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Exercise Sheet 2: Specification Tests for Panel Data
Models

— Draft Solution —

Question 1

Consider the error-components model
yi = Xi3 + vy, Vi = Lrc; + u;. (1)
Suppose that, conditional on x;, v; ~ Normal(0, 2) where
Q = o2urtly + o2l

In the following, derive step by step the Breusch-Pagan LM test of the null hypothesis
02 = 0. Use (without proof) the fact that the information matrix is block diagonal
between 3 and the variance parameters 8 = (02, 02) which allows you to compute

u’ C
score and Hessian solely for 6.

(a) Show that for random sampling of y; and x;, ¢ = 1,..., N, the conditional log-
likelihood function is
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1
logo? — 5 log(To? 4 02) — viJrv; — viQrv;.
Note that the conditional log density of the multivariate normal distribution is, up

to an irrelevant constant, log f(v;) = —1log|Q| — 1viQ'v; and recall that Q" =
(‘f—jJT + 5 Q. Hint: use the rule [A’A +1,| = |[AA’ + I,,,|, where A is a m X n matrix,
and the rule |cM| = ¢'|M]|, where c is a scalar and M is a T' x T matrix.

Answer: Based on the log density, the conditional log likelihood is, up to an irrelevant

constant,

1 1
b = "9 log [€2| — §V§Q_1Vz‘, Vi =¥ — Xi3.

To simplify it, first consider [€2|, substitute its definition and apply the rules stated



above:

2

0'2 o
|Q| = |O'§LTL/T + 0'12LIT| = O'Z (U—;LTL/T + IT) ‘ = (UE)T U_;LTL/T + IT
_ (2T o: _(2\T 0_3 _(2\T—1 (2 2
- (Uu) o2 LTLT + 1| = <0u) O'2T +1) = (Uu) (To-c + Uu)' (2>
u u

Next consider 27! and substitute the definition of ¢:

¢ 1 1
0 = ;JT—F ;QT

u

T )

Now substitute (2) and (3) into the likelihood function and simplify:
l; = 1 log[(e2) (T2 + 02)] — 1V’- ; Jr + —QT
2 u c u 2 7 To 2 + 0_2

1—-T 1 T 2 2\—1 2\—1
= log o2 — 3 log(To? + 02) — %V;JTVZ' - %

V;QTVZ’ (4)

(b) Find the score s;(0) and Hessian H;(0) of ¢; with respect to the parameter vector
0 = (62,02). Evaluate Score and Hessian under the null hypothesis o2 = 0.

ur v c

Answer: To find the score,

5.(6) = [501(0). 5,2(0)] = Voli(0) = [%‘ ‘%‘] ,

20 5,2
O0o?2’ 0o?

we need the first derivatives of ¢; with respect to o2 and o2:

agl 1-T -2 (T0<2: + 02)_1 (TU?: + 03)_2 / 01:4 ’

si71(0) = 80‘5 = TO'U — 2 + 2 ViJTVi —f- TviQTVi (5)
a, T T )

si2(0) = 507 = —§(T03 + o)t 4 E(Tag + 02) VI v, (6)

For the Hessian,

) 9%, 9%,

H.(0) — iy i1 — Vs (0) = 802002 002002

o= (il fale) v (27 7))
(& u (& (&



we have to find the second derivatives:

0%¢; T—-1 _, (To?+o2)2 viJrv; viQrv;

H;1,(0) = = _

T A B ot ol ot D
82& T 2 2\—2 2 2 2\—3 ./

H;2:(0) = D02 - (Toe+0,)7 = T°(To, + o) vidrvi (8)
0*L; T 2 2\—2 2 2\—3 .,/

Hi721(0) = 902002 = E(TUC + O'u) — T(TO’C + Uu) Vi']TVi- (9)

For later use (estimation under the null) we evaluate score and Hessian when setting
02 = (0 and thus using the restricted parameter vector 8, = (02,0)". This yields score

