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SIMULATION TO UNDERSTAND ESTIMATORS BETTER

o Generally we always had (y,x) are and i.i.d. draw from some F

@ Then all “statistics”, including estimators etc.

Th= Tn((yl,X]_), (yg,X2),...,(y,,,xn),0))
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@ Then all “statistics”, including estimators etc.

Th= Tn((yl,X]_), (yg,X2),...,(y,,,x,,),0))
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SIMULATION TO UNDERSTAND ESTIMATORS BETTER

Generally we always had (y,x) are and i.i.d. draw from some F

@ Then all “statistics”, including estimators etc.

Th= Tn((yl,Xl), (yg,X2),...,(y,,,x,,),0))

e.g. t-ratio (0 —6)/s(0)

@ or some estimator 0 (or 3)

o depends on “the data” and F, it's distribution.
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DEFINITION 2

o We know T, (estimators, test statistics) are just another random variable

With it's own expectation and distribution.

@ So we model the c.d.f. as:

Gn(u,F)=Pr(Ts < u|F)

but while the asymptotic behavior of T, may be known, the one of G, generally is not
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LETS GO TO THE CASINO

@ We can learn about the statistic, by simulation.
@ Here's how:

> We choose some F and then simulate data.
> This nails down a true 6

> Now we pass that data to our estimator...
> ..and see if it “get’s it right”
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LETS GO TO THE CASINO

@ We can learn about the statistic, by simulation.
@ Here's how:

> We choose some F and then simulate data.
> This nails down a true 6

> Now we pass that data to our estimator...
> ..and see if it “get’s it right”

o it'e like simulating it in a sandbox
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HERE IS WHAT TO DO:

o Define some DGP (i.e. F) and draw n observations.
@ we get n observations (y*,x*) i=1,...,n

o compute Tp= Tn((y1,x1), (¥29%2), ..y (¥YnsXn),0)) on the pseudo data.

o This generates one random draw of the unknown G,(u, F)
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NOTATION - B™H EXPERIMENT

@ repeat over and over.
@ B times. (like 1000 or 5000 times)

@ see how the estimator performs by varying n and F
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NOTATION - B™H EXPERIMENT

@ repeat over and over.
@ B times. (like 1000 or 5000 times)

@ see how the estimator performs by varying n and F

o Notation:

> T, ... is the outcome of the b experiment (b=1,...,B)
> So Repeating B times gives:

> a “random sample of size B”
> coming from G,(u,F) = Pr(Tm, < u) = Pr(T, < u |F)
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RESULTING TEST-STATISTICS

e e.g. Bias

e MSE:

MSE(9) = Z(Tnb)2 5 Z(9b -0y

o or even the type | error of a two-sided t-test with T, = (8 —6)/s()

B
A 1
== UTw)<19)
b=1

...with 1() the indicator function, takes value 1 if condition true

@ in other words simply counting.
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____________________________________
COMPUTER TASK

@ Simulate some data for an interesting DGP (with a known Problem), absent other ideas,
revisit the omitted variables bias problem

@ Now run this not only once but B = 1000 times.
© Each time run the estimation procedure and store the result.

> Note: You can either save 1000 datasets, or keep only the estimator.
© Then compute the EDF of that estimation.
© Compare with the CDF you know.

© You can vary n and see whether the estimation gets better.
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INTRODUCTION

@ Previous lectures were using well defined and understood estimator.
@ Asymptotic behavior has been researched by earlier research.

@ BUT: On high level research (as PhD-level applied research) the “straight forward”methods
are not available
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INTRODUCTION

Previous lectures were using well defined and understood estimator.

@ Asymptotic behavior has been researched by earlier research.

@ BUT: On high level research (as PhD-level applied research) the “straight forward”methods
are not available

o A useful non-parametric method is “the Bootstrap”

> works in many settings.
> frequently also for data or residuals from unknown distributions.
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DEFINITION

@ Start from “some test-statistic.”

Tn= Ta((y1,X1), (¥25%2) 55 (¥ns Xn), F))
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DEFINITION

@ Start from “some test-statistic.”

Tn= Ta((y1,X1), (¥25%2) 55 (¥ns Xn), F))

o e.g. t-ratio (A —0)/s(d)

@ or some estimator 0 (or 3)
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DEFINITION

@ Start from “some test-statistic.”

