmLﬂ, (1949). The problem arises because of the estimation noise in @;(6), which
vanishes only as T — oo. For any function m(z;;), let E[m(z;;)] denote the conditional expectation
of m(zi) given o, and let E[m(z;;)]|=limy_ oo N AZé\[:lE[m(zi;)]. Then, under regularity
conditions,

Or =argmaxir (@), Ir(6) =E[logf(zir; 0,@i(0))],

whereas _
90=argg1€aé<lo(9), lo(0)=Ellog f(zit; 0, ai(0))],

with a;(9) =argmaxyec A E[logf (zir; 0, a;)]. With fixed T, @;(0) # «;(0). Hence, the maximands
IT(0) and [y(0) are different and so, in general, are their maximizers. The inconsistency (or
asymptotic bias) can be large, even with moderately long panels.

Examples help to illustrate the incidental-parameter problem. In the classic example of
Mﬂmmmw (]_L‘LA._S), the z;; are independent random variables that are distributed as
zir ~N(@jp,0p), and the maximum-likelihood estimator of 6y converges to 67 =0y—0y/T.
The inconsistency, —6y/7T, arises because maximum likelihood fails to make the degrees-of-
freedom correction that accounts for replacing «;o =IE[z;;] by its estimate 7! Zszl zie. If we let
Zir=yir, Xiz) and 6 =(y6,ag)/, a regression version of this example is y;; ~ N (a;g +xlfty0,cr§).
Here, the maximum-likelihood estimator of yq is the within-group estimator. When x;; =y;;—1,
we obtain the Gaussian first-order autoregressive model, for which the incidental-parameter
problem has been extensively studied. In this case, when |yg| < 1, yr =y — (1 +y0)/T+ O(T™2)
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(Nickell, [1981]; [Hahn and Kuersteined, 2002). Although these examples are very simple, they

illustrate that, in sufficiently regular problems, 67 —6 is typically O(T~!). Therefore, while 0
will be consistent and asymptotically normal (under regularity conditions) as both N, 7 — oo, its
asymptotic distribution will be incorrectly centred unless T grows faster than N , m;
|Hahn_and_N_w@J, |2£KM|). As a result, confidence intervals centred at the maximum-likelihood
estimate will tend to have poor coverage rates in most microeconometric applications, where
T is typically much smaller than N. The jackknife corrections that we introduce below aim to
reduce the asymptotic bias of the maximum-likelihood estimator and to recentre its asymptotic
distribution. Such an approach is in line with the recent work on nonlinear models for panel data
as mentioned above.

The jackknife method, which originated as a tool for bias reduction in the seminal work
of IQuenouilld (1949, [1956), exploits variation in the sample size to obtain a non-parametric
estimator of the bias. In our context, the (large N, fixed T) bias to be corrected for is 67 —
6 and the relevant sample size is T, the length of the panel. We will discuss two types of
jackknife estimators of 6. The first type bias-corrects 0 directly. The second type solves a bias-
corrected maximization problem, where the jackknife bias-corrects the objective function 1(0)
before maximization. These two types of estimators can be seen as automatic counterparts to the
analytical procedures introduced byIHah.n_a,nd_Kuﬂs_LQin.Qﬂ 011)) and[Arellano and Hahd (2006).
The former type is particularly easy to implement as it requires only the computation of a few
maximum-likelihood estimates. The latter, while computationally a little more involved, is still
generic in terms of applicability and has some advantages, such as equivariance with respect to
one-to-one reparameterizations.

The jackknife estimators proposed in this article differ from the delete-one panel jackknife
of [Hahn and Neweyl (2004) in that they allow for dependence between observations on a given
unit. Such dependence is natural in most applications and is inherent in dynamic models, such
as the Gaussian autoregression or a binary-choice version of it. The key to handling dynamics is
to use subpanels formed by consecutive observations for each unit. Of course, some regularity
has to be put on the time-series properties of the data. A convenient assumption is to impose
stationarity of the individual processes and a sufficient degree of mixing. In applications, however,
stationarity may be an unrealistic assumption. Therefore, we will also examine the performance
of the jackknife estimators in some specific non-stationary cases and develop tests of the validity
of the jackknife corrections.

The jackknife will be shown to remove the O(T*I) term of the bias. Hence, in the
[Neyman and Scotf (1948) example, it fully eliminates the bias. More generally, however, the
jackknife will only reduce the bias from O(T 1) down to o(T ). Nevertheless, for typical sample
sizes encountered in practice, this can already be sufficient for a vast reduction in bias and much
improved confidence intervals. To illustrate the reduction in bias, Figure[Ilplots the inconsistencies
of the within-group estimator (7, solid line) and of the jackknife estimators obtained from
correcting ¥ (denoted 7 /2, dashed line) and from correcting the objective function (denoted
¥1/2, dotted line) in the stationary Gaussian autoregressive model y;; =ajo +y0yir—1 +&ir. These
jackknife estimators will be defined in equations (34) and (B8] below. The plots show that the
jackknife corrections alleviate the m ) bias to a large extent, even in short panels
(T =4,6). To gain an idea of the finite-sample performance of bias-corrected estimation, Table
[0 shows the results of a small simulation experiment for this model for y9=0.5 and various
panel sizes. The biases and the coverage rates of 95% confidence intervals centred at the
point estimates are given for ¥, the bias-corrected plug-in estimator ygg =7 +(1+7%)/T (see
[Hahn and Kuersteined, 2002), and the jackknife bias-corrections 7; /2 and y1 /2. The inconsistency

of the bias-corrected estimators in this model is O(T‘z). The table also provides results for the
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FIGURE 1
Inconsistencies in the stationary Gaussian autoregression
Notes: Model: y; =g+ YoYir—1 +&ir» €ir ~ N (0, 002), stationary y;o. Plots: fixed-T inconsistencies of the within-group

estimator (¥, solid line) and two jackknife estimators (] /2, dashed line; y1/2, dotted line).

TABLE 1
Small-sample performance in the stationary Gaussian autoregression
Bias Confidence Validity
N T 7 PHK 7172 Y12 7AB 7 VHK 7172 712 7AB 112 2
100 4 —-0413 -0.141 -0.076 —0.176 —0.054 0.000 0.495 0.682 0.273 0.923 0.953 0.735
100 6 —-0.278 —0.074 —0.019 —0.097 —0.047 0.000 0.702 0.815 0.509 0.910 0.966 0.878
100 8 —-0.206 —0.044 0.001 —-0.058 —0.039 0.000 0.815 0.848 0.702 0.910 0.964 0.916
100 12 —0.134 —0.021 0.008 —0.027 —0.031 0.001 0.897 0.866 0.853 0.900 0.957 0.935
20 20 —0.081 —0.010 0.005 —-0.012 —0.089 0.595 0.947 0.903 0.935 0.613 0.956 0.951
50 50 —-0.031 —0.002 0.001 —-0.002 —0.033 0.592 0.950 0.934 0.939 0.603 0.947 0.946
100 100 —0.015 0.000 0.000 0.000 —-0.016 0.596 0.948 0.939 0.941 0.605 0.950 0.949

Notes: Model: yi; = oo+ YoYir—1 +E€ir» €ir ~N(0,002), stationary y;o. Data generated with y9=0.5, 0“02 =1, ajo~N(0,1).
10,000 Monte Carlo replications.

optimally weighted |Arellano and Bond (1991)) estimator, yag, which is fixed-T consistent. In
line with Figure [Tl the results show that bias correction can lead to drastic reductions in small-
sample bias. The jackknife corrections are competitive with 5 in terms of bias (for the sample
sizes considered). Furthermore, bias correction leads to much improved coverage rates of the
confidence intervals compared with those based on maximum likelihood. The corrections remove
enough bias to yield reliable confidence intervals also when T is not small relative to N. Finally,
the last two columns of Table[l] 7 /2 and f /2, present the acceptance rates of two 5%-level tests
(which will be defined later on) to check the validity of the jackknife corrections. The underlying
null hypothesis of the tests is that the jackknife effectively removes the leading bias from the
maximum-likelihood estimator. In this example, the acceptance rates are close to the nominal
acceptance rate of 95%, thereby confirming that the jackknife is bias-reducing.

The linear autoregressive model is convenient for illustrative purposes because a benchmark
is available in the form of the [Arellano and Bond (1991l) estimator. From a fixed-T perspective,
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TABLE 2
Small-sample performance in the stationary autoregressive probit model
Bias Confidence Validity
T 0 51/2 91/2 0 51/2 91/2 112 2
6 —0.618 0.248 —-0.272 0.031 0.833 0.895 0.959 0.929
8 —0.456 0.078 —0.162 0.079 0.917 0.889 0.956 0.951
12 —0.300 0.021 —0.074 0.194 0.934 0.923 0.962 0.962
18 —0.197 0.008 —0.031 0.354 0.943 0.943 0.954 0.954

Notes: Model: y;=1(ajo+60yi—1+&ir >0), ei;~N(0,1), stationary y;. Data generated with N=100, 6p=0.5,
aio~N(0,1). 10,000 Monte Carlo replications.

there is no theoretical reason to prefer bias-corrected estimators over this estimator. The
situation is different under rectangular-array asymptotics, where the bias-corrected estimators
are asymptotically efficient and thelArellano and Bond (]_L‘i‘ll“) estimator is asymptotically biased;
see(Hahn and Kuersteiner (2002) andm “mx respectively. Furthermore, in
nonlinear models, fixed-T approaches may not be available. For example, in the dynamic binary-
choice model where zj; =(yir,vir—1) and Pr[y;=1|y;—1 =x]=F(ejo+6px) for x=0,1 and a
given distribution function F, a fixed-T consistent estimator of 6 is available when F is logistic
(]Qb_amb_cﬂ_ajﬂ,h_‘z&j) but not when F is Gaussian (lH;mmn_d_’[a_m.cﬂM}Dﬂ see alsomgm
M). When fixed-T consistency is not possible, the jackknife in general still retains the property
that it is bias-reducing relative to maximum likelihood. This is often manifest already for moderate
values of T. To illustrate, Table Plprovides simulation results for the jackknife corrections in the
stationary dynamic probit model where 6y =0.5. Again, the reduction in bias is substantial, and
so is the improvement of the 95% confidence intervals.

In the next section, we will present jackknife estimators of 6y and compare them with other
approaches available in the literature. We will also present jackknife bias corrections for average
(marginal or other) effects, where the averaging is over the fixed effects and, possibly, over
covariates (Chamberlair, [1984). Averages like this are often parameters of substantial interest. In
the Gaussian autoregression, if we assume that the ;o are generated by a common, unspecified
distribution G, one such quantity would be the survival function at s, i.e.

+00 +00 _
[ ez s =xen=atag@= [ o ag,

—0o0

s

The analogue in the dynamic binary-choice model would be the choice probability F(xjg+ 6px)
averaged against G. Plug-in estimators of such averages based on maximum-likelihood estimates
will typically be inconsistent. Again, in regular problems, the asymptotic bias will generally be
o h. Using a bias-corrected estimate of 6 instead of 0 leaves the order of the bias unchanged.
Moreover, even if the true 6 were used, the bias would remain O(7~!) because the «;q are not
estimated consistently for small 7. However, the idea underlying the jackknife estimators of 6
can be readily applied to obtain bias-corrected average-effect estimators.

3. SPLIT-PANEL JACKKNIFE ESTIMATION

In this section, we present our jackknife corrections and provide sufficient conditions for them to
improve upon maximum likelihood. We will work under the following assumption.

Assumption 3.1. The processes zj; are independent across i and stationary and alpha mixing
across t with mixing coefficients aj(m) that are uniformly exponentially decreasing, i.e.
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sup; |a;(m)| < Cb™ for some finite C >0 and b such that 0 <b < 1, where

a;j(m)=sup sup |Pr(ANB)—Pr(A)Pr(B)],
t AcAy,BEBitim

and Ajr=0(zit,2it—1,...) and Bi=0(2it,Zit+1,...) are the sigma algebras generated by
ZitsZit—1,--- and Zit,Zit41,..., respectively. For all i, the density of zi; given Zj_1,Zit—2,...
(relative to some dominating measure) is f (zir; 0o, jo) where (6p, i) is the unique maximizer of
Ellogf (zit; 0, ;)] over the Euclidean parameter space © x A and is interior to it.

This assumption accommodates dynamic models by letting zj; =(yis,Xi;) and f(zis;0,0i)=
fitlxis; 0, a7), where xj; may contain past values of the outcome variable y;;. The density is
assumed to be dynamically complete, but the assumption allows for feedback from past outcomes
on covariates. We assume that the data are independent across i. The time-series processes may
be heterogeneous across i with a uniform upper bound on the temporal dependencies that decays
exponentially. [Hahn and Kuersteined (2011)) provide a detailed discussion of the stationarity and
mixing assumptions.m ©o1d,2011) andhg]gng_an.dmmieﬁd 011)) show
that they hold under mild conditions in several popular nonlinear models, including dynamic
binary-choice models and dynamic tobit models with exogenous covariates. The last part of
Assumption[3.Jlessentially states that the parameters 6 and «;( are identifiable from within-group
variation in the data.

