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Introduction

Dynamics

Many economic relations are dynamic in nature:

E.g. state dependence: today’s state yit depends on yesterday’s yi,t−1.

Then, one of the advantages of panel data is that they allow the
researcher to better understand the dynamics of adjustment.

Take a model with adjustment costs. Suppose the optimal quantity y∗it is

y∗it = xitγ + ṽit,

but due to adjustment costs (governed by α), the realization is

yit = αyi,t−1 + (1− α)y∗it.

Putting the two equations together yields the estimable model:

yit = αyi,t−1 + xit (1− α)γ︸ ︷︷ ︸
β

+ (1− α)ṽit︸ ︷︷ ︸
vit

.
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Introduction

The dynamic panel model

Suppose the structural model is

yit = αyi,t−1 + xitβ + vit i = 1, . . . , N, t = 2, . . . , T

where α is a scalar, xit is 1×K and β is K × 1.

We assume there is a one-way error component structure

vit = ci + uit.

We will be precise about the assumptions regarding ci and uit later.

This dynamic panel data model has two sources of persistence over time:

state dependency (yit is a direct function of yi,t−1) and

individual effects (like in static models).
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Introduction

Inconsistency of the OLS estimator

Since yit is a function of ci, it immediately follows that yi,t−1 is also a
function of ci and the strict exogeneity assumption fails.

Therefore, the right-hand side regressor yi,t−1 is correlated with the
error term vit through ci.

Consequence: the OLS estimator is biased and inconsistent!

Compare this to pure time series models: here the OLS estimator of
the dynamic model is consistent if the disturbance is white noise.

In time series models, (a) there is no individual effect and (b) T is
assumed to be large (hence we use large T asymptotics).

In panel models, (a) the individual effect introduces autocorrelation in
the disturbance and (b) N is assumed to be large (hence we use large
N asymptotics).
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Introduction

Inconsistency of the within estimator

The FE estimator wipes out the ci by the within transformation:

ÿi,t−1 = yi,t−1 − ȳi,−1 = yi,t−1 −
1

T − 1

T∑
t=2

yi,t−1.

and

üit = uit − ūi = uit −
1

T − 1

T∑
t=2

uit.

Hence, the regressor ÿi,t−1 is a function of yi,1, . . . , yi,T−1 while the
disturbance üit is a function of ui,2, . . . , ui,T , so there is obvious
correlation between the two (“regressor endogeneity”).

This correlation makes the FE estimator biased (“Nickell bias”, see
Nickell, 1981).

This bias does not vanish as the number of individuals increases, so
the FE estimator is inconsistent for N large and T small.

Only as T gets large the FE estimator becomes consistent.
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Introduction

Inconsistency of the RE estimator

The RE estimator applies quasi-demeaning to the regressor

ỹi,t−1 = yi,t−1 − (1− φ)ȳi,−1

and the disturbance
ũit = uit − (1− φ)ūi.

As before, the regressor ỹi,t−1 is a function of yi,1, . . . , yi,T−1 while
the disturbance ũit is a function of ui,2, . . . , ui,T , so there is obvious
correlation between the two.

Hence, the RE estimator is biased and inconsistent in a dynamic panel
data model as well.
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Introduction

Bias correction procedures

Several suggestions to correct for the bias of the popular FE estimator
have been proposed in the literature:

Kiviet (1995): derives an approximation for the bias of the FE
estimator in a dynamic panel data model with serially uncorrelated
disturbances and strictly exogenous regressors. A bias corrected FE
estimator then subtracts a consistent estimator of this bias from the
original FE estimator.

Everaert and Pozzi (2007): bias correction for the FE estimator based
on an iterative bootstrap procedure.

Bun and Carree (2006): derive the asymptotic bias of the FE
estimator for finite T and large N in the presence of both time-series
and cross-section heteroskedasticity; again, bias correction procedures.

Instead of such correction procedures we will follow the bulk of the
literature and use instrumental variables approaches to find consistent
estimators (AH, AB, BB; others exist, see textbooks).
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The Anderson and Hsiao estimator

Panel AR(1) model and assumptions

Since yi,t−1 is the problematic regressor, let us start with the AR(1) model:

yit = αyi,t−1 + vit, vit = ci + uit, t = 2, . . . , T.

Assumption AR.1 (sequential exogeneity/predeterminedness):

E(uit|yi,t−1, . . . , yi1, ci) = 0 for all t = 2, . . . , T.