1-T 1 0;4 0;4
$i1(0m,) = 5 0, — 5%2 + 9 viJrv; + TVQQTVZ‘
T —4
= —50'172 —+ %(V;JTVZ‘ + VéQTVZ‘)
T —4
— _Z -4 2 =10
- 2 Oy (Uu T Vivl) (1())

where we use Jr + Qr = I, and

T T T
SZ”Q(HHO) = —50';2 —+ 50;4V;JTV1 = —50';4(0'5 — V;JTVZ‘). (11)
The Hessian becomes
T —4 —6../
Hijn(OHO) = EO'H — 0, V,;V; (12)
T2
Hi’QQ(OHO) = 70’,;4 - T20';6V,/L-JTVZ' (13)
T —4 —6./
Hi,21(0H0) = EO'u - TO'u VZ‘JTVi- (14)

where we use again Jp + Qr = Iy in the derivation of H;11(0y,).

(c) Find the conditional expectation A(x;,0) = — E[H;(0)|x;] under the null hypoth-
esis 02 = 0.



Answer: First note that, by the RE assumptions,
E[vivilx;| = Ev}, + ... +vilxi]| = To?.
Next use the definition J; = Iy — Q7 which yields
vilJrvi = vi(Ir — Qr)vi = vivi — v;Qrv; = viv; — (Qrv,) (Qrvi).
Since Qr is the within transformation matrix, we can write
(Qrvy) (Qrv;) = Vi, = 63 + ... + Uz,

where ¥;; = vy — U;. Recall from the discussion of the FE estimator that (under the
null hypothesis 02 = 0)

T -1
Bli3 ] = Lo
Hence,
E[viJrvi|x;| = E[Vivi|x;] — E[VIQrv;|x;] = TO'Z — E[vfl + ...+ 'UfT|xZ]
T -1
=To> T a o2 = o2

Using these results, we can apply the conditional expectation elementwise to the
Hessian, i.e., to (12), (13), and (14). This yields

T T
E[H;11(0m,)|xi] = 3 ot — 0, Tol = —5054 (15)
T2 T2
E[H; 2201, )|xi] = 7054 —T%, %0 = —7054 (16)
T T
E[H; 21 (0, )|xi] = 5054 —To, %0l = —5054 (17)
and thus o4 T
B 50'; 50'; B T _4 1 1
A(Xia OH()) - [%054 %20'54 = Eo-u 1 T (18>




(d) Find £ 3N 8 = L3V 5,(0) and £+ 3N A; = L7 A(x;,0), where 6 is
the CML estimator under the null hypothesis 02 = 0. Without proof use 62 =

w7 SV SSF 92, where @y are the pooled OLS residuals.

Answer: Let us start with the score. Put (10) and (11) into a vector, substitute 8 and
average over all N observations:

N M1 N (~2 —1,/ ~2 1 N /
1 Zé B _T&_4 NZi:l(o-u =T Vivi) . _T5__4 Ouw ™ NT Zi*l ViVi
N 27w LAY (s2 o) | 20 52 LN
i=1 _NZi:l(gu vidrvy) Ou NZ¢:1Vz‘JTVz
r ~2  ~2
. T~_4 Oy — Oy . T~_4 0
AR I 3 S5 vl B R PRI o S W (19)
| Ou = W 2ui=1 VidTVi Ou =™ N 2ui=1 Vi TVi

Similarly, for the conditional expectation of the Hessian take (18), substitute 6 and

average over all N observations:
N
1 ~ T 1 1
— E A ==5"
N & 27

Ll (20)

(e) Show that the LM statistic

Answer: First invert the conditional expectation of the Hessian:

P&\ ot T -1

-1

11
1T

=4
20,

CT(T—1)




Next, substitute it together with (19) into the LM statistic:

%68 254 T -1 0
LM = N—" 0, 62— L3N vIpv;
4 T(T-1) [ N £ui=1 ] —1 1| 62— L37 viIrv,

NT 9 ’
:m (NZVJTVl—J)

(f) Show that the LM statistic can be reformulated to

Ly NT(T - 1) (__1)2,

2 02

where 52 = m SOV SSE (B — ;)2 Interpret the statistic.