Assumption 3.1l is standard in the literature on fixed-effect estimation under rectangular-
array asymptotics (see Condition 3 in |Hahn and Kuersteined, 2011 and Assumption 3 in
[Arellano and Hahn, 200€). As noted above, the stationarity assumption may not be realistic in
certain applications. For example, it rules out time trends and time dummies, which are often
included in empirical models. Accounting for such aggregate time effects is difficult in nonlinear
fixed-effect models, even in settings where fixed-T inference would otherwise be feasible (see
[Honoré and Kyriazidod, 2000 and [Honoré and Tamel, R00E). In recent work, Bai 2009, R0o13)
deals with time effects in linear panel models under asymptotics where both N,T — oco. In
dynamic models, stationarity further requires that the initial observations are drawn from their
respective stationary distributions or, equivalently, that the processes started in the distant past.
We will discuss the sensitivity of bias corrections to violations of this assumption below.

3.1.  Correcting the estimator

Let sit(0) =Vplog f(zir; 0, i(9)) and H;¢(0) = Vgg'log f(zir; 0, i(0)) be the contributions to the
infeasible profile score and Hessian matrix, respectively. Let ¥ =—E[H;;(6p)]. We will restrict
attention to models satisfying the following two conditions.

Assumption 3.2. 07 and ¥ exist, and

N T
~ 1 _
VNT(6—6r)= T D3 2 si(00)+op(1)

i=11t=1

as N,T — oo.

Assumption 3.3. As T — oo,

B 1
QT—Q():?—FO ? s

where B is a constant.
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Assumption is the usual influence-function representation of the maximum-likelihood
estimator when centred around its probability limit and is a mild requirement. Because 0 is
consistent as T — oo, it holds that 87 — 8y — 0 as T — oo. Assumption[3.3lis a high-level condition
on how the bias shrinks. |Hah.tLan_d_Nmy_e_)] (IZLK)AI) and [Hahn and Kuersteiner (|2_O_1_1|) provide
primitive conditions under which these assumptions are satisfied in static and dynamic models,
respectively.

Put together, these assumptions imply that, as N,T — oo such that N/T — p for some p €
(0,00), we have

VNT@—60) 4 NB1 /5, 7).

As a result, confidence intervals for 6 centred at 6 would be expected to have poor coverage
even in panels where T is of the same order of magnitude as N.

We now use the jackknife to obtain a non-parametric estimator of By /T, the leading bias
term of 6. This bias term generally depends on the data generating process in a complicated way.
[Hahn and Kuersteined 2011 derive the exact form of By and present a plug-in estimator of it
based on the maximum-likelihood estimator of 8 and the «;9. Here we estimate By /T by means
of a linear combination of & and estimators based on subpanels. For our purposes, a subpanel is
defined as a proper subset S & {1,2,...,T} such that the elements of S are consecutive integers
and |S| > Tin, Where |S| denotes the cardinality of S and Ty, is the least T for which 07 exists.
Now, the maximum-likelihood estimator corresponding to subpanel S is

N

~ —~ —~ 1 .
Gszarggleagls@), Is(0)= NIS |§ E log f(zir; 0, 2tis(6)),
i=11teS

where &iS(Q)Eargmaxaie Aﬁ Zte slog f(zit;0,;). Since, by their very definition, subpanels

preserve the dependency structure of the full panel, our assumptions imply that plim, _, ooag =05
and, as |S| — 00, 6|5 can be expanded as in Assumption[33] with || replacing 7. It thus follows

that
ST s —or=BL4o( 1 3.1)
—0r)=—+o| = |, .
75 ST T T

and that T | .gL(QS 9) is a consistent estimator of By /T. Each subpanel S has associated with it

an estimator g that can be combined with 6 to obtain an estimator of the leading bias. Different
choices lead to jackknife estimators with different properties, which leads to the question of the
optimal choice of subpanels.

Let g > 2 be an integer such that T > g7 ;. Suppose we split the panel into S ={S,S>, ..., S},
a collection of subpanels partitioning {1,2,...,7} in such a way that the sequence minges|S|/T
is bounded away from zero as T grows. Then, with

— S|~
5= Dla, (3:2)

g+1(§5 — 5) is a consistent estimator of B /T based on the collection S. Now, any such collection
S defines an equivalence class {S1, Sy, ..., Sp } of collections of subpanels partitioning {1,2, ..., T}
that have the same set of cardinahtles as . Note that m < g! and that m=1 when all subpanels in
S have cardinality 7'/g. Averaglng (95 9) over the equivalence class of S to estimate By /T
removes any arbitrariness arising from a particular choice of partitioning for given cardinalities
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of the subpanels. Subtracting this estimate from é\yields the split-panel jackknife estimator

m
0. 0=—> s, (3.3)
j=1

3|~

As an example, suppose that Ti,j, =2 and take g=2. Then, for any 7'>4, we can partition
the panel into two half-panels. When T is even, there are two non-overlapping half-panels with
exactly T'/2 time periods each and the equivalence class has just one member,

S={S1,5,}, where §1={1,2,...,T/2},S,={T/2+1,...,T}.

When T is odd, there are two ways of splitting the panel into non-overlapping half-panels, and
the equivalence class has two members,

S1 = {511,512}, where 11 ={1,2,....[T/21},S12={[T/21+1,...,T};
Sy = {571,522}, where S>1={1,2,...,|T/2]},S»={|T/2]+1,...,T}.

Note that S} =5, =S when T is even. Using half panels as defined, 6 becomes the half-panel
jackknife estimator

~ ~ — _ 1 — —
91/2529—91/2, 91/255(95|+932), 3.4)

with 65, and 0, as defined in (32).
Theorem 3.1. Let Assumptions 31} and B3 hold. Then plimy_, .6 =6p+0o(T~") and

VNT@—60) 5 N0, =71
as N,T - oo withN/T — p.

This result states that, under the assumptions made, all the members of the class 6 remove
the leading bias from 6 and have a normal limit distribution that is correctly centred under
rectangular-array asymptotics. The asymptotic variance is the same as that of the maximum-
likelihood estimator. The fact that bias reduction can be achieved without variance inflation is
important. It arises here from the way in which the subpanels are combined to estimate the bias
term. To see this, note that any étq in (B2) has an asymptotic variance that is greater than that of o
because |S| < T. However, because each collection partitions {1,2,...,T}, averaging the subpanel
estimators as in (3.2) brings the variance back down to that of maximum lillfelihood.

Thus, the split-panel jackknife estimator removes the leading bias from 8 without affecting its
asymptotic variance. Like other bias-corrected estimators, it does, however, affect the magnitude
of the higher-order bias, i.e. the bias that is not removed. This is because By /T is estimated
with bias o(T~1) (cf. @D). For the split-panel jackknife estimators, the transformation of the
higher-order bias is very transparent. To describe it, it is useful to assume for a moment that the
inconsistency of 6 can be expanded to a higher order, i.e.

By B> By 1
9T—00=?+ﬁ+“'+ﬁ+0<ﬂ> (35)
for some integer k. While 6 eliminates B 1, it transforms the remaining B; into BJ(. Theorem S.2.1
in the Supplementary Appendix provides a characterization of this transformation. It shows that
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|BJ/.| > |B;] for all j >2 and that, for a given g, any higher-order bias coefficient, B/, is minimized
(in absolute value) if and only if the collections ; are almost-equal partitions of {1,2,...,T}, i.e.
if |[T/g]<IS|<[T/g] for all § €S;. With almost-equal partitions, the second-order bias term is
—gB>/T?. Minimizing this term over g gives the half-panel jackknife estimator, ] 172> which also
minimizes the magnitude of all higher-order bias terms. This provides theoretical justification for
using half-panels.

The half-panel jackknife estimator is simple to implement, requiring only a few maximum-
likelihood estimates. To compute them, an efficient algorithm will exploit the sparsity of the
Hessian matrix, as suggested by|Ha.]] (1978) and IChamberlaid (198d). This makes fixed-effect
estimation and jackknife-based bias correction straightforward, even when the cross-sectional
sample size is large or when «; is a vector of individual effects. Furthermore, once the full-
panel maximum-likelihood estimates have been computed, they are good starting values for
computing the subpanel estimates. The asymptotic variance, finally, can be estimated usmg the
point estimates to form a plug-in estimator %~ 1. In our simulations, we estimated X~ ! by using
the Hessian matrix of the profile log-likelihood. For the linear dynamic model, we applied a
degree-of-freedom correction to account for the estimation of the error variance, and, for the
half-panel jackknife estimates, we estimated X! as the average of its two half-panel estimates.

A drawback of the half-panel jackknife estimator in equation (3.4) is that it cannot be applied
when T <2Ti,. One solution, provided that Ty, <7, is to resort to overlapping subpanels
to construct jackknife estimators. Let g be a rational number between 1 and 2 such that T is
divisible by g. Let S| and S be two overlapping subpanels such that S US> ={1,2,...,T} and
|S11=182|=T/g. The estimator

1

~ g ~ — _ 1 ~ <~
01/ o=—-0——01/5, 01/0==(05 +0s,), 3.6
1s= 10 5= 1"Vs 1/g= 565, +6s,) (3.6)

is first-order unbiased. Furthermore, a calculation shows that, as N,7 — oo with N/T — p,

NT ~
| == @1 =00 >N (O.57)
8

where d,= % g/(g—1). A formal derivation is available as Theorem S.3.1 in the
Supplementary Appendix. The factor d, is a variance inflation factor. It increases from one to
infinity as the fraction of subpanel overlap increases from zero to one. The variance inflation can
be interpreted as the price to be paid for bias correction via the jackknife in very short panels[

The analytical corrections of, for example, [Hahn and Kuersteined (2011l) and [Arellano and Hahn

) do not have this drawback.

3.2.  Correcting the objective function

As noted above, the incidental-parameter problem arises because the large N, fixed T profile log-
likelihood, I7(0), approaches the infeasible objective function /o(6) only as T — oo. Equivalently,
as N — oo with fixed T, the profile score 5(0) = Vyl(0) converges to s7(0)= Vyglr(9), which is
generally non-zero at 6y. As T — 00, s7(6p) converges to zero because s7(6) approaches the

1. On the other hand, overlapping subpanels yield less inflation of the higher-order bias. From equations (G.3)
and (&8 it follows that plimy_, .01 /¢ — 60 =—gB2/T* —g(1+g)B3 /T — ... — g(1+g+...+ g 2)By /T +o(T~*). Each
bias term here is less (in magnitude) than the corresponding bias term of 91 /2
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infeasible score function s¢(6)= Vyly(0), which is zero at y. Because 67 solves s7(0)=0, the
bias of the profile-score equation can be seen as the source for 67 # 6. This suggests that, rather
than correcting 0, one may equally well correct for incidental-parameter bias by maximizing
a bias-corrected profile log-likelihood. In the context of inference in the presence of nuisance
arameters, such approaches have been the subject of much study in the statistics literature. See
m ) for a recent account and many references. N
We now show that the split-panel jackknife can be applied to correct /() in the same way as 0.
Let A(Q)=limy_sooN ! Zivzl j’i_oocov(sit(e),s,-,_j(e)); note that A(6p) =X, as sjiz(6p) is a
martingale difference sequence and the information matrix equality holds. As with Assumptions
and B3] we will work under the following two conditions.

Assumption 3.4. There is a neighbourhood Ny C ® around 6y where both s7(0) and A(0) exist,
and where

N T
1
VNT §(0)—s7(0)) = WZZ(sﬂe)—so(e)Hop(l)

i=1t=1

as N, T — oc.

Assumption 3.5. As T — oo,

1 1
br(6)—10(8) = IT( )+o(?>,

where C1(0) is a continuous function that has a bounded first derivative Ci ©) on Np.

Assumption B4l is an asymptotic-linearity condition on the profile score. Assumption states
that the bias of the profile log-likelihood has a leading term that is O(T~1). Primitive conditions
are available inlArellano and Hahrl (]ZM).

These assumptions can be linked to Assumptions[3.2]and B3] as follows. A Taylor expansion
of s7(0) around 6y gives

s7(01)=51(600) — Z (01 —60) +0(||67 — 6o ).

Because s7(0) =s0(0)+ Ci (0)/T +0(1/T) on Ny and 97 lies in Ny with probability approaching

one as T — 0o, we have
=1l (6p) 1
Or —bp=——1—+o( =), 37
T—00 T +0<T> 3.7

using s7(07)=0 and so(6p) =0. Thus, the leading bias of 5, B1/T, is the product of a Hessian
term with the leading bias of the profile score.
Let Tr/nin be the least T for which I7(6) exists and is non-constant (we show below that Tr/nin

may be less than Ty, ). Analogous to (33)), consider the split-panel log-likelihood correction

. ~ 1 - . 1 - - S}~
l(e)zil(e)—ngl(e), Z(G)EZZISI(G), 15,(9)52%15(9),

B j=1 SeS;

where, as before, {S1,Ss,...,S,} is the equivalence class of a chosen partition S of the panel
into g non-overlapping subpanels (now with |S| > Tr/nin for all S €S) such that mingcg|S|/T is
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bounded away from zero as T grows. It is easy to see that plimp_, ooi(@): 10(9)+0(T*1), from
which it readily follows that

6= e
argmax @)

is a bias-corrected estimator of 6.

