

Econometrics II

Paulo M. M. Rodrigues

March 17, 2017

- Q1: Use the output in Figure 1 to explain the log wage.
 - a) [1.0] Which estimators can we use to estimate a fixed effects model?
 - b) [1.5] Provide a meaningful interpretation of the slope coefficient estimate in the output headed FE.
 - c) [1.0] Write the estimating equation for log wage and provide the necessary transformation to obtain the within estimator via OLS.
 - d) [1.5] Explain how to perform an appropriate test in order to find which model is preferred: FE or RE.
 - e) [1.0] Discuss the strengths and weaknesses of the within estimator.

			rigu	10 1				
. describe ln. variable name	storage type	display format		varial				
n_wage float %9.0g cenure float %9.0g				ln(wage/GNP deflator) job tenure, in years				
. xtsum ln_waą Variable	1	Mean				Observ	vations	
ln_wage over:	all 1.	914642	.5016681	.137109	4.005049			
betwe	een		.4592862	.6776364	3.259719	n =	820	
with:	in 		.2022341	.7843202	3.599762	T =	3	
tenure over:								
betwe	een			0				
with:	in		1.571394	-4.171375	16.80085	T =	1	
 estimates st quietly xtra estimates st estimates ta 	eg ln_wag tore RE able FE R	E, stats	(N) Ъ(%7.4	f) se(%7.4f)) stfmt(%8.	2f)		
tenure								
	0.003							
_cons	1.795 0.021							
N	246	0	2460					
		lerend	: b/se					

Figure 1

Q2: Consider a first-order autoregressive model with individual and time effects of the form

$$y_{it} = \alpha_i + \delta_t + \rho y_{i,t-1} + v_{it}, \ i = 1, ..., N; \ t = 1, ..., T$$
(1)

with $E(v_{it}|y_{i0}, ..., y_{i,t-1}, \delta_0, ..., \delta_t, \alpha_i) = 0$. Suppose that T = 3 so that for each individual we observe $y_{i0}, y_{i1}, y_{i2}, y_{i3}$.

- a) [2.0] Obtain the first-difference estimate of ρ and discuss its properties.
- b) [2.0] Propose a consistent estimator of ρ for large N.
- c) Consider now the heterogeneous autoregressive panel with large N and T,

$$y_{it} = \rho_i y_{i,t-1} + v_{it}, \ i = 1, ..., N; \ t = 1, ..., T$$

$$(2)$$

with $\rho_i \sim iidN(0, \sigma_w^2)$ and ρ_i independently distributed with y_{it} and v_{it} for all t.

- c.i) [2.0] Indicate why the within estimator is inconsistent in the context of (2).
- c.ii) [1.5] Why would the mean group estimator be a suitable procedure in (2)?

Q3: Consider the following simple panel data model

$$y_{it} = x_{it}\beta + \alpha_i^* + v_{it}, \ i = 1, ..., N; \ t = 1, ..., T$$

where β is one dimensional and where it is assumed that

$$\alpha_i^* = \overline{x}_i \lambda + \alpha_i$$

with $\alpha_i \sim NID(0, \sigma_{\alpha}^2)$ and $v_{it} \sim NID(0, \sigma_v^2)$ mutually independent and independent of all $x_{it}s$, where $\overline{x}_i = \sum_{t=1}^T x_{it}$. The parameter β can be estimated by the fixed effects (or within) estimator given by

$$\widehat{\beta}_{FE} = \frac{\sum_{n=1}^{N} \sum_{t=1}^{T} (y_{it} - \overline{y}_i)(x_{it} - \overline{x}_i)}{\sum_{n=1}^{N} \sum_{t=1}^{T} (x_{it} - \overline{x}_i)^2}.$$

As an alternative, the correlation between the error term $\alpha_i^* + v_{it}$ and x_{it} can be handled by instrumental variables.

- a) [1.5] Give an expression for the $\widehat{\beta}_{IV}$ using $(x_{it} \overline{x}_i)$ as an instrument for x_{it} . Show that $\widehat{\beta}_{IV}$ and $\widehat{\beta}_{FE}$ are identical.
- b) [2.5] Another way to eliminate the individual effects α_i^* from the model is doing the following transformation:

$$y_{it} - \overline{y}_i = (x_{it} - \overline{x}_i)\beta + (v_{it} - \overline{v}_i), \ i = 1, ..., N; \ t = 1, ..., T$$

Which is the OLS estimator $(\hat{\beta})$ based on this model? In which conditions is $\hat{\beta}$ a consistent estimator of β ?

c) [2.5] Consider the between estimator $\hat{\beta}_B$ for β . Give an expression for $\hat{\beta}_B$ and show that it is unbiased for $\beta + \lambda$.