This implies dynamic completeness conditional on ci:

E(yit|yi,t−1, . . . , yi1, ci) = αyi,t−1 + ci.

Discussion:

Sequential exogeneity replaces strict exogeneity assumptions.

Dynamic completeness means the dynamics of yit is fully specified.

A consequence is that uit is white noise, E(uituis) = 0 ∀ s 6= t.
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The Anderson and Hsiao estimator

Backward substitution

For further use, rewrite the AR(1) model by recursive backward
substitution:

yit = αyi,t−1 + vit

= α(αyi,t−2 + vi,t−1) + vit = α2yi,t−2 + vit + αvi,t−1

...

= αt−1yi1 + vit + αvi,t−1 + . . .+ αt−2vi2

Taking first differences yields (since ∆vit = ∆uit)

∆yit = αt−2∆yi2 + ∆uit + α∆ui,t−1 + . . .+ αt−3∆ui3.
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The Anderson and Hsiao estimator

Moment conditions

Apply the first difference (FD) transformation to get rid of ci:

yit − yi,t−1 = α(yi,t−1 − yi,t−2) + uit − ui,t−1.

How to consistently estimate this equation?

The strict exogeneity assumption fails. We can also argue directly:
From the previous slide we know that the regressor ∆yi,t−1 is a
function of ui,t−1 and hence is correlated with the error ∆uit.

Hence, POLS is inconsistent.

Anderson and Hsiao (1981) suggest to use an instrument for ∆yi,t−1.

Use either ∆yi,t−2 = yi,t−2 − yi,t−3 or yi,t−2 as instrument.

These instruments will not be correlated with ∆uit = ui,t − ui,t−1 as
long as the uit is white noise.
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The Anderson and Hsiao estimator

Anderson-Hsiao details

Note that assumption AR.1 ensures validity of the Anderson and Hsiao
moment conditions. Specifically, it implies E(yi,t−kuit) = 0 for k ≥ 1.

Hence, for all t = 3, . . . , T ,

E(yi,t−2∆uit) = E(yi,t−2uit)− E(yi,t−2ui,t−1) = 0

and, for all t = 4, . . . , T ,

E(∆yi,t−2∆uit) = E(yi,t−2∆uit)− E(yi,t−3∆uit) = 0.

Which instrument should we use?

Using yi,t−2 leaves us one observation more per individual.
Arellano (1989) finds that the estimator using ∆yi,t−2 as instruments
has a singularity point and very large variances over a significant
range of parameter values.
In contrast, the estimator that uses instruments in levels, i.e. yi,t−2,
has no singularities and much smaller variances.
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The Anderson and Hsiao estimator

Matrix form

FD of structural model

yit − yi,t−1 = α(yi,t−1 − yi,t−2) + uit − ui,t−1.

Collect all observations for individual i in the (T − 2)× 1 vectors

∆yi =

 yi,3 − yi,2
...

yi,T − yi,T−1

 , ∆yi,−1 =

 yi,2 − yi,1
...

yi,T−1 − yi,T−2

 , ∆ui =

 ui,3 − ui,2
...

ui,T − ui,T−1

 .

The equation becomes

∆yi = α∆yi,−1 + ∆ui, i = 1, . . . , N.

Stacking the observations of all individuals yields

∆y = α∆y−1 + ∆u,

where ∆y = (∆y′1, . . . ,∆y′N )′, ∆y−1 = (∆y′1,−1, . . . ,∆y′N,−1)′ etc.
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The Anderson and Hsiao estimator

The Anderson and Hsiao instrumental variables estimator

Starting point: orthogonality (moment) conditions

E[yi,t−2∆uit] = 0, t = 3, . . . , T.

Define the (T − 2)× 1 vector of instruments

yi,−2 =

 yi,1
...

yi,T−2


Write the orthogonality condition in stacked form:

E[y′i,−2∆ui] = 0.
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The Anderson and Hsiao estimator

Sample moment conditions

Sample equivalent (normal equation):

1

N

N∑
i=1

y′i,−2∆ûi =
1

N

N∑
i=1

y′i,−2(∆yi − α̂AH∆yi,−1)
!

= 0

Solving for α̂AH yields the estimator:

α̂AH =
y′−2∆y

y′−2∆y−1
=

∑N
i=1 y′i,−2∆yi∑N

i=1 y′i,−2∆yi,−1

=

∑N
i=1

∑T
t=3 yi,t−2∆yi,t∑N

i=1

∑T
t=3 yi,t−2∆yi,t−1

(which is not surprising, though).
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The Anderson and Hsiao estimator

Consistency

To see that the estimator is consistent substitute the model

α̂AH =

∑N
i=1 y′i,−2∆yi∑N

i=1 y′i,−2∆yi,−1

= α+

∑N
i=1 y′i,−2∆ui∑N

i=1 y′i,−2∆yi,−1

.