Theorem 3.2. Let AssumptionsB.1] andB3 hold. Then plimy_, .0 =6y +o(T~") and

VNT(6—60)% N0, =)
as N,T —ocowith N/T — p.

Thus, 6 has the same limit distribution as 6 under rectangular-array asymptotics. Just as g is
a jackknife alternative to the analytical bias correction of i @o1l), 6 is
a jackknife alternative to the analytical likelihood correction proposed by
M). Again, the jackknife estimator estimates the bias term, here C1(0)/T, without the need
to have an expression for it.

The half-panel likelihood-based jackknife estimator is

él/zzafggleagzl/z(g), 112(0)=21(6) 1 2(6), (3.8)

with the obvious notation, analogous to 51 /2. The motivation for using half-panels is analogous
to that in the case of 51 /2; in the class 2(9), i 1/2(6) minimizes all higher-order bias terms that are
not eliminated.

Estimation based on the bias-corrected profile likelihood is computationally somewhat more
involved than the simple additive correction 91 /2 in equation B4). Maximizing I 12(0) is
equivalent to locating a saddlepoint that involves maximization over ¢ and the fixed effects
implicit in /(0), and minimization over two or four separate sets of fixed effects (when 7 is even
or odd, respectively) implicit in 1 ,2(0). In our simulations, we computed 6 /2 using a nested
Newton—Raphson algorithm, optimizing over 6 in an outer loop and over all sets of fixed effects
in an inner loop. We found this to work very reliably and reasonably quickly, typically requiring
no more than two to three times as much computational time as 0y />.

One attractive feature of profile-likelihood corrections is their invariance and equivariance
properties. In particular, 6 /2 and the associated confidence intervals are equivariant under one-
to-one trgnsformations of 0, and the likelihood ratio test is invariant. Corrections of the estimator,
such as 012, do not have these properties.

Another possible advantage of the profile-likelihood correction is that T’ nin < T'min and, insome
models, T 0 < Tmin- Recall that 67 maximizes I7(8), so 67 will not exist when /7(0) does not
exist and, therefore T min < T'min- An example where Tmln < Tnin 1 the first-order autoregressive
binary-choice model. Here, for T'=2, I7(0) exists for all 6 but is maximized at —o0, so Tr/nm 2
and T, =3 (a detailed derivation is given in the Supplementary Appendix)).

Finally, bias correction of the profile likelihood extends naturally to unbalanced data, under
two conditions: (i) for every unit i, the observations form a time series without gaps; (ii) the
unbalancedness (e.g. attrition) is due to exogenous reasons. Given (i), the unbalanced panel is
formed as the union of J independent balanced panels of dimensions N; x T;,j=1,2,...,J. Write

7(0; J) for the profile log-likelihood for the j-th such panel. The profile log-likelihood for the full
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panel then takes the form of the weighted average

J
~ ~ NiT;
10)=> wjl®:)). wj=—>"1—.
=1 2 j=1Ni T

Each of the/l\(é ;J) may be jackknifed in the usual fashion, giving 1(9; ). Now consider asymptotics
where, for allj,j'=1,2,...,J, the ratios N;j/Ny and T;/Ty remain fixed as ZJNJ and ZJT] grow
large. It is then immediately apparent that the maximizer of

J
Z(e)zzwjl(e; M, (3.9)

j=1

will be a bias-corrected estimator of 6y that is asymptotically normal and correctly centred
provided that Z]NJ / Z]TJ — p. In practical situations, it may occur that some 7; are too small

for I(0;) to be defined, in which case the corresponding terms have to be dropped from equation

GI.

3.3.  Small-sample comparison

Under our assumptions, all bias-correction estimators remove the leading bias term from 6 and
have the same asymptotic distribution as N,T — oo with N/T — p. Nevertheless, the finite-
sample performance of these estimators can be very different, due to the different ways the
leading bias is estimated. For the same reason, the various methods may react differently to
violations of the regularity conditions, and particularly to non-stationarity, which we discuss in
the next section.

Extending |H_ahn_an_d_N_e_mQ)] (IZLKH), [Hahn and Kuersteined (IZQ]_]]) derived the exact expres-
sion of B /T and gave conditions for consistency of a plug-in estimator. The bias term depends
on moments and cross-moments of higher-order derivatives of the likelihood function, evaluated
at true parameter values. An estimator can be formed by replacing spectral expectations with
sample averages that are truncated via a bandwidth that increases appropriately with 7 and
replacing 6y and the ajo by their maximum-likelihood estimates. [Arellano and Hahd (2006)
followed a similar strategy in deriving an estimator of C1(0)/7T, the leading bias of the profile
log-likelihood. Just like the jackknife, these ways of estimating the bias introduce statistical noise
and alter the remaining higher-order bias. Which of the various approaches delivers the least bias
will generally depend on the model at hand and the true parameter values. We report on the
performance of the estimators in simulation experiments. Of course, a Monte Carlo exercise
can at best be suggestive. Higher-order expansions of the bias and variance would be needed to
obtain formal results, similar to those of [Pfanzagl and Wefelmeyer (1978) for parametric cross-
sectional models. Deriving such expansions is expected to be a difficult task and is left for future
research.

The experiment we report on here deals with a dynamic probit model, which we will also use
in the empirical illustration below. The design is as follows. The variables (y;;, x;;) are generated
as

yir = Hetio +voyir—1 +80%Xir > &it}, Xit =Nj0 +T0Xjr—1 +€it,

where ¢, €, and o are i.i.d. standard normal, n;0 = —+/2/3 0, 10 =0.5, and the pairs (y;g, Xig)
are generated from the steady-state distributions. We set N =500, =6, 8,12, 18, yo=0.5,1, 1.5,
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and 69 =0.5, in which case the contribution to the variance of y;; is the same for «;q, xj;, and &;;.
The estimand is 8y =(yp,80)’ .

TableBlbelow reports the bias, the root mean-squared error, the ratio of the estimated standard
errors to the standard deviation over the Monte Carlo replications, and the coverage rate of
the 95% confidence interval constructed from the Hessian-based estimate of the asymptotic
variance. In addition to the half-panel jackknife estimators, we considered four analytical bias-
correction estimators. The first two of these are the [Hahn and Kuersteined (2011)) correction
(HK) and the determinant-based version of them M) estimator (AH), both
implemented with the bandwidth set to one (which was found to perform best) and the latter with a
triangular kernel. The two other estimators have been developed especially for the binary-choice
model. The first of these, proposed by [Ferndndez-Val (IZQDQ) (F), refines the estimator of the
bias of IHa,hLa_n_d_KlmsI_mn.Qﬂ ) by using the model structure to replace sample averages by
expected quantities. The second, proposed by M) (C), solves a bias-corrected profile-
score equation as in (@%), building on seminal work by ICox and Reid (1987, [1993)
(see also ,m for an alternative interpretation). This correction requires recursive
calculation of expected likelihood quantities. The use of expected quantities instead of sample
averages in the latter two estimators is intuitively attractive. Further, since they use most of the
model structure, they may be expected to perform best under correct specification. However,
these expectations have to be available in closed form. This is the case in this model but may not
be so in others (see e.g. m,m for such a model).

As is clear from the table, maximum likelihood performs poorly in this model, suffering as it
does from substantial bias and confidence intervals with extremely poor coverage. The problem
is most severe for the autoregressive parameter, 3, although the bias is also substantial for 8. The
magnitude of the bias is still considerable for large values of T and, all else being equal, also
increases with the value of yy. This is because more state dependence leads to less informative data.
All bias-correction approaches considered deliver point estimates with less bias. In most cases, the
reduction in bias is quite substantial, as is the reduction in root mean-squared error. Bias correction
also leads to improvements in the coverage rates of the confidence intervals and so to improved
inference. For most design points, 91 /2 and 6, /2 have less bias than GHK and QAH, respectively,
although the difference is less pronounced in the latter case. The confidence intervals based on
01 /2 and 6, /2 are also better than those based on GHK and QAH, respectively. The chief reason for
this is their success at removing bias. The plug-in estimator of the asymptotic variance provides
a reasonably accurate estimate of the estimators’ true variability for most design points. The
simulation results further show that replacing sample averages by expectations in the analytical
bias-correction methods yields considerable improvement, as is apparent on comparing 6 with
6‘HK and GC with GAH As the state dependence increases, the performance of most estimators of
yo worsens, with little bias reduction and hardly improved confidence intervals when yp=1.5.
Only y1 7 is less sensitive to the value of yy, still achieving a substantial bias reduction when the
persistence is high.

From this and many other numerical experiments that we conducted, our tentative conclusion
is that the jackknife corrections are competitive with the available analytical corrections and
can be a very useful tool for inference in micropanels. We should note, however, that we are as
yet not able to provide much practical guidance as to the choice of bias-correction estimator in
a particular application. Under rectangular-array asymptotics, all the bias-corrected estimators
(jackknife and analytical alike) have the same asymptotic distribution to the first order, so this
theory cannot rank the estimators. One possible approach to choose between them, though not
without defects, would be to carry out a Monte Carlo simulation targeted at the application at
hand.

020Z Jaquieoa( gz uo Jasn esanbniiod eoljo1eD) apepIsioAiun 00910 Ad v261.2G51/166/S/28/810118/pnisal/woo dno-olwspeoe//:sdny woJj pepeojumoq



1005

SPLIT-PANEL JACKKNIFE ESTIMATION

DHAENE & JOCHMANS

Downloaded from https://academic.oup.com/restud/article/82/3/991/1574974 by 01600 Universidade Catdlica Portuguesa user on 28 December 2020

(panunuod)

90L0 6000 0090 Sv00 6000 §€6'0 0000  LIO'T YO1°1 S60°1 8CI'l It 866°0 €10°1 Sl 81
£8¢°0 10000 LOT0 6000 0000 16’0 0000  CLO'I (29 81T’1 90C'1 061°1 sl ovo'1 Sl 4!
$60°0 10000 ¥€0°0 €000 0000 ¥¥6'0 0000  CCTI'I el ¥8¢°1 €9C'1 LTl ¥20'l [450n! ¢l 8
1200 1100 1000 2000 0000 6160 0000 IL1T 0L8°0 o'l el 95Tl P10°1 910°1 Sl 9
1060 650 0880  0CS0 L0 TE60 1000 ¥00°1 8L0°1 8S0°1 L80°1 80°1 $86°0 (410! I 81
S9L°0 8L00  €€90  0L£0 <TI0 L160 0000  LIOI 660°1 9¢e1'l 4! 801°1 1860 o't I 4!
6C1’0 €100 v0T0 8CC0 100 L€Z0 0000 9501 SITI yee'l 081°1 evll 00°1 S10°1 I 8
9¢1°0 €000 8500 €ELI'0  2T000  9¥¥'0 0000  L6O'I 180°1 LLS'T vl 091°1 086°0 010°1 I 9
¥€6°0 €CL0 6060  TO60  86L0 116’0 1000 0001 £50°1 LEO'T 090°1 ¥SO'1 86°0 900°1 Y 81
¥68°0 L6v'0  CS80 680 $¥9°'0 TC80 0000  8IOT 80°1 oIt 8601 ¥80°I ¥86°0 L10°T S0 <l
9cL0 IL1'0  8LS°0 0880  ve€0 1260 0000 SIo't vLOT ol SITI 80°1 686°0 $66°0 ¢o 8
lady €00 06C0  6¥8°0 €0I'0 7800 0000  6£0°1 1S0°1 0cs'1 L4 ¥80°1 60 L86°0 $o 9
o1 HV/ 247 a4 SH/ (% 4 o1 HV/ e/ a4 SH/ (4% 4 ot I
ERlie)]iiive) as/das
LLOO  ¥8I'0 9600 810 I81°0 2SO0 +v9C°0  €90°0— 081°0— $80°0— €510~ LLTO— 810°0— 09C°0— Sl 81
8¢1'0 0LT0 S8I'0 LCT0  TLTO  9L00  88€0  8CTI'0— 99C°0— LLTO— €CC0— 89C°0— 8€0°0— ¥8€°0— ¢l cl
LyTo L8E0  Le€'0  0CE0 SO¥'0 101°0 §9¢°0  8€T0— 18€°0— 0€€0— yIe0— 00v"0— 1€0°0— 095°0— ! 8
¥9¢°0 06v'0  ¥61°0 86£0 TS0 IO LELO  SSE0— LLY'O— 9817°0— 60— LTS 0— €80°0 1€L°0— Sl 9
00 9600  6¥0°0 SLO0 6800  THOO 61’0 2200— 060°0— €00~ 890°0— £80°0— S100 8810~ I 81
1L0°0 o L600 80I'0  OrI'0 6500 16c0  sS0°0— or1°0— $80°0— 101°0— PeT0— 9200 88C°0— I 4!
9¢1°0 wo €020 8S1°0 gceco - 9010 S0 vCl'0— 9€T0— 61°0— 0s1°0— 6170~ SLOO w0— I 8
6170 LECO 1€€0 S0T0  6I€0 §§T0 §090  60T0— 0g€0— 1743 Uy L61°0— €re0— 0€C0 009°0— I 9
£€0°0 €500 L£O0 LEOO  LYOO  6£0°0 1910 110°0— r0'0— L10°0— €200— LEO0— 6100 8S1°0— S0 81
8700 9800 190°0 8100 €L0°0 900  9¥C’0 800 LLOO— S¥0°0— 00— £90°0— 9v0°0 V0~ ¢o 4!
$80°0 6o Lelo §900 810 O¥I'0  ¥8€0  690°0— r1°0— L1T°0— 9v0'0— 611°0— ye1ro 08¢0~ S0 8
o Leco  9cT0  ¥80'0  TOTO  0£L0 ges’0 6C1°0— 0€T0— 81T°0— $90°0— ¥61°0— SIeo 1€6°0— S0 9
ot HV/( (2% dd MH/ g 4 o1 HV/ (2% a4 MH/ g 4 o4 I
HSINY seld