Answer: Note that

Hence
e~ - o . ) )
N ;VZJTVZ N ;vlvz N ;ViQTVz Tao, — N(T -1 ;(QTVZ) (Qrvy)

Since Qr is the within transformation matrix, we can write

T
(QT‘}’L)/(QT{/Z) = (67,1 - 51)2 +...+ UzT - Uz Z 'Uzt - Uz )
t=1
where 0; = %Zthl Vs is the mean of the POLS residuals of individual 7. Substituting

yields
%Z fJT{ri:Tﬁi— ) szzt—vl

1=1 i=1 t=1

=2

Now recall from the discussion of the FE estimator that

] N T - ,
E (mzzwit—vi) ) =0,.

i=1 t=1

(=}



This suggests to define the within-type estimator

N

1 T
N(T—_DZZ Bit = %)

i=1 t=1

Q:
IS )

Hence,

=

1 - - ..
N Z ;JTVZ' = TO'?L — (T — 1)0‘3

Substituting this into the expression for the LM statistic (21) yields

i NT <T&3— (T —1)52 _1>2 _NT(T-1) (__1>2.

2(T — 1) 52 2 52

This statistic lends to a nice interpretation. Under the null v; = wu;, both estimators

of 02 are consistent and thus
..2
o)
R
Uu
Under the alternative, G2 is still consistent because it wipes out the individual effect
but 62 is not. Hence, the LM statistic effectively checks whether these two estimators

are similar (do not reject the null) or rather different (reject the null).

Question 2
Consider the error-components model
Yit = Xit3 + vit, Vit = Cj + U

with E(¢;) = 0, E(u;) = 0, and E(cui) = 0.

(a) Show without using an expectation operator that for 7' = 2, the within-transformed
disturbances ii; have first-order autocorrelation Corr (i, ;1) = —1.

Answer: Recall that iy = w;; — T Zthl u;. For T' = 2 we thus obtain

. 1 Ujp — U2
U = Uit — 5(%1 + upp) = 5



and

. 1 Usp — Uiy Ul — Uz
Uy = Ugp — 5(%1 + Uip) = sz = —ZTZ
Clearly, iy, = —1tiy;. Hence, they are perfectly negatively correlated with correlation

coefficient —1.

(b) Show that in general the within-transformed disturbances ii;; have first-order au-
tocovariance E(iyiiy_1) = —o2/T and first-order autocorrelation Corr(iiy, ;1) =
(1 —T)~" if uy is white noise with variance o2.

Answer: Let us first find the autocovariance:
E(iiiitie—1) = El(wir — ) (wiz—1 — Uy)]
= Eluiti—1] — Blugt;] — Eltuy_1] + Ela?].
Lets go through these four terms one by one.
e Eluju;—1] = 0 because u; is white noise.

o Eluyu;| = EluyT! 23:1 U] = T4 Zfil Eluiuis] = T~ 102 because El|ugu| =
o2 for s =t and zero otherwise.

o E[u;_1u;) = T~ 102 by the same reasoning.
e E[u?] = T~ '02 because it is the variance of the mean.
Substituting these results yields
E(iigiiy—1) =0T o2 =T o + T 0% = -T o2

To find the autocorrelation, we need the variances of i; and i;_;. Under the
assumption that wu; is white noise with constant variance, we found these variance in

Lecture 1 as Var(ii;) = Var(iiy—1) = Z202. Thus the autocorrelation coefficient is
E(ﬂitait—l) . —T_IO'Z 1

COI‘I‘(’[LZ‘t, ilz‘t_ 1 ) =

N v/ Var(iiz )/ Var (i 1) B o2 C1-T




Question 3

Consider the simple model
Yit = a0+ 143 + vy,

where z; is a scalar regressor that varies solely with ¢ (e.g., a time dummy or an
aggregate control variable). Show that the FE and RE estimators of § are numerically
identical. Hint: apply POLS to the within-transformed equation (which yields the FE
estimator) and to the quasi-demeaned equation (which yields the RE estimator). In
the latter case, use an arbitrary value A = 1 — ¢ for the quasi demeaning and show
that the two estimators are identical for any .