Tn= Ta((y1,X1), (¥25%2) 55 (¥ns Xn), F))

e.g. t-ratio (0 —6)/s(0)

@ or some estimator 0 (or 3)

o depends on “the data” and F, it's distribution.
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DEFINITION 2

o We know T, (estimators, test statistics) are just another random variable
e With it's own expectation and distribution.
@ So we model the c.d.f. as:

Gn(u,F) = Pr(T, <u|F)
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DEFINITION 3

@ But we do not know F

@ So what can we do?
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DEFINITION 3

@ But we do not know F
@ So what can we do?

o We do not know F, but we have tons of data, that were generated by F

@ Let's pull ourselves out of the swamp on our own Bootstraps
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DEFINITION 3

@ But we do not know F
@ So what can we do?

o We do not know F, but we have tons of data, that were generated by F

@ Let's pull ourselves out of the swamp on our own Bootstraps

> by learning about the distribution from our data.

G2 (u) = Ga(u, Fr)

M Kummer Econometrics 1: Monte Carlo & Bootstrap NovaSBE, OTIM 14 /1 14



EMPIRICAL DISTRIBUTION FUNCTION 1

@ Recall

F(y,x) = Pr(y; <y,xi <x) = E(1(y; < y)1(x; <x))
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EMPIRICAL DISTRIBUTION FUNCTION 1

@ Recall

F(y,x) = Pr(y; <y,xi <x) = E(1(y; < y)1(x; <x))

@ The corresponding method of moments estimator simply plugs in the empirical counterpart:

o (...as always.)
o Hence,
1 n
Fa(ys) == 1y <y)1(x < %)
i=1
o This is called the “Empirical Distribution Function” (EDF)
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EMPIRICAL DISTRIBUTION FUNCTION - ASYMPTOTICS

o EDF consistently estimates CDF. Proof is based on

> the insight that for any (y,x), 1(y; < y)1(x; < x) is an i.i.d. RV drawn from F(y,x)
> WLLN
> CLT
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EMPIRICAL DISTRIBUTION FUNCTION - ASYMPTOTICS

o EDF consistently estimates CDF. Proof is based on

> the insight that for any (y,x), 1(y; < y)1(x; < x) is an i.i.d. RV drawn from F(y,x)
> WLLN
> CLT

@ Hence,
Vi(Fa(y;x) = F(y,x)) % N(0, F(y,x)(1~ F(y.x))
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EMPIRICAL DISTRIBUTION FUNCTION - ASYMPTOTICS

@ And the EDF is a valid discrete prob. distribution.

o Probability mass is 1/n for each data-point (y;,x;)

@ i.o.w. think of a random pair (y,x;*) as drawn from F,

Pr(y/ <y,xj <x)=Fn(y,x)
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EMPIRICAL DISTRIBUTION FUNCTION - ASYMPTOTICS

o Sample moments of (y;*,x})

Eh(y},x}) = /(h()/i,xr’)Fn(.Vax))

= Zh(Yi:Xi)P”(yi* =y)1(x} =x;)

i=1

n
1
= g h(yi,x;)
i—1
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EMPIRICAL DISTRIBUTION FUNCTION - ASYMPTOTICS
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Figure 10.1: Empirical Distribution Funetions
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EMPIRICAL DISTRIBUTION FUNCTION - ASYMPTOTICS

o Sample moments of (y;*,x})

Eh(y},x}) = /(h()/i,xr’)Fn(.Vax))

= Zh(Yi:Xi)P”(yi* =y)1(x} =x;)

i=1

n
1
= g h(yi,x;)
i—1
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NONPARAMETRIC BOOTSTRAP

@ Use EDF as the estimate F,, of F

@ Use Monte-Carlo simulations to approximate G

@ Note:

> The sample size in the simulation should be the same as the sample size
> (y;",x;") are drawn from the data, i.e.
> You randomly sample (WITH REPLACEMENT!) n observations (y,x)
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NONPARAMETRIC BOOTSTRAP

@ Use EDF as the estimate F,, of F
@ Use Monte-Carlo simulations to approximate G
o Note:
> The sample size in the simulation should be the same as the sample size

> (y;",x;") are drawn from the data, i.e.
> You randomly sample (WITH REPLACEMENT!) n observations (y,x)

o And you get your first instance of T :

To = Ta((y1>x7)s (¥29%5 ) s-es (Vi s X ) Fn))

@ ...that's simply the statistic computed with the simulated sample you have just drawn.
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NONPARAMETRIC BOOTSTRAP

o Now we need to get the distribution (confidence interval)

@ Hence repeat this B times.

o Note:

> B is the number of bootstrap replications.