12pout 11qoad d1unulp LipuonuDISs D A0f SINS2L UOUDINUIS

€ d149VL



REVIEW OF ECONOMIC STUDIES

1006

Downloaded from https://academic.oup.com/restud/article/82/3/991/1574974 by 01600 Universidade Catdlica Portuguesa user on 28 December 2020

‘suoneordar ofre)) 9IUON 000 ‘0T

(TN~ Mo 171G 0+ 0o /g N — = Mx g0 =0 ‘(1 ‘0) N ~ 00 “00S = N 1M PAIeIouds eye "(0x *0/K) Kreuoness ‘(1 0) \ ~ "8 *{#3 < x0g 4 111404 4 0o} | = £ :[oPON :S210N
PL8O  ¥TS0 6180 6680 6880 9560 9900  8IOI £56°0 9cI'l 010°1 €0l PE0°1 ¥16°0 Sl 81
LLLO S8C°0 9490 86L°0 1v6°0 €66'0 8200  820'I ¥€6°0 s8Il 620°1 £80°1 SIo't 068°0 Sl 4!
£v9°0 €Cro 6550 88L°0  LL60  O¥6'0 9100  LTO'I 9¢8°0 6LT'1 LSO'T 0811 896°0 $8°0 Sl 8
9290 6500 8550 1180 8v6'0 9160  CTIOO0  6¥0'L 089°0 Ley'l LIT°1 vee'l ¥06°0 8¢8°0 Sl 9
$€6'0 ¢SLo  0C6'0 9260 180 960 eel’o 120°1 086°0 601°1 L10°1 100°1 8¢0°1 $€6'0 I 81
$68°0 §Cs0 S¥80  TI60 €e80  0¥6'0 6500  €T0'L 560 SLT'T 9c0°1 00°1 §e0’l ¥06°0 I 4!
L8LO 0cco0  ¥ILO 6880 €C8'0 0260 €00 STl c16°0 (414 Ly0'1 o'l 6660 L98°0 I 8
1L9°0 £80°0 €590 6880 9980 TS8O0 €100 6¢0°1 w80 yev'l L80°1 ¥90°1 6260 Sv8°0 I 9
560 Y980 0560  TS6'0  Cl60  9¥6'0 sico - 8I0'l 66°0 SUN LT10°T 100°1 §SO°1 9r6°0 §0 81
9€6'0 01,0 §T6'0 Lv6'0  Tv80  TC60 8600 120°1 896°0 LOT°1 o'l $86'0 €0l 8160 S0 4!
L88°0 wr'o T80 vr6e’0 €IL0 T80 LL00  SIOL 1260 [2ha [4300! 996°0 810°1 LL8O ¢o 8
L6L0 SLT'0 €080 960 8090 8IL0 6100  8IOI S¥8°0 ocy'l o'l ¥$6°0 9r6°0 £v8°0 S0 9

J¢ HVp /g dg SHg t/1g 0 J¢ HV /g dg SHg /g 0 oA 1

ouspyuoy as/das

8200  L¥O0O  8¢00  0£00  LZOO §¢00 1800 6100 1¥0°0 1€0°0 o0 L10°0 100°0 LLOO ¢l 81
SY0°0 6,00 8900 €00 000 LEOO  0CI'0  9¢0°0 €L0°0 090°0 ¥€0°0 ¥10°0 $00°0 911°0 Sl 4!
SLOO sero 9110 1900  2€00 0900  8LI'0  ¥90°0 LT1ro LOT°0 8v0°0 $00°0— 000°0 IL10 Sl 8
901°0 SIco - 6910 SLOO  6V0°0 L600  9€T0 $60°0 S61°0 8S1°0 190°0 ¥€0°0— ¥20°0— 8CC0 Sl 9
6100 6200 €200 6100 €200 1200 6500 800°0 €200 ¥10°0 600°0 S10°0 900°0— 950°0 I 81
8200 0s0°0 00 L200 €€00  0¢00 6800  LIOO ¥v0°0 €00 S10°0 €200 110°0— $80°0 I 4!
800 7600 8,00  6€0°0 S¥0°0 0500 8E€I'0 8€00 L80°0 690°0 §c00 €00 €c0'0— £ero I 8
€L0°0 Ly1'0 0CI'0 0S0°0 ¢SO0 6800 6810  T900 6€1°0 1o ¥€0°0 LEOO $S0°0— 81°0 I 9
9100 1200 8100 9100 6100 8100  8¥0°0  ¥00°0 ¥10°0 800°0 €00°0 010°0 900°0— $v0°0 S0 81
00 9¢00 6200 1200 6200 8200 €00 6000 620°0 6100 900°0 0200 ¥10°0— 690°0 ¢o 4!
¥€0°0 8900  ¥SO'0 8200 8¥00  TSOO0  VII'O  TCO0 190°0 $v0°0 010°0 6£0°0 §€0°0— 601°0 S0 8
500 erro L80°0  9€0°0 6900 L60°0  6SI'0  0¥0°0 Soro 8L0°0 S10°0 850°0 9L0°0— €510 S0 9

J¢ HVg /1 dg SHp /1 0 J¢ HVg (2419 dg SHg /1 0 oA I

HSINY selq
panuyuoy)
€ d19dVL



DHAENE & JOCHMANS SPLIT-PANEL JACKKNIFE ESTIMATION 1007

4. ROBUSTNESS TO NON-STATIONARITY
4.1. Validity tests

The literature on bias correction in general nonlinear fixed-effect models assumes stationary data.
Dealing with potentially non-stationary regressors, trends, or other time effects is complicated
when the length of the panel is not treated as fixed. In nonlinear models, a major difficulty
is that the maximum-likelihood estimator itself may exhibit non-standard behaviour, including
a non-standard convergence rate in 7 and a non-normal limit distribution. In such cases, it is
doubtful that the expansions in Assumptions B3] or B3] will hold. In addition, even in situations
where these expansions continue to hold, there may be a concern that the jackknife corrections
are potentially more sensitive to violations of the stationarity requirement than are the analytical
methods because of the need to split the panel. For example, when the dynamics of the data are
very different in the two half-panels, half-panel estimates could result that are very different from
each other and lead to a poor estimate of the leading bias.

To infer whether the jackknife estimators yield asymptotically bias-reduced estimates,
possibly in non-stationary situations, one can devise validity tests based on the comparison
of subpanel estimates. Let S={S1,S5,} be a partition of {1,2,...,T} such that |S||> Ty, and
[S2] > Tinin, With |S1]/T and |S»|/T converging to non-zero constants as 7 grows. Cons1der the
null hypothesis that Assumptlonlﬂl holds with the same constant By, for 0 951, and 952 (and
with 07 suitably redefined for 951 and 952) It is easy to see that the null hypothesis is sufficient
(though not necessary) for the split-panel jackknife estimator based on S to be bias-reducing.
Now, using equation (3.I)), the null implies

[S1] ~ p Bi 1 [S2] ~ p Bj 1
fs,—0)> — 0o —0) 5 2L
TR +0<T> IR +0<T)

which is testable by comparing the subpanel estimates 55] and 5& . Letting

[S1] ~ ~  [S2] ~
(s, —0)—
1So] ! [S1]

-~
Fr=—

=2 (65, —0),

we can form a Wald test statistic that is asymptotically x? distributed under our assumptions, i.e.

NT yo.d > 1S11, 152
— T ET— X% 0, d=——+—+2. 4.1
d Haime CIMEN @b
The scale factor d accounts for the variance inflation due to the use of subpanels. For example,
when T is even, the Wald statistic associated with the half -panel jackknife has d =4.
In the same way, now with |S;|>T’. and |S,|>T" . , if the expansion in Assumption 3.3

— " min mm’
holds for some function C;(8) (common to the full panel and the subpanels S and S,), we have

|51 (9) |52 (9)
5, |(Sl(9)— 56) 5 (T) 5 |(As2(9)— 56) > (;)

i

for € Ny. From this, we can form a score test to check the validity of the likelihood-based
jackknife correction. A natural value to evaluate the profile scores is the maximum-likelihood
estimate of the full panel. Letting

[S1]~ [S2]
0 (7
|S|S‘() |S|52()
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it follows under our assumptions that

NT
d

1. d
O 4.2)

t=
with the same d as above. When 6 is multidimensional, it may also be of interest to report
component-by-component test statistics.

Let 71> and i1 > denote the statistics 7 and # implemented with half-panels. The empirical
acceptance rates of the 5%-level validity tests based on T /2 and 1 /2 were reported in Tables |
and [2] for the linear autoregressive model and the dynamic probit model. There, the individual
time-series processes were indeed stationary, and the empirical acceptance rates are close to the
nominal acceptance probability of 95%. For small T, there is some size distortion but it diminishes
as T grows.

4.2. Non-stationary initial observations

One realistic departure from Assumption ] is a situation in which the initial observations
are not drawn from their respective steady-state distributions. The fixed-7T inconsistency of 0
will, in general, depend on the distribution of the initial values, but the processes will still be
asymptotically stationary as T — co. It is conceivable that this distribution affects the O(T 1)
bias term (assuming that the leading bias still takes this form), in which case the half-panel
jackknife will fail to remove it. This is a potential weakness of the jackknife that the analytical
plug-in methods need not share [ The test statistics T /2 and 11 /> may help to assess the effect of
non-stationary initial observations on the jackknife. However, if the jackknife retains the bias-
reduction property in the presence of non-stationary initial observations, it is natural to expect
that the tests will exhibit size distortions when 7 is small. This is because the subpanel estimates
will tend to differ since they are affected in different ways by the non-stationarity of the initial
observations. As T increases, however, the effect of the initial observations on the subpanel
estimates will fade out sufficiently fast and, hence, the size distortions should vanish. Thus, some
caution is warranted when the tests are applied in very short panels. To gain some insight into the
performance of these tests, we now examine the Gaussian autoregression and the autoregressive
probit model in the presence of non-stationary initial observations.
Reconsider the Gaussian autoregression

Yit =20+ YoYi—1 +Eir, &it ~N(0,o§),

now with arbitrary initial observations y;g. Specifically, assume that the pairs («;q, y;io) are drawn
independently from a common but otherwise arbitrary distribution G. It is well known that y7 —

yo depends on G. However, the first-order bias does not (Hahn and Kuersteined, [2002). In the

Supplementary Appendix, we show that

I+n  yo(l+y)+1-y? 1 = ao \* /[ o
Yr—vo=- - 3 +0| =) Y2 =E|(yo—— 02
T (I=yo)T T I=yo 1-v,

The parameter Y2 is a measure of the deviations of the vio from their stationary distributions,
with stationarity implying ¥ = 1. Because > does not show up in the O(T~!) bias term, the

2. Verifying whether the analytical corrections are immune to non-stationary initial observations would require a
proof that the plug-in estimator of the leading bias remains consistent. No general results relating to this are known to us.
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TABLE 4
Small-sample performance in a non-stationary autoregressive probit model
Bias Confidence Validity
T 0 51/2 6.’1/2 0 51/2 91/2 2 12
yio=0
6 —0.525 0.305 —0.213 0.083 0.740 0.936 0.910 0.906
8 —0.394 0.119 —0.126 0.143 0.886 0.928 0.921 0.937
12 —0.268 0.038 —0.061 0.259 0.930 0.944 0.936 0.948
18 —0.183 0.013 —0.029 0.404 0.943 0.945 0.945 0.952
yio=1
6 —0.569 0.273 —0.242 0.054 0.791 0.914 0.945 0.921
8 —0.423 0.099 —0.142 0.112 0.904 0.912 0.953 0.952
12 —0.282 0.030 —0.066 0.233 0.936 0.933 0.952 0.954
18 —0.191 0.008 —0.032 0.375 0.940 0.944 0.951 0.953

Notes: Model: y; = 1(atjo +60yir—1 +&ir > 0), & ~N(0, 1). Data generated with N =100, 8y =0.5, oo ~ N (0, 1). 10,000
Monte Carlo replications.

jackknife will be bias-reducing for arbitrary initial observations. The presence of ¥ in the
second order bias term arises from a higher-order expansion of plimpy_, o, NlT Z Zt()’zt 1—
T Z, yi;—1)* as T — oo. This quantity appears as the denominator of the fixed-T inconsistency of
y dDha.Qn.Qan.cLlQ_tha.uﬂ |2£)_Lj) With the effect of the initial observatlons fading out as T — oo,
the asymptotic variance of 3 under rectangular-array asymptotics is 1 — VO , independently of wz.
Similar results may be derived when the model is extended to allow for (incidental) time trends or
time-series heteroskedasticity (seelAlvarez and Arelland, [2004). The robustness of the jackknife
to non-stationary initial observations also holds for the jackknifed profile log-likelihood. Non-
stationary initial observations have no effect on the O(T™ l) bias term of l(y) so the jackknife
is bias-reducing (see the Supplementary Appendix for details). One may also work with the
profile log-likelihood l(y o?), whose O(T 1) bias term is, again, free of wz We found, however,
that additionally profiling out o' before jackknifing performs better in terms of bias reduction.
We refer to Table S.2| in the Supplementary Appendix| for simulation results for the Gaussian
autoregression with non-stationary initial observations. The results for y /, presented there and
earlier in Figure [ and Table Mare based on jackknifing 1(y).

