Exercise Sheet 2: Specification Tests for Panel Data Models

Review the Concepts and Proofs

- 1. Why would one test for an unobserved individual specific effect?
- 2. Explain Wooldridge's test of an unobserved individual specific effect and derive its asymptotic distribution.
- 3. Describe the Breusch-Pagan LM test. What is the consequence of obtaining a test statistic of LM = 8.3?
- 4. Why would one test for autocorrelation in a linear panel data model?
- 5. Describe the test of first-order autocorrelation in v_{it} .
- 6. Describe the test of first-order autocorrelation in u_{it} .
- 7. Prove the asymptotic distribution of the classical Hausman test.
- 8. How can you obtain a Hausman test that is robust to arbitrary autocorrelation or heteroscedasticity in \mathbf{v}_i ?
- 9. Why is it advisable to include a large set of individual-specific controls whenever you apply the RE estimator?

Paper-pen exercises

1. Consider the error-components model

$$\mathbf{y}_i = \mathbf{x}_i \boldsymbol{\beta} + \mathbf{v}_i, \qquad \mathbf{v}_i = \boldsymbol{\iota}_T c_i + \mathbf{u}_i.$$
 (1)

Suppose that, conditional on \mathbf{x}_i , $\mathbf{v}_i \sim \text{Normal}(\mathbf{0}, \mathbf{\Omega})$ where

$$\mathbf{\Omega} = \sigma_c^2 \boldsymbol{\iota}_T \boldsymbol{\iota}_T' + \sigma_u^2 \mathbf{I}_T$$

In the following, derive step by step the Breusch-Pagan LM test of the null hypothesis $\sigma_c^2 = 0$. Use (without proof) the fact that the information matrix is block diagonal between $\boldsymbol{\beta}$ and the variance parameters $\boldsymbol{\theta} = (\sigma_u^2, \sigma_c^2)'$ which allows you to compute score and Hessian solely for $\boldsymbol{\theta}$.

(a) Show that for random sampling of \mathbf{y}_i and \mathbf{x}_i , i = 1, ..., N, the conditional log-likelihood function is

$$\ell_i = \frac{1-T}{2} \log \sigma_u^2 - \frac{1}{2} \log (T\sigma_c^2 + \sigma_u^2) - \frac{(T\sigma_c^2 + \sigma_u^2)^{-1}}{2} \mathbf{v}_i' \mathbf{J}_T \mathbf{v}_i - \frac{(\sigma_u^2)^{-1}}{2} \mathbf{v}_i' \mathbf{Q}_T \mathbf{v}_i.$$

Note that the conditional log density of the multivariate normal distribution is, up to an irrelevant constant, $\log f(\mathbf{v}_i) = -\frac{1}{2} \log |\mathbf{\Omega}| - \frac{1}{2} \mathbf{v}_i' \mathbf{\Omega}^{-1} \mathbf{v}_i$ and recall that $\mathbf{\Omega}^{-1} = \frac{\phi^2}{\sigma_u^2} \mathbf{J}_T + \frac{1}{\sigma_u^2} \mathbf{Q}_T$. Hint: use the rule $|\mathbf{A}'\mathbf{A} + \mathbf{I}_n| = |\mathbf{A}\mathbf{A}' + I_m|$, where \mathbf{A} is a $m \times n$ matrix, and the rule $|c\mathbf{M}| = c^T |\mathbf{M}|$, where c is a scalar and \mathbf{M} is a $T \times T$ matrix.

- (b) Find the score $\mathbf{s}_i(\boldsymbol{\theta})$ and Hessian $\mathbf{H}_i(\boldsymbol{\theta})$ of ℓ_i with respect to the parameter vector $\boldsymbol{\theta} = (\sigma_u^2, \sigma_c^2)'$. Evaluate Score and Hessian under the null hypothesis $\sigma_c^2 = 0$.
- (c) Find the conditional expectation $\mathbf{A}(\mathbf{x}_i, \boldsymbol{\theta}) \equiv -\mathbf{E}[\mathbf{H}_i(\boldsymbol{\theta})|\mathbf{x}_i]$ under the null hypothesis $\sigma_c^2 = 0$.
- (d) Find $\frac{1}{N} \sum_{i=1}^{N} \tilde{\mathbf{s}}_{i} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{s}_{i}(\tilde{\boldsymbol{\theta}})$ and $\frac{1}{N} \sum_{i=1}^{N} \tilde{\mathbf{A}}_{i} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{A}(\mathbf{x}_{i}, \tilde{\boldsymbol{\theta}})$, where $\tilde{\boldsymbol{\theta}}$ is the CML estimator under the null hypothesis $\sigma_{c}^{2} = 0$. Without proof use $\tilde{\sigma}_{u}^{2} = \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} \tilde{v}_{it}^{2}$, where \tilde{v}_{it} are the pooled OLS residuals.
- (e) Show that the LM statistic

$$LM = N\left(\frac{1}{N}\sum_{i=1}^{N}\tilde{\mathbf{s}}_{i}\right)'\left(\frac{1}{N}\sum_{i=1}^{N}\tilde{\mathbf{A}}_{i}\right)^{-1}\left(\frac{1}{N}\sum_{i=1}^{N}\tilde{\mathbf{s}}_{i}\right)$$

can be simplified to

$$LM = \frac{NT}{2(T-1)} \left(\frac{\frac{1}{N} \sum_{i=1}^{N} \tilde{\mathbf{v}}_{i}' \mathbf{J}_{T} \tilde{\mathbf{v}}_{i}}{\tilde{\sigma}_{u}^{2}} - 1 \right)^{2}.$$