Under standard conditions, as N →∞,

1

N

N∑
i=1

y′i,−2∆yi,−1
p−→B ≡ E(y′i,−2∆yi,−1) 6= 0.

By assumption,

1

N

N∑
i=1

y′i,−2∆ui
p−→E[y′i,−2∆ui] = 0

(a CLT also typically holds). Taken together

α̂AH
p−→α+

0

B
= α.
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The Anderson and Hsiao estimator

Not all is fine

The instrumental variable (IV) estimation method leads to consistent but
not necessarily efficient estimates of the parameters in the model because

(a) it does not make use of all the available moment conditions and

(b) it does not take into account the differenced structure on the
disturbances (∆uit) which are NOT white noise.

To see (a), note that the stacked moment condition E[y′i,−2∆ui] = 0
means:

E[yi,1∆ui3] + . . .+ E[yi,T−2∆uiT ] = 0

which is much weaker than what we originally assumed:

E[yi,1∆ui3] = . . . = E[yi,T−2∆uiT ] = 0.
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The Arellano and Bond estimator - The pure AR(1) case

Model

Start again from

yit = αyi,t−1 + vit, vit = ci + uit, t = 2, . . . , T.

Take first differences to eliminate the individual effect:

yit − yi,t−1 = α (yi,t−1 − yi,t−2) + (uit − ui,t−1) , t = 3, . . . , T

(not much new, so far).
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The Arellano and Bond estimator - The pure AR(1) case

Intuition

Consider period t = 3, the first period we observe the relationship:

yi3 − yi2 = α (yi2 − yi1) + (ui3 − ui2) .

In this case, yi1 is a likely valid instrument: correlated with
(yi2 − yi1), not correlated with (ui3 − ui2) if uit is white noise.

Consider period t = 4, the second period we observe the relation:

yi4 − yi3 = α (yi3 − yi2) + (ui4 − ui3) .

In this case, yi2 and yi1 are valid instruments for (yi3 − yi2).

Consider period t = 5, the third period we observe the relation:

yi5 − yi4 = α (yi4 − yi3) + (ui5 − ui4) .

In this case, yi1, yi2 and yi3 are valid instruments for (yi4 − yi3).

And so on until period T , for which the set of valid instruments is
yi1, . . . , yi,T−2.
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The Arellano and Bond estimator - The pure AR(1) case

Assumption and moment conditions

Assumption AR.1 (sequential exogeneity):

E(uit|yi,t−1, . . . , yi1, ci) = 0 t = 2, . . . , T.

The assumption implies that

uit is uncorrelated with yi,t−1, . . . , yi1,

ui,t−1 is uncorrelated with yi,t−2, . . . , yi1, and thus

∆uit is uncorrelated with yi,t−2, . . . , yi1.

The Arellano-Bond estimator uses all these moment conditions:

E[yi1∆uit] = · · · = E[yi,t−2∆uit] = 0, t = 3, . . . , T.
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The Arellano and Bond estimator - The pure AR(1) case

The number of moment conditions

To count the moment conditions, write them out:

E[yi1∆ui3] = 0, 1 condition for t = 3,

E[yi1∆ui4] = E[yi2∆ui4] = 0, 2 conditions for t = 4,

...
...

E[yi1∆uiT ] = . . . = E[yi,T−2∆uiT ] = 0 T-2 conditions for t = T .

Altogether, the number of moment conditions grows quadratically with T :

L = 1 + 2 + · · ·+ T − 2 = (T − 2)(T − 1)/2.

For T = 3 we have L = 1, for T = 4 we have L = 3, for T = 10 we have
L = 36 moment conditions.

This implies that for T ≥ 4, we have overidentifying moment conditions.
This is why Arellano and Bond use GMM estimation.
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The Arellano and Bond estimator - The pure AR(1) case

Instrument matrix

The instrument matrix for individual i thus is

Wi =


[yi1] 0

[yi1, yi2]
. . .

0 [yi1, . . . , yi,T−2]


and the set of moment conditions is written (differently from PIV/P2SLS)
as

E(W′
i∆ui) = 0.

Stacking all observations i = 1, . . . , N , the matrix of instruments is

W =

W1
...