Answer:
Let us start with the FE estimator. The within transformation yields

Yie — Ui = (ve — T) B + vy — Uy, (22)

where ¢; = 7! 23:1 Yie, T =T71 ZtT:l x4, and v; = T—1 ZtT:l v are scalars. The FE
estimator is pooled OLS applied to (22):

Bre = (Z Z(ﬂit — f)2> (Z Z(% — ) (Yt — ?Jz)) (23)

i=1 t=1 i=1 t=1

Simplify the second part:

Z Z )(ie = 9i) = Z(mt — I) Z(yit — i)

where the last step uses the fact that Zf\il y; does not depend on t. Now recall from
basic statistics that Zle(xt — ) =Tz — Tz = 0 and substitute back:

N T T N
DD @ =D~ g =D (=T Dy =
=1

i=1 t=1 t=1

N
(y — T)Yir-

T
=1 i=1

t



Hence, the FE estimator (23) simplifies to

Bre = (Z D (- ;,;)2> (Z > (@ - g;)yit> (24)

Now let us turn to the RE estimator. Quasi-demeaning with some arbitrary A =
1 — ¢ yields
This can be transformed into an equation that has regressor x; — Z and thus the same
one as the within-transformed equation:

Yo — NG = (1l =N+ (r; — T+ 7 — \T)B + vy — A\y;
=a(l =N+ 621 = \)+(zt — )5 + vi — Ay

~
I

Now there are two ways to proceed. The first is to recall from basic econometrics
that OLS applied to an equation with intercept is identical to OLS applied to the
mean-adjusted data without intercept, where the mean is taken from the whole sample.
Hence, the lhs becomes

T
1 o _ _ _
=M= e D D (e = AT = e = AT — G M =i — A% — (1= M)y
i=1 t=1
— 1 N T 1 N .
where ¥ = w7 > i1 D i1 Yit = ~ i1 Ui> and the rhs remains unchanged
| N
xt—x——zz xt—a: =0 —X—T+T=xs—T.
=1 t=1
Hence, it is equivalent to estimate equation (25) by POLS or this one:
POLS applied to this equation is

() (55

=1 t=1 =1t

(zt — Z)(Yie — Agi — (1 — A)ﬂ)) (27)

1



The same simplification as used for the FE estimator above yields

N T N T

Z Z(th —Z) (Y — Ay — (L = N)y) = Z Z(:Ut — T)Vit-

Hence, the RE estimator becomes
N T LN T
Bre = (Z > (@ $)2> (Z > (@i — 37)%%) : (28)
i=1 t=1 ‘

Clearly, (24) and (28) are identical.

The second way to analyze the RE estimator is to apply POLS directly to
Yie — AU = po+ (2 — 2) B + vy — A0y, (29)

which implies we have a regression with intercept:
()= (SEL T o) (EEL S
B (i i L"t 1_ T (;t—_;f] > 7 (i Z [(% _y%(_y:‘y_i A:&JD

Due to Y1 (x; — Z) = 0 simplify the off-diagonal elements of the first matrix to zero
which makes inversion easy:

Gy =10 s s o) _1 [

[y 0 1“ N 13 (i — M) ]
0 (SN Sl —22) | K X (- 2) e — M)

( ) Zz 127& 1<yzt )‘gz) ]
(ZZ IZt (@ — x)Q) Zz 1Zt (@0 = 2) (Yir — A1)

For BRE this yields

N T LN 7T
53152(22%—:6 > SO (@ — )y — M)

i=1 t=1 i=1 t=1

11



By the same reasoning as above, this is identical to

e = (z S —:z)2> D) CEEH

i=1 t=1

and thus to the FE estimator.