> Large B is better, but takes longer to compute

> A theory about that was developed (Andrews and Buchinsky, 2000), but
> B =1000 is typically sufficient and reasonable to compute.
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EXAMPLE: T-RATIO

o Now we need to get the distribution (confidence interval)

@ Hence repeat this B times.

o Note:
> B is the number of bootstrap replications.
> Large B is better, but takes longer to compute
> A theory about that was developed (Andrews and Buchinsky, 2000), but
> B =1000 is typically sufficient and reasonable to compute.

Finally: The general test statistic T, usually is a function of F
> e.g. t-ratio (O — 0)/s(0) depends on 6:

o Bootstrap replaces F with F, and similarly 6 with 6,

> ...usually that's simply the newly estimated i
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ESTIMATING BIAS

o Denote the Bias E(§ —6p) = 7,
o Let T,(6) = (A —0) (*...for any theta*), hence 7, = E(Tx(60))

@ The Bootstrap estimate of 7, is given by
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ESTIMATING BIAS

Denote the Bias E(§ —6p) = 71
Let T,(0) = (é —0) (*...for any theta*), hence 7, = E(Tx(60))

@ The Bootstrap estimate of 7, is given by

75 = E(T5(60))

@ ...it's all in the stars
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COMPUTATION OF THE ESTIMATE
o Denote the Bias E(§ —6p) = 7,
o Let T,(0) = (0 —0) (*...for any theta*), hence 7, = E(Tx(60))

@ Using the simulation, the estimate of 7, is given by
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COMPUTATION OF THE ESTIMATE
o Denote the Bias E(§ —6p) = 7,
o Let T,(0) = (0 —0) (*...for any theta*), hence 7, = E(Tx(60))

@ Using the simulation, the estimate of 7, is given by

B
L1 .
T: :EZTnb
b=1
1 B
=5 00
b=1

*

SN
=N
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COMPUTATION OF THE ESTIMATE
o Denote the Bias E(§ —6p) = 7,
o Let T,(0) = (0 —0) (*...for any theta*), hence 7, = E(Tx(60))

@ Using the simulation, the estimate of 7, is given by

B
L1 .
Tr;k :EZTnb
b=1
1 B
=5 00
b=1

-0

<

o ...that is, subtract your “real” estimate from the BS average estimate. Similarly the variance:

B
P A Axy2
Vi= 13 67
b=1

@ This procedure also can afford a bias-correction and Percentile Interval Estimation,
Symmetric Percentile-t Intervals, Asymptotic Expansion etc. (cf. Hansen, ch. 10)
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____________________________________
NON-LINEAR IN ERRORS

@ Models which can not be transformed into linear models. For example, models with limited
dependent variables

>

>

M Kummer

Binary variables: employed vs. not employed outcome.

Categorical variables: Choose between 5 political candidates.
Nonnegative variables: wages, prices, interest rates.

Nonnegative variables with excess zeros: labor supply, doctor visits.
Count variables: the number of cigarettes smoked per day.

Censored variables: unemployment durations.
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____________________________________
NON-LINEAR IN ERRORS

@ Models which can not be transformed into linear models. For example, models with limited
dependent variables

> Binary variables: employed vs. not employed outcome.

> Categorical variables: Choose between 5 political candidates.

> Nonnegative variables: wages, prices, interest rates.

> Nonnegative variables with excess zeros: labor supply, doctor visits.
> Count variables: the number of cigarettes smoked per day.

> Censored variables: unemployment durations.

The partial effects no longer straightforward

OE(yi|x/)
ox #p

@ Now the effects depend upon the level of the variables x;.
@ The average partial effects (APE): EMEB%) estimated by %27 MEB%Z.

@ The partial effects at the average (PEA): Partial effects % when fixing x; = E(x;)
estimated by X = % 27:1 X;.
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LIKELIHOOD PRINCIPLE

o Likelihood principle (R. A. Fisher, 1922): Choose as estimator of parameter vector 0 the
value of 8 which maximizes likelihood of observing the actual data in sample within proposed
model.