In the autoregressive probit model with non-stationary initial observations, there are no
theoretical results available about the expansions. We approached the question by simulation.
TableMlreports the effect of setting y;o =0 for all i (top panel) and setting y;o = 1 for all i (bottom
panel), respectively. These are two extreme deviations from stationary initial observations. The
bias reduction of the jackknife is manifest. In line with this, the validity tests have acceptance
rates close to the nominal rate even for very short panels. The improved acceptance rates for
very small 7, compared with those in the linear autoregressive model (Table S.2), are likely to
be due to the limited variation in the regressor. The results suggest that non-stationary initial
observations in the binary-choice model do not pose problems for bias correction.

4.3. Non-stationary regressors

In many applications, the stationarity assumption is violated because some of the regressors (e.g.
age and income) are subject to trending. We examined the effect of a trending regressor on the
half-panel jackknife in a simulation design borrowed from ). The design
is similar to that inm (m) and is also used in[Eerndndez-Val ). The model is a
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TABLE 5
Small-sample performance in a static probit model with a trending regressor
Bias Confidence Validity

T 0 9~1/2 91/2 0 51/2 91/2 t12 2

6 0.256 —0.142 0.186 0.731 0.919 0.990 0.879 0.872

8 0.184 —0.074 0.136 0.729 0.929 0.989 0.903 0.898
12 0.131 —0.030 0.101 0.702 0.937 0.988 0.915 0.906
18 0.106 —0.030 0.084 0.685 0.940 0.995 0.913 0.866

Notes: Model: y;; = 1(ajo +6oxis +&ir > 0), £; ~N(0, 1). Data generated with N =100, =1, ajo ~N(0,1), x;; =0.1¢+
0.5xj—1+uir(t=1,2,...,T), xjo =ujp, uj; ~U(—0.5,0.5). 10,000 Monte Carlo replications.

fixed-effect static probit model,
yir= a0 +60xi > €ir), & ~N(O,1),
with a trending regressor generated as
Xir=0.114+0.5x; 1 +ujr, Xi0 =UjQ, uj; ~U(—0.5,0.5),

and individual effects a;o ~ N (0, 1). This is a highly non-stationary setting. For 6 # 0, the upward
trend in x;; implies an absorbing state for y;; as ¢ increases, with plim,_, .. y;; equal to one if
6p > 0 and to zero if Gy < 0. Again, it is unclear if the asymptotic bias of the maximum likelihood
estimator has a leading O(T_l ) term. Table[]gives simulation results for the case 8y =1, N =100,
and 7=6,8,12,18. Compared to ~maximum likelihood, we see that the split-panel jackknife
estimates have less bias, especially 6 /. For 91 /2, there is less bias reduction. Correspondingly, the
confidence intervals based on 6, 1,2 have much better coverage rates than those based on maximum
likelihood, which, as usual, exhibit undercoverage. On the other hand, the confidence intervals
based on 6; /2 exhibit overcoverage due to the standard errors of 6, /2 being too conservative. The
validity tests have rejection rates of about twice the nominal rate. Summarizing, 51 /2 improves
considerably on maximum likelihood, while 6 /2 improves only modestly.

4.4. Honoré and Kyriazidou’s (2000) design

We end our discussion on non-stationarity by comparing the various bias- correcnon estimators
in the dynamic logit specification of IHQnguLa.nd_KxnazJ_de ©000); see also [Carrd (M) and
[Eerndndez-Val (2009). The data are generated as

Yit = Hetio +yoyir—1 +80%Xit > &it} xit ~N(0,72/3),

with g, logistically distributed and 8y = 1. The initial observations are drawn as x;o ~ N (0, w2 /3)
and y;o = l{ajo+Soxio > €io}, and the fixed effects are set to «jo= }‘(x,-o +x;1 +xi2+x;3). This
design is non-stationary because the pairs (xjp,yj9) are not drawn from the steady-state
distributions and also because the dependence between the covariate and the fixed effect changes
abruptly in the fourth period: the correlation between x;; and «;o equals 1/4 for r <3, while ;g
and x;; are independent once ¢ > 3. Table [@ provides simulation results for N =500 and various
values of . The results are qualitatively similar to those for the probit model with non-stationary
initial observations reported on above. Again, maximum likelihood is heavily biased and all other
estimators reduce this bias, in most cases quite substantially. The non-stationarity has an adverse
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effect on the jackknife estimator applied directly to the maximum-likelihood estimator for yy
when T =6, with only a moderate reduction in bias and the rejection rates of the validity tests
ranging between 10% and 15%. (We report the rejection rates separately for each parameter; those
of the joint tests are in the same range and, therefore, are omitted here.) Indeed, when T =6, the
half-panel estimates would be expected to differ the most from each other due to the different form
of dependence between «jg and x;; in the two half-panels. Beyond this, both jackknife corrections

tend to perform well compared with the analytical corrections o ined 2011)) and
[Arellano and Hahd 200€). The model-specific corrections of m andm
M) again improve on the general analytical corrections. The estimator of M), in

particular, yields confidence intervals with very good coverage in this design.

5. CORRECTING AVERAGE EFFECTS

The split-panel jackknife can also be used to estimate average marginal or non-marginal effects.
Such effects are often parameters of interest, especially in nonlinear models, but have received
less attention in the literature. We will look at averages of the form

ro=Elpi@o,0i0)],  wir(0,0)=pu(zir; 0, ),

where u(-) is some known scalar-valued function and, for notational simplicity, we take o;
to be a scalar throughout this section. Examples of such averages were given in Section
In many applications, the marginal effects are cross-sectionally heterogeneous. That is, if we
denote the individual-specific mean marginal effects as u; =E[w; (09, «ig)], we often have ol=

limy s oo N ! ZfV: 1 (i — 1o)* > 0. The fixed-effect plug-in estimator of f is

N T
Sen@). ae=_L 05
R=RO),  RO=1=) ) wi0,@0). (5.1)

i=11=1

This estimator is subject to two sources of asymptotic bias, each of order O(T~!). The first
stems from using @;(#) instead of «;(#). The second arises from using 0 instead of 6p. Hence,
plimy_, oot — o= O(T~1) even if a fixed-T consistent or a bias-corrected estimator of 6y were
used instead of the maximum-likelihood estimator. To describe how the jackknife can be applied
to average effects, it is useful to inspect the sources of bias. We will do so under the following
assumptions.

Assumption 5.1. For all i, as T — o0,

T T
R i1 1 1 d
(x,'(@())—(xi():%—kf E Yir+op <?>, _ﬁ E wit_)N(O’O’iz),
=1 =1

where Vi; is a martingale difference sequence, and the bias term B; and the variance criz = ]E[l//l%]
are finite.

Assumption 5.2. g and aﬁ exist. The function wiy(0,0;) is three times continuously
differentiable with respect to (0,«;). For all i, wi(0y,ai0) and its cross-derivatives up to the
third order are covariance stationary random variables with summable autocovariances. There
exist covariance stationary random variables DS, and D?t with vanishing autocovariances such

that SupaeA|Vaia;aiMit(90a o) fD?; and SUPgece Vo i (0, 0 (6))]| EDZ forall i.
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Assumption [3]] contains an expansion of @;(@) as T — oo. [Ferndndez-Val (IZQDQ) gives
expressions for §;, ¥, and aiz. The expansion follows from standard higher-order asymptotics
(see e.g. [Bao and UllaH, 2007) and, in fact, underlies the expansion of the bias of @\and/l\(e) in
Assumptions B3] or (see [Hahn and Neweyl, [2004] and [Arellano and Hahn, [2006). However,
because the jackknife does not require knowledge of the form of this bias, we have not introduced
it up to this point. Assumption[3.2limplicitly requires the sequence o;q to be sufficiently regular so
that g and oﬁ are well-defined. It also imposes smoothness on the function . and demands the
existence of suitable moments of p and its derivatives to justify expansions around true parameter
values and also imposes dominance conditions to handle the remainder terms in these expansions.

Under Assumptions [5.Jland 3.2] the two parts of the asymptotic bias of 1, corresponding to
the estimation noise in the fixed effects and the bias introduced through é\, are

1 l A0 — A6 == +of -
—), plimpy_, o (1£(0) — pu( o))—?+o<T>,

. ~ D
plimy_, oo 1t(60) — o= T +0<T

respectively, where

o0

— — 1—
D = El[Veis 00, tio)Wie—1+ Bl Veq ttir 00, €i0) i1+ S Bl Ve i (0, ti0)7 ],
Jj=0

E = E[Vy 1ir(00, i(60))1B1.

The combined asymptotic bias of & is plimy_, o —po=(D+E)/T+o(1/T). A jackknife
estimator that removes both sources of bias takes the form

1 _ 1 & _ S|
n——-TI, E%Z 3 Msjzz7us(93)
j=1 SeS;

where [15(0)= Iﬁ Zf\’: 1 Zte s wir(0,a;5(0)). Note that 1t is constructed using the corresponding
subpanel estimates of 6y. This estimator complements the corrections for static models in
[Hahn and Neweyl (2004) and the analytical correction for dynamic models in
M) which build on a plug-in estimator of D+ E to remove it.

In contrast to estimators of , plug-in average-effect estimators of the form (&I} do not,
in general, converge at the rate (N7)~!/? but more slowly. To see why, consider the realistic
case where the individual-specific mean marginal effects, u;, are drawn from a common, non-
degenerate distribution H with finite variance, so that g and oﬁ are the mean and variance of
‘H (with probability one). In this case, the infeasible estimator

| N
Mx = WZZ/MZ(GO»OHO)

i=1t=1

is consistent for pg. Write (4 as
. 1 L1
N > wit JVZ (; Zuiz(Go,aio)—Mi> :
i=1 i=1 =1

The first term on the right-hand side converges to i at the rate N~/ 2. The second converges
to zero at the rate (NT)~1/2 and, thus, is asymptotically negligible under rectangular-array
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asymptotics. Hence, ~/N(u«— ) has a non-degenerate limit distribution. This implies that
any feasible average-effect estimator will converge no faster than at the rate N~ /2. Furthermore,
under our assumptions,

R 1
VN (L= 10) =V N(1as — 110) + Op <ﬁ>

so the bias and the estimation noise introduced by replacing 6 and the «;o by maximum-likelihood
estimates are negligible under rectangular-array asymptotics. Thus, ft and & converge at the same
rate, N~1/2, as the infeasible . Theorem X Jlsummarizes the result. The slow convergence rate
was also found by[EQmémiczﬂa]_and_]_&d M) for estimates of the moments of the distribution
of the individual effects and bym]_an_dﬂej_dn_eﬂ 2013) for average-effect estimates
when there are both fixed and time effects in the model.

Theorem 5.1. Let Assumptions 1) B and hold, and suppose w;~H, where
H has mean o and finite variance 03>O. Then plimN%ooﬁ—y,o=(D+E)/T+0(T_1),

plimy_, ool — o =0(T~1), and

INGE-=0p(1),  VN@—p0)SN©,02),
as N,T - oo withN/T — p.

In the Gaussian autoregression with ¢;9 drawn from a distribution G, a parameter of interest
would be the average effect on the survival function of a marginal change in lagged outcomes,

ie.
+00 _
Ho(e,s) = / @¢<W>dg@,)
—0o 00 00

for given x and s. In the standard regression model with i.i.d. data across ¢, the plug-in estimator
of this effect is consistent for fixed T (lﬂahn_and_N_ﬂLQ)J, |20M). This is no longer the case in the
dynamic setting considered here. A population summary quantity can be obtained by averaging
over x. For example, averaging with respect to the distribution of the data yields the average
effect of interest, for a given s, as

“+00 +o00 _
po(s) = / / %0, (w> dFo(x)dG(@),
—o0 J—o0o 00 (ef)]

where Fy is the normal distribution function with mean «/(1—yy) and variance 002 /(1 —yoz).
Under stationarity, for non-degenerate G, the time-series processes are heterogeneous in their
mean, which implies oﬁ >0 and non-degeneracy of the limit distribution of estimates of 1.
To investigate the finite-sample accuracy of the limit distribution, we estimated o= up(0)
from simulated data with yp=0.5, ogp=1, and a;jo~N(0,1). The value of the estimand is
10 =g+/3/(27)=0.0864.