(f) Show that the LM statistic can be reformulated to

$$LM = \frac{NT(T-1)}{2} \left(\frac{\ddot{\sigma}_u^2}{\tilde{\sigma}_u^2} - 1\right)^2,$$

where $\ddot{\sigma}_u^2 \equiv \frac{1}{N(T-1)} \sum_{i=1}^N \sum_{t=1}^T (\tilde{v}_{it} - \bar{\tilde{v}}_i)^2$. Interpret the statistic.

2. Consider the error-components model

$$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + v_{it}, \qquad v_{it} = c_i + u_{it}$$

with $E(c_i) = 0$, $E(u_{it}) = 0$, and $E(c_i u_{it}) = 0$.

- (a) Show without using an expectation operator that for T = 2, the within-transformed disturbances \ddot{u}_{it} have first-order autocorrelation $\operatorname{Corr}(\ddot{u}_{i2}, \ddot{u}_{i1}) = -1$.
- (b) Show that in general the within-transformed disturbances \ddot{u}_{it} have first-order autocovariance $E(\ddot{u}_{it}\ddot{u}_{it-1}) = -\sigma_u^2/T$ and first-order autocorrelation $Corr(\ddot{u}_{it}, \ddot{u}_{it-1}) = (1-T)^{-1}$ if u_{it} is white noise with variance σ_u^2 .
- 3. Consider the simple model

$$y_{it} = \alpha + x_t \beta + v_{it},$$

where x_t is a scalar regressor that varies solely with t (e.g., a time dummy or an aggregate control variable). Show that the FE and RE estimators of β are numerically identical. Hint: apply POLS to the within-transformed equation (which yields the FE estimator) and to the quasi-demeaned equation (which yields the RE estimator). In the latter case, use an arbitrary value $\lambda = 1 - \phi$ for the quasi demeaning and show that the two estimators are identical for any λ .

4. Consider the structural equation

$$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + v_{it}, \qquad v_{it} = c_i + u_{it}, \tag{2}$$

where \mathbf{x}_{it} is a $1 \times K$ vector which includes only regressors that vary across i and t, and the augmented equation

$$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + \bar{\mathbf{x}}_i\boldsymbol{\delta} + r_{it},\tag{3}$$

where $\bar{\mathbf{x}}_i$ is a 1 × K vector of time averages. For what follows assume that RE.3 holds and the variance components of the RE estimator are estimated using the Swamy-Arora approach.

(a) Denote the RE estimators of $\boldsymbol{\beta}$ and $\boldsymbol{\delta}$ in (3) by $\tilde{\boldsymbol{\beta}}$ and $\tilde{\boldsymbol{\delta}}$. Show that $\tilde{\boldsymbol{\beta}}$ is identical to the FE estimator of $\boldsymbol{\beta}$ in (2), and $\tilde{\boldsymbol{\delta}}$ is identical to the difference of the between and FE estimators of $\boldsymbol{\beta}$ in (2): $\tilde{\boldsymbol{\beta}} = \hat{\boldsymbol{\beta}}_{RE}$ and $\tilde{\boldsymbol{\delta}} = \hat{\boldsymbol{\beta}}_{B} - \hat{\boldsymbol{\beta}}_{FE}$. Hint: inversion of the partitioned matrix

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix}$$

yields

$$\mathbf{A}^{-1} = \begin{bmatrix} \mathbf{D} & -\mathbf{D}\mathbf{A}_{12}\mathbf{A}_{22}^{-1} \\ -\mathbf{A}_{22}^{-1}\mathbf{A}_{21}\mathbf{D} & \mathbf{A}_{22}^{-1} + \mathbf{A}_{22}^{-1}\mathbf{A}_{21}\mathbf{D}\mathbf{A}_{12}\mathbf{A}_{22}^{-1} \end{bmatrix},$$

where $\mathbf{D} = (\mathbf{A}_{11} - \mathbf{A}_{12}\mathbf{A}_{22}^{-1}\mathbf{A}_{21})^{-1}$.

- (b) Find the Wald statistic to test the null hypothesis $\delta = 0$ based on the classical RE estimator of the augmented equation (3).
- (c) Show that the classical Hausman statistic applied to equation (2) is identical to the Wald statistic computed above.

Empirical exercises

- Reconsider Acemoglu et al. (2008) who analyze the effect of income on democracy. Consult problem set 1 for explanations. Load their data set AJRY_2008_data.dta.
 - (a) Estimate the specification

$$dem_{it} = \beta_1 inc_{i,t-1} + \mu_t + c_i + u_{it} \tag{4}$$

by RE. Test for existence of unobserved country-specific effects.

- (b) Re-estimate the model with POLS. Check whether $v_{it} = c_i + u_{it}$ is autocorrelated. Interpret the result.
- (c) Re-estimate the model with FE. Check whether u_{it} is autocorrelated. Interpret the result.
- (d) Compare FE and RE by means of a robust Hausman test.