Question 4

Consider the structural equation
Yit = Xuf3 + Vit Vit = C; + U, (30)

where x;; is a 1 X K vector which includes only regressors that vary across ¢ and ¢, and
the augmented equation
Yit = X3 + X0 + Ty, (31)

where X; is a 1 x K vector of time averages. For what follows assume that RE.3 holds
and the variance components of the RE estimator are estimated using the Swamy-Arora
approach.

(a) Denote the RE estimators of 8 and & in (31) by 3 and 8. Show that 3 is identical
to the FE estimator of 8 in (30), and & is identical to the difference of the between
and FE estimators of 8 in (30): ,3 BRE and § = ,BB — ﬁpE Hint: inversion of the
partitioned matrix

A Ap
A= {Am AzJ
yields
Al D —DA12A_
T —ALALD AL AL A, DABAL

where D = (A1 — AjpAyy Agy) 7!

Answer: To avoid all the sums, write the equations in stacked matrix form as

y=X8+V (32)
and
yzxﬁ+X6+E=[X7X]<§)+E=Z’7+E- (33)

12



The FE estimator applied to (32) yields the usual
Bre = (X'X)"'X'y, (34)

where X = QX and y = Qy.
The between estimator applied to (32) yields the usual

Br = (X'X)'Xy, (35)
where X = JX and y = Jy.

The RE estimator applied to (33) equals the OLS estimator applied to the quasi-
demeaned equation

Ry = RXj3 + RXd + RE = RX3 + $JXJ + RE = [RX, $JX] (?) ' RE
—

RZ
because RJ = (Q + ¢J)J = ¢J and thus RX = RIX = ¢JX. Hence,

i -1
:8 _ m/ —1lip/ _ X'R/ ) X'R
<5 = (ZR'RZ)"ZRRy = | | 1y, p| [RX, 6IX]) 1555 | Ry
B 'X/R/RX éleIJX -1 ?(/R/Ry
X' IRX ¢*X'JIX] [¢X'JRy
[XRRX ¢*XJIX]"' [X'RRy
PXIIX PXIIX] | $XT Ty
[ XX @XX] [ Xy
XX FXX] [$Xy]

-

Afl

J/

where we used RJ = ngSJ = gEJ’ J. To invert A, we use the rule given above. It turns
out that

Aoy — , — Aoy — , —

= (X'X — ¢*’X'X)7! = (X'RRX — ¢*X'X)7! = (X'62Q7'1X — ¢*X'X) !
= (X'[Q+¢IX - #°X'X) ™' = (XQX) ' = (X'X) ",

13



Hence,

A [ (XX)! —<>"<1X>1(£2X'X<g322<'x>11
(¢2X/ )1¢2X/ ( X)—l (¢2X/X)_1+(X/X)_l
_ [<X..'X..> o XX }
_(X/X)—l (¢2X/X)—1+(X/X)fl

Substituting this into the estimator yields

@ - [—(é% <<%2X'>_<§X/X)<X' X)! Hqéxx]

_[ (X'X)™' X'y — (X'X)9*Xy. }
- _(X/X) 1X/}~,_|_(¢2X/ ) 1¢2X/}7+(XI ) 1¢2X/_ :

Note that X'y = X'[Q + ¢2J]y = X'y + ¢*X'y and thus

(ia):[ % (XK)~Xy + (XK) 712Xy — (XK) 10Xy ]

S —1)"{/.5, ( ) 1(;52X/ (¢2X/ ) 1¢2X/S’+(X/ ) 1¢2X/7

- L(X'X)(l};?;ﬁfxwx'y} - (ﬂBﬁ—FZFE>

(b) Find the Wald statistic to test the null hypothesis d = 0 based on the classical RE
estimator of the augmented equation (31).