The upper block of Table [7] contains the bias and standard deviation of 7 and i1/, and
also of the infeasible estimators w4 and (). It shows that, in addition to 4 being unbiased,
11(6p) has negligible bias, even for very small T, while & suffers from downward bias. The
jackknife correction removes virtually all of this bias in all of the cases considered. The second
block of Table [J] provides the ratio of the average of the estimated standard errors of the
estimators to their standard deviation over the 10,000 Monte Carlo replications. The standard
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TABLE 7
Average derivative of the survival function at zero
Bias SD
N T n iy M 2(0o) i iy M 2(0o)
100 4 —0.096 —0.023 0.000 0.015 0.016 0.027 0.007 0.007
100 8 —0.045 —0.005 0.000 0.006 0.008 0.013 0.007 0.006
100 12 —0.028 —0.002 0.000 0.004 0.007 0.010 0.007 0.006
100 16 —0.021 —0.001 0.000 0.003 0.007 0.009 0.006 0.006
100 24 —0.013 —0.001 0.000 0.002 0.006 0.008 0.006 0.006
50 50 —0.006 —0.001 0.000 0.001 0.009 0.010 0.009 0.009
100 100 —0.003 0.000 0.000 0.001 0.006 0.006 0.006 0.006
250 250 —0.001 0.000 0.000 0.000 0.004 0.004 0.004 0.004
SE/SD Confidence
N T n sy Mo 12(60) n sy o 12(60)
100 4 0.057 0.142 0.994 0.990 0.000 0.179 0.946 0.358
100 8 0.338 0.420 1.000 1.002 0.000 0.551 0.946 0.831
100 12 0.571 0.596 0.991 0.988 0.005 0.736 0.946 0.901
100 16 0.702 0.704 0.997 1.000 0.052 0.818 0.945 0.924
100 24 0.819 0.811 0.990 0.991 0.308 0.880 0.946 0.935
50 50 0.916 0.913 0.987 0.989 0.853 0.920 0.942 0.941
100 100 0.965 0.963 1.000 1.000 0.910 0.937 0.948 0.946
250 250 0.988 0.987 1.001 1.001 0.932 0.946 0.949 0.949
SE/SD with correction Confidence with correction

N T i 2 Mk (60) n 2 s (o)
100 4 1.003 0.944 1.015 1.112 0.000 0.825 0.952 0.453
100 8 1.000 0.861 1.016 1.065 0.001 0.868 0.949 0.862
100 12 0.983 0.892 1.003 1.033 0.030 0.900 0.948 0.916
100 16 0.992 0.926 1.007 1.035 0.136 0.921 0.947 0.933
100 24 0.993 0.956 0.997 1.016 0.430 0.933 0.948 0.941
50 50 0.990 0.981 0.991 1.002 0.878 0.942 0.943 0.944
100 100 1.000 0.996 1.002 1.006 0.919 0.946 0.948 0.948
250 250 1.001 1.001 1.002 1.004 0.935 0.948 0.949 0.950

Notes: Model: yi; = atio + yoyir—1 +&ir» £ ~N(0,02), stationary o, a0 ~N(0,1), y9=0.5, and o =1. Estimand: po=
10(0)=0.0864. 10,000 Monte Carlo replications.

error estimates are based on the cross-sectional variance of the within-group average effects.
~ ~ 1 N ,~ ~ s~
For example, for ji1/,, we use aﬁ,l/zz mzizl(ﬂi,l/Z_ﬂl/Z)Z’ with i; 1> defined so that

m12=N -1 vazl I;,1/2. Unsurprisingly, when 7T is small compared to N, using the asymptotic
formula results in considerable underestimation of the true variability of & and /i /. Combined
with the bias in 1, this results in maximum-likelihood-based confidence intervals having poor
coverage. The results also confirm that, under rectangular-array asymptotics, Theorem B Il yields
correct inference even without bias correction. Nonetheless, although i1/, is somewhat more
variable in small samples, the underestimation of its variability is more than compensated for by
its reduced small-sample bias in terms of confidence. Even for the larger values of T considered
here, /i1 /> appears preferable to z.

These results show that, in spite of the asymptotic equivalence between it and i1 /2, in small
samples one may still want to perform some bias correction when estimating average effects.
Furthermore, even though Theorem 3.1l provides an asymptotic justification for inference based
on a plug-in estimator of the cross-sectional variance of p;, the within-group variation of w;; and
the estimation noise in the plug-in estimates of the fixed effects and common parameters may be
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sizeable for small 7" and, indeed, may dominate in micropanels. Therefore, it may be useful to
consider a variance estimator that accounts for this noise. One possibility is to estimate

2
g,
Ul%“l‘?C, 2= Z ]E[Vltvll‘—]]

Jj=—00

where the second term adds an O(T_l) correction. For feasible estimators of tq, in addition to

aﬁ, there are three sources of large N, T variation, captured by v;; = vftl) +vl(t2 ) +V1(13 ), where

2
W = w0, ai)— s VP =EWn, & =E[Ve,mi(6o, @),
A3

V,»,) = ksir(0p), «k =E[ Vi 11ir(00, i0) + Y, 14 (G0, ti0) Vet (0p)1 = .

The terms follow on expanding /& around le Ziv 1 Elwir (6o, cjo)] as N and T grow. The term vf-ll)

captures the within-group variation of the effects, while v( ) and v( ) account for the variance

of the estimates of the fixed effects and the common parameters respectively. For the infeasible

estimators 14 and (6p), vi,zvgtl) and v,,_vft)+vl(t), respectively. The martingale difference

property of ¥;; and s;;(8g) implies

= (1) (k) @)) (k)
Z Vi Vel = ZE[ VieZjls k=23,

j=—00

2) (2 3) (3
S B = Eievi }j B 1=,
j=—00

Z Elvi v 1 = kEl&isi(00))-

Jj=—00

For j14, [(6p), and [i, we estimated o2 by a kernel approximation for the remaining infinite

sums and by replacing E[-] and E[-] with the corresponding sample averages and v(l) to v( ) with

plug-in estimates. For example, for 1z, we replaced v( ) to v( ) with

T T
1 ~ 1 ~ 2 o~ o~ 1 e
Vf,) = Mit_TZMitn 72)5&'%;, SiETZVa,-Mit,

=1 =1
\ | NI
th) =kS, K= N_Z;[VQ’ﬁit+VaiﬁitV9’&i(9)] !

where i = i (5, 6?,'(/9\)) and similarly for Vg, iZir, VoriLit, I’p\,‘,,’s\,‘t, and & (the latter with a degree-
of-freedom correction; see the Supplementary Appendix for details). For the half-panel average-
effect estimate, we estimated crcz as the average of its two half-panel estimates. We experimented
with this variance correction in our Monte Carlo experiment using a triangular kernel and a
bandwidth set to 0, 1, and 2. The results were nearly identical for these bandwidths, so we report
only those with the bandwidth set to 0. The last block of Table [ shows that the addition of the
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small-T correction to the variance estimate of 11 and [1 /2 leads to a remarkable improvement of
the ratio of standard error to standard deviation. The confidence intervals improve accordingly,
particularly those based on the half-panel jackknife estimate, which are now reasonably reliable
even for small 7.

6. HIGHER-ORDER BIAS CORRECTION

In Section[] we showed how to remove the leading bias from 5&nd7(9) by means of the jackknife
to obtain first-order bias-corrected estimators. It is natural to expect that, in sufficiently smooth
models, the inconsistency can be expanded to a higher order, say k, as in equation (3.3). This raises
the question of how to construct estimators that remove the first 4 <k bias terms. Continuing the
argument underlying the half-panel jackknife readily leads to such estimators. This is another
instance of the simplicity of the jackknife that is not shared by the analytical corrections, for which
as yet no higher-order generalizations have been obtained. For brevity, we restrict ourselves to
bias corrections applied to the estimator, 0. The development of higher-order corrections of the
profile likelihood and average effects is analogous. It is beyond the scope of this article to derive
primitive conditions for the required expansions to hold to the required order, but we will discuss
two models that are tractable enough to derive 67 or I7(6) and to establish the existence of their
expansions to o(T k) for any positive integer k. Technical details for this section are given in the
Supplementary Appendix!

6.1. Higher-order jackknife

The h leading terms in equation (33) are simultaneously estimated and removed by suitably
combining weighted averages of subpanel estimators associated with collections of subpanels of
different length. To illustrate, suppose for a moment that 7" is divisible by both 2 and 3. Then,
using obvious notation for the averages over subpanel estimators, (1+ay /2 +a1/3)0 —ay /251 /2=
ai /351 /3 has zero first- and second-order bias if a2 and a3 satisfy

1
taiptays aip ais B, =0, ©6.1)
T T/2 T/3
ltaip+ayz  aip aizz
( /2 /3 /2_ /2>Bz=, 62)
T (T/2)= (1/3)

regardless of By and By. This gives aj /=3 and a3 =—1, leading to the estimator 30— 30 2+
51/3, whose inconsistency is o(T™2).

Now let G={g1,82,-..,85} be a non-empty set of integers with 2<g| <gpy <---<gj. For
T >gpTmin and each geG, let Sy be a collection of g non-overlapping subpanels forming an
almost equal partition of {1,2,...,T}, with equivalence class {Sg,-;j= 1,2,...,mg}. Let A be the
h x h matrix with elements

T r—1
[A]r,sE Z (E) , r,s=1,2,...,h,

SeS,,

and let ay /g, be the r-th element of (1 —L’A‘lt)_lA_lt where ¢ is the & x 1 summation vector.
Define the jackknife estimator

m

~ ~ _ _ 1 e

01/6= l—i-Za]/g Q—Zal/geug, 91/gEm—295g/., (6.3)
8€G geG 8 j=1
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with 55}:} defined by equation (3.2). The coefficients a; /g solve an h x h linear-equation system,
of which equations (@.I)-(&.2) is a special case, that ensures that 0 /G has zero bias up to and
including order 4. Provided equation (3.3) holds for k > &, it will follow from Assumptions 3.1}
and B3] that plimy _, .,01/6 =00+ o(T™") and

VNT(gl/G—Qo)—d)N(O, 2_1)

as N,T — oo with N/T — p. Thus, the higher-order jackknife does not inflate the asymptotic
variance.

Like the first-order bias correction, the higher-order bias corrections come at the cost
of increasing the higher-order bias terms that are not eliminated. Theorem S.2.2 in the
Supplementary Appendix characterizes the higher-order bias. It follows from this characterization
that, for bias correction of order &, the choice G=1{2,3, ..., h+ 1} is optimal in the class 8 /G in the
sense of minimizing all higher-order terms that are not eliminated. How to choose 4 optimally in
practice is a difficult issue because the choice should also be guided by variance considerations.
Higher-order asymptotic approximations of both the bias and the variance would be needed to
answer this question in a satisfactory manner.

6.2. Examples

Our first example is the Gaussian autoregression, and our focus will be on a higher-order expansion
of the [Nickell (1981l bias. The model is

2
o0 (of
vie=aio+yoyi—1+ei.  eu~N©.00),  yo~N[——,—2 5]
I—yo 1— Y
For |yp| < 1, the inconsistency of the within-group estimator ¥ for fixed T is available in closed
form m, @, equation (18)). It can be expanded as yr —yp = 211;21 Bj/Tj + O(T_k_l) for
any k. The first few terms of this expansion, are given by

1+Vo_r(1+7/o)+r(1+)/0)+(V+4r2+2r3)(1+3/0)

O(T ™),
T T2 T3 T4 0T

Yr—vo=-—

with r =y /(1 —yp). Consequently, in this model, the jackknife of any order will be asymptotically
bias-reducing. Table [§] gives numerical values of the asymptotic biases when yp=0.5,0.9 for
values of T up to 160 and up to the third-order jackknife. It is clear from the table that the
asymptotic bias converges to zero at a faster rate in 7 as we move to higher-order versions
of the jackknife, although larger values of T are required before the faster convergence rate
becomes apparent. This is explained by the higher-order bias properties of the jackknife. The
jackknife inflates the non-eliminated bias terms with a factor that increases with the order of the
non-eliminated terms, and the increase is relatively faster as the order of the jackknife increases
(Theorem S.2.2). Therefore, it requires a larger T before the leading non-eliminated bias term
starts to dominate; Section 4 in the Supplementary Appendix/ numerically illustrates this for the
case yp=0.5. Table [§] also includes the unit-root case, yy=1, where the inconsistency of the
within-group estimator is the limit of the Nickell bias,

3 3 3 3

T4 T 2 o

li —n)=—
lim (yr—w)
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TABLE 8
Asymptotic bias in the Gaussian autoregression

T 4 5 6 8 10 12 16 20 40 80 160

y0=0.5
¥y —-0.411 -0.331 -0.276 -0.205 -0.162 —-0.134 —-0.099 -0.079 -0.038 —-0.019 —0.009
712 -0.073 —-0.041 -0.016  0.002 0.007 0.008 0.007  0.005 0.002  0.000  0.000
V1/42.3} 0.030  0.026  0.020 0.014  0.007  0.004 0.000 0.000 0.000
Y1/2,3.4) 0.009  0.003 0.000 —0.000 —0.000 —0.000

Y0=0.9
¥y —0.560 —-0.463 —-0.394 -0.302 -0.243 -0.203 —-0.151 —-0.120 —-0.056 —-0.026 —0.013
712 -0.171 —-0.123 —-0.081 —0.043 -0.023 -0.012 —-0.001 0.004  0.007  0.004  0.001
Y1/(2.3) -0.012  0.002 0.009 0.012 0.014 0.013 0.008 0.002  0.000
Yi/2,3.4) 0.016  0.015 0.013 0.006 0.001 —0.000

vo=1

¥y —-0.600 —-0.500 —0.429 -0.333 -0.273 -0.231 —-0.176 —-0.143 -0.073 —-0.037 —-0.019
712 —0.200 —0.150 —-0.107 —0.067 —0.045 —0.033 —0.020 —-0.013 —0.004 —0.001 —0.000
V1/42.3) —-0.036 —-0.020 —-0.011 -0.007 -0.003 —-0.002 —0.000 —0.000 —0.000
Yi/12,3.4) —0.002 —-0.001 —-0.000 —0.000 —0.000 —0.000

Notes: Model: y;; = a0+ YoYir—1 +Eirs €ir ~./\/(0,002), stationary y;y when yp < 1.