WN

 .
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The Arellano and Bond estimator - The pure AR(1) case

GMM estimation

Since for T ≥ 4, the conditions E(W′
i∆ui) = 0 are overidentifying, it is

not possible to find an estimator of α that equates the sample equivalent

N−1
N∑
i=1

W′
i∆ûi

exactly to zero. We need a symmetric, positive definite L× L weighting
matrix Ξ (ideally the GMM optimal weighting scheme).

An asymptotically optimal weighting matrix satisfies

Ξ = Λ−1, Λ = E(W′
i∆ui∆u′iWi).

While we can estimate this matrix in a second step based on first-step
residuals ∆ûi, we need a good first-step choice.

Arellano and Bond suggest to use one that is based on homoskedasticity
assumptions.
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The Arellano and Bond estimator - The pure AR(1) case

First step weighting matrix

We make the conditional homoskedasticity assumption

E(∆ui∆u′i|Wi) = E(∆ui∆u′i) = Σ∆u.

By the LIE, it implies that Ξ−1 simplifies to

Ξ−1
1 = Λ1 = E(W′

i∆ui∆u′iWi) = E(W′
iΣ∆uWi).

So we need to find the (unconditional) variance matrix Σ∆u of the
differenced error term ∆ui.

Since by assumption uit is white noise, ∆uit is MA(1) with unit coefficient
and zero mean.

In addition, let us assume that second moments are time-invariant
(homoskedastic over time, stationary).
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The Arellano and Bond estimator - The pure AR(1) case

Variance matrix of ∆ui under homoskedasticity ?

Under the white noise and homoskedasticity assumptions, we have:

E[(∆uit)
2] = E[(uit − ui,t−1)2] = E(u2

it) + E(u2
i,t−1) = 2σ2

u,

E[∆uit∆ui,t−1] = E[(uit − ui,t−1)(ui,t−1 − ui,t−2)] = −E(u2
i,t−1) = −σ2

u,

E[∆uit∆ui,t−k] = 0 ∀k ≥ 2.

Hence,

Σ∆u = E
(
∆ui∆u′i

)
= σ2

u


2 −1 0 . . . 0 0

−1 2 −1 . . . 0 0
0 −1 2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 2 −1
0 0 0 . . . −1 2

 = σ2
uG

with the (T − 2)× (T − 2) matrix G defined implicitly.
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The Arellano and Bond estimator - The pure AR(1) case

One-step GMM estimator ?

Under the white noise and homoskedasticity assumptions, we thus find

E(W′
i∆ui∆u′iWi) = σ2

u E(W′
iGWi).

Since σ2
u is a scalar that does not change the relative weighting, we may

use
Ξ−1

1 = Λ1 = E(W′
iGWi),

which can be consistently estimated as

Ξ̂
−1
1 = Λ̂1 = N−1

N∑
i=1

W′
iGWi = N−1W′(IN ⊗G)W.

Note that all we need for this estimator is the data W.
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The Arellano and Bond estimator - The pure AR(1) case

This leads to... ?

The one-step GMM estimator minimizes the objective function

QN (α) =

[
N−1

N∑
i=1

W′
i∆ui

]′ [ N∑
i=1

W′
iGWi

]−1 [
N−1

N∑
i=1

W′
i∆ui

]
= ∆u′W

[
W′(IN ⊗G)W

]−1
W′∆u

This yields the Arellano and Bond (1991) one-step estimator

α̂AB,1 =
[
∆y′−1W

(
W′(IN ⊗G)W

)−1
W′∆y−1

]−1

×
[
∆y′−1W

(
W′(IN ⊗G)W

)−1
W′∆y

]
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The Arellano and Bond estimator - The pure AR(1) case

Two-step GMM estimator ?

The homoskedasticity assumptions are often deemed too restrictive.
Therefore, Arellano and Bond (1991) suggest to use a nonparametric
(robust) estimator of the optimal weighting matrix in a second step.

Based on first-step residuals this is straightforward:

Ξ̂2 = Λ̂
−1
2 =

[
N−1

N∑
i=1

W′
i∆ûi∆û′iWi

]−1

.

The resulting estimator is the two-step GMM estimator:

α̂AB,2 =
[
∆y′−1WΞ̂2W

′∆y−1

]−1 [
∆y′−1WΞ̂2W

′∆y
]
.

A consistent estimator of the asymptotic variance is given by

Avar
[√

N(α̂AB,2 − α)
]

=
[
∆y′−1WΞ̂2W

′∆y−1

]−1
.
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