Answer: Let us start to find the population variance matrix of 8. Recall that under
homoscedasticity, the variance matrix of the full parameter vector is

Var [(g)] = (Z[Iy@Q2Z) ' =02(ZR'RZ)!
The inverse has been found above:
BV _ o[ (K% (X
Var {(5 =0y —(X’X)fl (¢2X/X)71 + (X/X)—l
Hence, the variance matrix of b is the lower right part:

Var(d) = 02(¢*X'X) ™! + o2(X'X) 7!

14



The Wald statistic thus is

W= V@) 8= (Bs—Bre) [22FXR) T +02XK)] T (Bu—Bre), (30)

where we replace unknown quantities by consistent estimators.

(c) Show that the classical Hausman statistic applied to equation (30) is identical to
the Wald statistic computed above.

Answer: The classical Hausman statistic is

(BFE - IBRE),[Avar(ﬁFE) @(BRE)]_I(BFE - BRE)

= (Bre — Bre) [62(X'X) ™ = (X'[Iy @ Q7'1X) " (Bre — Bre)
= (Bre — Bre) [62(X'X) ™ — (XRRX/62) 77 (Bre — Bre)

= (Bre — Bre)'[62(X'X) ! = 62(X'X) "] (Bre — Bre)

In order to transform it into the Wald statistic (36), use the equality
Bre = W1Bp + (1 - W1)Brp

where

N N B
( S XX+ Y X;QTXz) 0" > XiIrX;
=1

i=1 i=1
- <¢2X’JX + X’QX) XX
= (XX) " #XX
Substituting the equality yields
Bre — Bre = WiBrs — W18 = -W, (BB - BFE)
Now substitute this into the Hausman statistic:

H = (Bp — Bre)Wi[e2(X'X) ™ — 62(X'X)"'|""W (85 — Brr)

-1

= (B —Bre) | (W)™ (a2XK) ™ = 2XX) ) (W)™ | (B — Bro)

<1

15



The term in squared brackets simplifies to

V = (#*XX) XX (62(XX) &2(5('5()*1) X(#X'X)"!
— (¢*X'X)"IX'X52(X'X) XX (??X'X) 7! — (¢*X'X) XX (X'X) XX (¢*XK'X
= 52(¢P*X'X) XX (X'X)™ (X X + @*XX)(P*X'X) 7! — 62(¢*X'X) XX (¢*X'X)~
= F2(FPX'X)IXK(FX'K) !+ 62(FXX) IRKKK) LXK (2 KK) L

(X'X + @P*XX)(X'X) !

X'X)”
X'X)"
— 62X X)X X(FX'X )
X'X)™!
X'X) 4 6H(X'X)

Substituting back into the Hausman statistic yields
. . o . -1 .
= (B — Bre) |02(¢*X'X) " +6(X'X)"! | (Bs — Bre).

This is exactly the Wald statistic (36).

It remains to verify that the estimates of the error variances are identical, no matter
whether the RE estimator is applied to (30) which yields the Hausman statistic or
o (31) which yields the Wald statistic. To this end, recall that the Swamy-Arora
approach uses the within and between transformed equations. Applying the within
transformation to (30) and (31) yields

Uit = X3 + Ui

and

Uit = X3 + €y
because the within transformation wipes out the time invariant regressors X;. Hence,
the two are identical in terms of their lhs variable and regressors and so is the variance

estimator 62 based on this equation. Applying the between transformation to (30) and
(31) yields
Ui =xiB+0
and

Ui = X+ X0 + & = X(B+0) + &.
Again, these equations are identical in terms of their lhs variable and regressors. Hence,
they produce the same variance estimator 62 + 62/T. Consequently, both approaches
also lead to the same estimator ¢.
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