It follows from this expansion that, interestingly, the jackknife remains a valid tool for bias
correction when there is a unit root. Note that the leading bias term is not limy, 4 1 [—(1+0)/T],
so the plug-in estimator from the stationary case no longer delivers bias-corrected point estimates

(see[Hahn and Kuersteinet, 2003, Theorems 4 and 5).

The second example is the stationary autoregressive logit model

yir = Hetio +00yir—1 > €ir},

where the gj; are i.i.d. with distribution function F () =e® /(1 +¢€°), the «; are i.i.d. draws from an
unknown distribution G, and the y;q are drawn from their respective steady-state distributions. In
this model, the bias is much more complicated and depends on the transition probabilities, which,
in turn, are functions of the «;q. It can be shown that a sufficient condition for I7(6)—1[y(0) =
Z}‘: 1Ci(0)/ T/ +O(T~*=1) to hold for all 6 and any k is that the distribution G of the fixed effects
has bounded support. As a numerical illustration of the convergence properties, we computed the
functions [(0), IT(0), and I7(0) jackknifed up to the third order, for N=o00 and T =2,3,...,40
when 6y =1 and the fixed effects have a discrete distribution with probability 0.01 on each of the
quantiles ®~ 1 (0.01;—0.005),j=1,2,..., 100, of the standard normal distribution. FigureRlshows
graphs of asymptotic profile log-likelihoods for up to the second-order jackknife for 7 =6, 12. To
each function we added a non-essential constant to make them coincide at 8y = 1. The infeasible
lp(0) (solid line) does not depend on T and is maximized at & =6;. The difference between I7(0)
(dashed line) and /p(0) is large and vanishes as T grows. Although T is still relatively small,
the half-panel jackknife, 2/7(0) —I72(0) (dotted line), is already closer to Ip(¢) and is seen to
converge faster to [y(0) than does I7(0). The second-order jackknife, 3/7(0) —3l7/2(0)+l1/3(0)
(dashed-dotted line), is even closer to [p(f) and is nearly indistinguishable from it when T =
12. The improved convergence rate as the jackknife order increases is also borne out by the
corresponding maximizers, which are indicated by vertical lines in FigureRl(when they fall in the
displayed range) and given in Table @l for values of T up to 40 and up to the jackknife correction
of the third order.
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FIGURE 2
Asymptotic profile log-likelihoods in the stationary autoregressive logit model
Notes: Model: y;r = H{aio+60yir—1 > €ir}, €ir logistically distributed, stationary yjo. True values: 6y =1, oo
approximately A/(0, 1). Plots: lo() (solid line), I7(6) (dashed line ), 2l7(8) —I72(0) (dotted line),
3l7(0)—3lr/2(0)+I7,3(6) (dashed-dotted line). All curves are vertically shifted to make them coincide at 6. Vertical

lines at maximizers.

TABLE 9
Asymptotic bias in the stationary autoregressive logit model
T 4 5 6 8 10 12 16 20 30 40
§ —-1.574 —1.208 —0.984 —-0.720 —-0.568 —0.469 —0.348 —-0.276 —0.183 —0.136
012 —-0.903 —-0.642 —-0.431 -0.245 —-0.155 -0.105 —-0.057 —-0.035 —0.015 —0.008
01/(2,3) —0.100 —0.030 0.002 0.008 0.007 0.005 0.002 0.001
01/12,3,4) 0.019 0.007 0.003 0.001 0.000

Notes: Model: y;; = 1{aio +6oyir—1 > €it}, €ir logistically distributed, stationary yjo. True values: g = 1, ;o approximately
N, 1).

7. CORRECTING TWO-STEP ESTIMATORS

Triangular simultaneous-equation models are frequent in microeconometrics and arise, e.g. when
one deals with endogeneity of covariates or non-random sample selection. Although, in principle,
such models can be estimated by full-information maximum likelihood, the use of limited-
information methods—i.e. two-step estimators based on control functions (]Hf‘&kman_and_&zbﬂ,
)—is more frequent in applied work. One reason is that they are typically easier to implement
,@). Another reason is that two-step estimators can be generalized to
semiparametric settings (Blundell and Powell, 2003). Here we discuss how the jackknife can
be applied to two-step estimators.

To describe the set-up, let Aj(0,0;)=A(zit;0,;) denote the control function, where the
functional form of A is known. Write A;; = Ajz(0p, @jp). In a sample-selection problem, X;; would
be a function of the propensity score for observation z;; to be selected into the sample, an event
typically modelled as a threshold-crossing process such as a probit model. Clearly, this propensity
will depend both on the observed covariates and on «jg. Similarly, when a covariate is endogenous,
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the control function could be the deviation of the endogenous variable from its mean given a set
of instrumental variables and fixed effects. We discuss this example in more detail below.

Suppose the main equation of interest has unknown parameters ¥y and n;o that uniquely
maximize an objective function of the form E[g(z;;; ¥, n;, Air)]. Note that, often, this function will
not be a log-likelihood. The two-step fixed-effect estimator of ¥y is

N T
—~ 1 o~
D=argmax > > q(in 0,70, ki), (7.1)

i=11t=1

where 7;(1) = argmax, 1 Zt 19ir, 9, n,,Al,) and Xj = l,(§ @i(0)), the fixed-effect estimator
of the control function. As before, typically, 91 = pllm N_,ooz? # 1. Under regularity conditions,
®7 — 90 can again be expanded in powers of 7~!. Because A is a generated regressor that is
itself estimated with bias O(T 1 ), however, the bias formula in[Hahn and Kuersteineil (]Z,Q]_]J) will
no longer apply to this expansion. Furthermore, the functional form of the leading bias changes
if one uses a bias-corrected estimator instead of 8 in the construction of the control function.

[Fernandez-Val and Velld 2011)) provide the expression for the O(T~!) bias term and extend the
analytical bias-correction approach of[Hahn and Kuersteiner (2011l to two-step estimators.

The additional complexity of the form of the leading bias of ¥ due to the presence of generated
regressors is substantial. Nonetheless, given that the leading bias term is of the form B/T for some
constant B, the jackknife will remove it regardless of where its components arise from. To describe
the correction, consider a subpanel S and let

dg= argmglxmzz:q(zlt,ﬁ Tis(9), hirs)
i=1teS§

where ﬁ}s(ﬂ)sargmaxmWllztesq(zﬁ,ﬁ, ni,Airs) and Ajs = Air(Os,@is(0s)). Observe that the
plug-in estimator of the control function, too, uses first-step estimates based on the subpanel.
Indeed, the key point in forming a jackknife correction of ¥ will be that the full two-step
estimator has to be computed for each chosen subpanel, analogous to the jackknife correction of
average-effect estimates. The half-panel jackknife estimator for the two-step estimation problem
is
V1 2=20—11)2,

again using the obvious notation. Under regularity conditions, 5 172 will be asymptotically normal
and correctly centred as N/T — p. Its influence function has the form of that of a conventional

two-step estimator (see, e. g. ,ll.%ﬂ).The expression for the asymptotic variance
is given in 4 - M).

As an illustration, consider a triangular model where (y;;,x;;) are jointly generated through
the structure

yir = 1{nio +y0yit—1 +80xir +ujr > 0}, Xit = 0o +00Xir—1 +DoWir +Vir, (7.2)

where wj; is a covariate that is determined exogenously, and (u;;, vj;) are latent disturbances that
are independent and identically distributed as

Uit 0 1 &opoo
() ~2((0): (e o)) a3)

with &g a correlation coefficient. The model in equations (Z2)-(Z3) is routinely referred to as a
simultaneous probit model. Its cross-section has received considerable attention in the literature.
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Here, 69 = (00, @0, Ug)/ and %o = (30,80, o) . The joint likelihood of the data is complicated, and
full-information maximum likelihood is computationally troublesome (m, ). Now,
the likelihood for an observation factors as

Lit(D, 1350, a;) =L (3,110, 0;) £ (0, ;)

where £;;(0, ;) is the marginal likelihood for x;;, and £;;(¢%, 1|0, «;) is the conditional likelihood
for y;; given x;j;. These likelihoods are

Li(0,0)=

exp [ L Gir =i —@Xii—1— @ wir)*
P\™2 o2 '

1
V2ro?

which corresponds to the likelihood for a standard linear model, and

Vit
. . Sxi . 9, )
E,‘,(ﬁ,mg,ai)__q)<771+yyn 1+8xi +Cvig( Oh))

V1=¢2

1=yt
Ni+VYir—1+0xit +¢vir(0, o)
x| 1—® ,

V1=
where v (0, o) = (xj; —o; —0xjr—1 —@wjr)/o. This would be a conventional probit objective
function for the rescaled parameter ©/y/1—¢2 if 6y and the oy were known. Thus, here,
Xir(0, i) =vis(6, ;) and, following [Smith and Blundell (1986) and [Rivers and Vuond (1988), a
two-step fixed-effect estimator is obtained as a conventional probit estimator, where the residual
of a first-stage least-squares regression is added as a regressor. This two-step estimator is very
easy to implement and, hence, to jackknife.

As another example, consider the reverse situation in which

Yit =10+ Y0Yir—1+080%Xir + Vir, xir = Hatio +00Xir—1 +@owir +ujs > 0}, (7.4

with (¢, vir) as before. In this case, for 8y = (0q, o)’ and ¥y = (v, 80, L0, ag)/ , the joint likelihood
is

Xit
wir(6, )+ ¢ vir (9, m))

V1-¢2

1—x;
1w uir (0, 0i)+ ¢ vir (9, ;)
J1-¢2 ’

where v (3, ;)= (yir —ni — v Yir—1 —8xir) /o and u;(0,0)) =a; +0xj—1 +@@wjs. Although fac-
torization is still possible, it does not readily provide an estimator. However, a simple two-step
estimator can be constructed from the observation that

1
Lir(0,n;;0,a))= ;¢ Wi (9, mi) @ <

E[yityie—1,Xit, Xit—1, Wir, 0i0, &i0]1 =0i0 + YoYir—1 +80%ir + SoAir
where ¢g=¢pog and the control function is

@ (ur (0, ;)

Air(0,0t;) = [xjs — D (uir (0, 7)) ] D@ o)l — un@. o)’

as can be shown using standard properties of the bivariate normal density. Observe that A;; is the
generalized residual (Gouriéroux ef afl, [1987) from a probit model for the first-stage equation.

020Z Jaquieoa( gz uo Jasn esanbniiod eoljo1eD) apepIsioAiun 00910 Ad v261.2G51/166/S/28/810118/pnisal/woo dno-olwspeoe//:sdny woJj pepeojumoq



1024 REVIEW OF ECONOMIC STUDIES

TABLE 10
Simulation results for a two-step estimator
Bias SD
N T 12 5 3 Y12 31/2 S1/2 12 5 3 Y12 g1/2 S

500 6 —0.226 0.113 -0.094 —-0.002 0.144 -0.078 0.017 0.111 0.069 0.027 0.182 0.115
500 8§ —0.168 0.108 —0.084  0.006  0.130 —-0.071 0.014 0.095 0.059 0.021 0.138 0.087
500 12 -0.109 0.087 —-0.064  0.007 0.063 —0.033 0.011 0.073 0.047 0.015 0.094 0.059
500 18 —0.072 0.064 —0.045 0.004 0.024 —-0.012 0.009 0.056 0.036 0.011 0.065 0.041
20 20 —-0.068 0.061 —-0.042  0.004 0.022 -0.010 0.041 0.264 0.169 0.050 0.314 0.198
50 50 —-0.026 0.023 -0.015  0.001 0.003 —0.001 0.016 0.098 0.063 0.017 0.100 0.066
100 100 -0.013 0.012 —-0.008  0.000  0.000  0.000 0.008 0.047 0.031 0.008 0.048 0.031

SE/SD Confidence

N T 2 5 3 Y12 Sip Gip Y 5 T i Sip Gip

500 6 0.894 0.792 0.809 0.593 0.364 0377 0.000 0.692 0.574 0.756 0.387 0.433
500 8 0.904 0.809 0.825 0.642 0.510 0.520 0.000 0.659 0.572 0.778 0.494 0.540
500 12 0.927 0.840 0.846 0.713 0.673 0.680 0.000 0.666 0.612 0.796 0.706 0.748
500 18 0.938 0.880 0.886 0.791 0.791 0.790 0.000 0.712 0.680 0.849 0.852 0.862
20 20 0934 0.883 0.890 0.796  0.799 0.798 0.578 0.906 0.906 0.882 0.876 0.877
50 50 0966 0.909 00918 0.908  0.887 0.901 0.604 0916 0918 0.925 0.921 0.922
100 100 0975 0.933 0.938 0.943 0938 0929 0.601 0.924 0.926 0935 0.935 0.932

Notes: Model: yi; =nio+ voyir—1 +8oxit +vir and xj; = H{ojo + 00xis—1 + @owir +uie > 0}, stationary (yio,xio, wip). Data
generated with wy =—+/2/3a;0+0.5w;_1 +N(0,1), oo=wo=p0=380=,0=0.5, op=1, ajp~N(0,1), and n;p~
N(0,1). 10,000 Monte Carlo replications.

Therefore, again, a two-step estimator can be easily implemented and jackknifed. First, estimate
a standard fixed-effect probit model for x;; to construct a plug-in estimate of X;;. Next, estimate
(10,60, S0) by running a least-squares regression of y;; on a set of unit-specific intercepts, yj;—1
and x;;, and the estimate of the control function.

To check the small-sample behaviour of the two-step estimator, we simulated data from the
model comprising equations (Z3)-(Z4). The data-generating process for the binary variable x;;
was identical to the one used to generate the simulation results in Table[Bwith the autoregressive
parameter fixed at 0.5, so we need not restate the results for the first-stage equation here. For
the main equation, we drew n;0~N'(0, 1) and set §y=1—yy to keep the long-run multiplier of
Xy on y;, fixed. In Table [I0] we present results for yp=0.5 and {;=0.5, and for various panel
sizes. The table shows that the uncorrected two-step fixed-effect estimator is biased, with the bias
being greatest for the autoregressive parameter. The asymptotic bias in the limit distribution under
rectangular-array asymptotics is also manifest in the coverage rates for the confidence interval.
The jackknife removes most of the bias and yields confidence intervals that are correctly centred as
N/T — p.Because of the reduction in bias, the coverage rates of the jackknife also improve on the
uncorrected estimate when 7 is much less than N, although considerable undercoverage remains
in such cases. This is because the plug-in estimator of the asymptotic variance underestimates the
finite-sample variability when T is small. Indeed, in short panels, the ratio of the standard errors
to the standard deviations is considerably worse for the jackknife.

8. EMPIRICAL ILLUSTRATION: FEMALE LABOUR-FORCE PARTICIPATION

Understanding the determinants of intertemporal labour-supply decisions of women is the subject
of a large body of literature. Classic work on the behaviour at the intensive margin—i.e., the

number of hours worked—includes |He&kman_a.nd_MaCm;d;] (1980) and [Mro4 (1987). [Heckman
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(@) stresses the importance of decisions regarding the extensive margin, i.e. the choice of
whether or not to participate in the labour market. It is widely recognized that data on intertemporal
participation decisions are characterized by a high degree of serial correlation, and understanding
to which degree this correlation is driven by state dependence and unobserved heterogeneity is
of great importance (see, e.g. [Heckman, [19814). [Hyslog (1999) used a simple model of search
behaviour under uncertainty to specify the participation decision as a threshold-crossing model
and estimated a random-effect probit version of this model from the Panel Study of Income
Dynamics (PSID) data. He found evidence of strong state dependence and substantial unobserved
heterogeneity in the data.|Carrd (2007) and[Eerndndez-Val (2009) estimated fixed-effect versions
of Hyslop’s model and confirmed his main findings. Here, we re-examine the data using the
various bias-correction approaches available.

Let y;; be a binary indicator for labour-force participation of individual i at time ¢. The
threshold-crossing specification we will estimate assumes that

vir = Haio+ yoyir—1 +x,80 > €ir}, 8.1

where g;; are independent standard-normal innovations, and x;; is a vector of time-varying
covariates. We included the number of children of at most two years of age (# children 0-2),
between 3 and 5 years of age (# children 3-5), and between 6 and 17 years of age (# children
6-17), as well as the log of the husband’s earnings (log husband income; expressed in thousands
of 1995 U.S. dollars), and a quadratic function of age. We do not include time-constant covariates
such as race or level of schooling as they are absorbed into the fixed effect. The interaction between
labour-market and fertility decisions has been discussed bym (@) and others. In his
random-effect set-up, m ) is unable to reject exogeneity of fertility decisions once
lagged participation decisions are taken into account.

Like [Carrd (2007) and [Ferndndez-Val (2009), we estimate 8I) from waves 13-22 of the
PSID, which span the period 1979-1988. The sample consists of 1461 women aged between 18
and 60 years in 1985 who, throughout the sampling period, were married to men who were in the
active labour force the whole time. During the sampling period, 664 women changed participation
status at least once. Table S.3 in the Supplementary Appendix provides descriptive statistics over
both the full sample and the subsample of informative units per year. The women belonging to
the latter group were, on average, younger, had more young children, and were married to a
higher-earning husband.

The estimation results for the various estimators are presented in Table [[T] with all standard
errors computed from the Hessian matrix of the profile log-likelihood. The half-panel jackknife
estimates use the 71 /T> =5/4 and T| /T, =4/5 partitions of the panel (T'=9), and their standard
errors are computed from the average of the four estimates of £ ~! defined by the four half-
panel Hessians evaluated at the corresponding half-panel estimate, weighted by the half-panel
length. All bias-corrected estimates show significantly greater state dependence than maximum
likelihood, with the coefficient estimates of lagged participation being about one-third higher. The
upward bias correction for the autoregressive coefficient is in line with the Monte Carlo findings
above. The jackknife estimate 61/, of lagged participation is somewhat greater than that of the
other estimators; él /2 is very similar to the analytical corrections. This, too, is in accordance with
our Monte Carlo results. The bias adjustments for the coefficients associated with the number of
children are smaller and similar for all estimators, taking standard errors into account. Regarding
the husband’s income and the woman’s age, éAH deviates from the other estimators, with point
estimates that are insignificantly different from zero at conventional significance levels. The
other procedures find a significant negative impact of an increase in the husband’s income on the
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TABLE 11
Female labour-force participation: estimation results
Model parameters Average effects (%)
0 51/2 s Or 012 Oan fc n Hi2

Lagged participation ~ 0.756 1.345 0.992 1.031 1.052 0.978 1.095 10.724 19.911
(0.043)  (0.053) (0.043) (0.043) (0.053) (0.043) (0.043) (1.475) (0.737)

# Children 0-2 —0.554 —-0.634 —-0.477 —-0.436 —0.535 —-0.472 —-0.409 —6.947 —9.369
(0.057) (0.086) (0.058) (0.058) (0.086) (0.058) (0.058) (0.788)  (1.129)

# Children 3-5 -0.279 -0338 -0.213 -0.193 -0.245 -0.162 —0.178 —3.482 —4.798
(0.053) (0.091) (0.054) (0.054) (0.091) (0.053) (0.054) (0.699) (0.656)

# Children 6-17 -0.075 —0.150 -0.056 —0.050 —0.063 0.054 —-0.040 —-0.924 —1.705

(0.043)  (0.078) (0.043) (0.043) (0.078) (0.043) (0.043) (0.498) (0.566)
Log husband income —0.246 —0.308 —-0.232 -0.209 -0.253 —-0.038 —0.211 —-3.020 —4.234
(0.055) (0.074) (0.055) (0.055) (0.074) (0.054) (0.056) (0.968)  (0.558)

Age 2050 1794  1.844  1.616  1.875 —0.173  1.615 0296  0.463
(0.387)  (0.874) (0.392) (0.392) (0.874) (0.387) (0.394) (0.098)  (0.120)
Age squared —0250 —0.197 —0.224 —0.196 —0228  0.036 -—0.194  — -

(0.052) (0.117) (0.052) (0.052) (0.117) (0.052) (0.053) — —

Notes: Coefficients for age and age squared are multiplied by 10 and 100, respectively. Standard errors in parentheses.
Data source: PSID 1979-1988.

participation propensity, and a significant concavity of the response to an increase in the woman’s
age.

The last two columns of the table provide maximum-likelihood and split-panel jackknife
estimates of the average effect for each of the regressors, with standard errors based on Uﬁ + acz /T
and estimated as in Section[dl For lagged participation, the reported effect is the impact of changing
yir—1 from zero to one on the probability of participation in period . For the number of children, the
effect measures the effect of an additional child in the corresponding age category. The effect for
age is defined similarly. For the husband’s income, the effect is the derivative of the participation
probability. The averaging was done over both the fixed effect and the empirical distribution
of the data. The greatest impact of adjusting for incidental-parameter bias occurs again for the
effect of state dependence with the estimated average effect being adjusted upwards by a factor
of almost two. The magnitude of the other average-effect estimates is adjusted less drastically.

One may express doubt about the underlying assumption of stationarity in this model. It is
unlikely that the initial observations on participation are draws from a steady-state distribution.
Our investigation into this issue above, however, suggests that this should not be a cause for
major concern in this model. Probably more problematic is that the covariates are not stationary.
Obviously, the cross-sectional distributions of age, # children 0-2, # children 3-5, and # children
5-17 change over time, but also the husband’s average wage is clearly trending upwards over
the sampling period. This could explain some of the observed differences in the results delivered
by the various estimators. Another potential reason is model misspecification, including possible
instability across time, or age, of the relationship between current and lagged participation and
the other variables. This is likely to show up in the form of diverging estimates across methods
or across subpanels. The validity tests suggested above provide a direct way of examining the
stability of the postulated relationship. If the relationship is stable and correctly specified, different
subpanels of nearly the same length should yield approximately the same estimates. The validity
tests c~learly reject this. For the 5/4 partition, we find 7 /2=57.6 and f /2 =27.3; the 4/5 partition
givestyp=38.1and f s2=1.9. With 7 degrees of freedom, the p-values of the first three statistics
are almost zero. The tests for the individual coefficients show no clear pattern: the rejections and
acceptances vary, by test, across the coefficients and, by coefficient, across the tests. Overall, the

020Z Jaquieoa( gz uo Jasn esanbniiod eoljo1eD) apepIsioAiun 00910 Ad v261.2G51/166/S/28/810118/pnisal/woo dno-olwspeoe//:sdny woJj pepeojumoq



DHAENE & JOCHMANS SPLIT-PANEL JACKKNIFE ESTIMATION 1027

tests tend to suggest a degree of instability of the underlying relationship or of misspecification.
We also re-estimated the model after including yearly time dummies as additional regressors.
Time dummies absorb aggregate time effects and, to some extent, the effect of the changing
distribution of the regressors over time. The estimation results were very similar to those given
here and are available in the Supplementary Appendix.

9. CONCLUDING REMARKS

Our analysis has suggested several routes worth pursuing in future research. First, it would be
interesting to investigate further the higher-order properties of bias-corrected estimators. For
the jackknife, we derived the higher-order bias in a sequential large N, large T setting. For the
analytical bias corrections, the higher-order bias has not yet been derived. A more encompassing
analysis should also lead to higher-order variance properties, possibly under joint large N,T
asymptotics. This would aid in understanding the differences in small-sample performance
between the various bias-correction approaches.

Secondly, we noticed that inference based on the asymptotic variance can lead to confidence
bounds that are too narrow for small 7', in particular for average-effect and two-step estimators.
In additional Monte Carlo work, we found that the non-parametric bootstrap of (@),
applied along the cross-sectional dimension of the panel, can perform much better. Hence,
the question arises if, in this setting, the bootstrap is theoretically justified and delivers an

asymptotic refinement; see the recent work of @mh&s_an_d_Kaffd (IZQIAI), [Kaffd (IZLHAI), and
[Galvao and Katd (2014).

Thirdly, it would be worth investigating how far bias correction can be extended to non-
stationary data. We have examined the performance of the jackknife corrections under some
common deviations from stationarity and suggested validity tests for the jackknife. In a recent
paper, [Eerndndez-Val and Weidned (2013) argue that, under regularity conditions, the introduction
of time dummies in a class of linear-index models can be successfully handled by a small
modification of the jackknife method proposed here.

Fourthly, it would be of interest to construct bias-corrected estimators for quantile effects, and
to analyze their properties. One technical difficulty to overcome here is the non-smoothness of the
moment functions, which implies that the required expansions must rely on different techniques
than those used here.
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