> In discrete case: likelihood is the probability obtained from the probability mass function.
> In continuous case: likelihood is the is the density (since probability of observing single realization of
continuous variable is always 0).
o Example in discrete case: If one value of 8 implies that probability of the observed data
occurring is 0.0010, and other value of 6 gives a higher probability of 0.0015, then second

value better estimator.
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LIKELIHOOD AND LOG LIKELIHOOD FUNCTION

@ Joint probability mass function or density f(y, X|0) is viewed here as a function of 8 given
the data (y, X).

o This is called the likelihood function and is denoted by = L(8]y, X).
o Maximizing L(8) is equivalent to maximizing the log-likelihood function
L(6) = InL(6)

o ML estimator special property: it is most efficient estimator among consistent and
asymptotically normal estimators.
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LIKELIHOOD FUNCTION AND CONDITIONAL LIKELIHOOD

o Given data (y;,x;), the likelihood L(0) = f(y,X|0) = f(y|X,0)f(X|0) requires specification of
conditional density of y given X and the marginal density of X.

@ Often we assume data generating process (DGP) of y given X and of X depend on mutually
exclusive set of parameters, f(y|X,0,n) = f(y|X,0) and f(X|0,n) = f(X|n).

@ Since our primary interest is in the relationship between y; and x; we usually focus on
conditional likelihood function: L(6) = f(y|X,0)

@ Can you think about situation where this would not be appropriate?
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LIKELIHOOD FUNCTION AND CONDITIONAL LIKELIHOOD

o Given data (y;,x;), the likelihood L(0) = f(y,X|0) = f(y|X,0)f(X|0) requires specification of
conditional density of y given X and the marginal density of X.

@ Often we assume data generating process (DGP) of y given X and of X depend on mutually
exclusive set of parameters, f(y|X,0,n) = f(y|X,0) and f(X|0,n) = f(X|n).

@ Since our primary interest is in the relationship between y; and x; we usually focus on
conditional likelihood function: L(6) = f(y|X,0)

@ Can you think about situation where this would not be appropriate?
o For endogenous sampling, consistent estimation requires full density.

o For time series case (leaving out X for simplicity) we might have for t =0,..., T,

f(yl0) = f(yrlyr—1,---,¥1,0) - fF(yT—1lyT—2,.-,y1,0) - f(¥2|y1,0) - f(y1]0)

;
=[] roelve-1s001,0)
t=1

M Kummer Econometrics 1: Monte Carlo & Bootstrap NovaSBE, OTIM 32/1 32



MAXIMUM LIKELIHOOD ESTIMATOR
o Joint density of IID sample (yi,...,yn) given (x1,...,Xn) is,

L) = [ [ fwilxi.0)

i=1

@ The log-likelihood in turn can be written,

£(6) = Z Inf (y;|x:,0)

i=1

o Note that likelihood-based models should not be specified by making assumptions on the
distribution of an error term.

@ Assuming linear CEF model and y;|x; NN(xgﬂ,a2), and independence of u; and x; implies
u,-|x,- NN(O,U2).

@ So it is simpler to say errors are normally distributed u;|x; ~ N(0,02), but this is because of
assumed additivity of errors.
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-
MAXIMUM LIKELIHOOD ESTIMATOR
@ The maximum likelihood estimator (MLE) éML is parameter value which maximizes the
log-likelihood,

O = arg m;xﬁ(e)

@ We can view 6 as estimator within class of extremum estimators.

Notice that 2£(0) = 237 Inf(y;|x;,0) & E(Inf (yix;,0)).

The f.o.c. imply that Ony. maximises population function at 8 = 6g:

=0
0=0,

E(Inf (yilxi, 0))

1o}
00
@ Sample counterpart f.o.c. imply that éML solves,

Z Olnf( y,\x/,e) —0

@ In some simple cases, explicit expression exists for éML as a function of data, but typically
O must be estimated using numerical methods.
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ML IN NORMAL REGRESSION MODEL

o Normal regression model assumes linear CEF model and y;|x; ~ N(x}8,02), and
independence of u; and x; (homoskedasticity)

o The log-likelihood of the normal regression model is,

n

£(.0%) = i (mexp(—%(ﬁ —X§ﬁ)2))
i=1
= —3n(2m) ~ SIn(0®) = 575 (y = XB) (= XB)
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ML IN NORMAL REGRESSION MODEL

@ Maximization with respect to 3 yields f.o.c.

9 1 A
g LB = Xy =X'Xfp) =0

& Bu=XX)"IXYy

@ The equivalence of EML = ,éOLS should not be surprising since maximizing £(8,0?) with
respect to B is equivalent to minimizing sum of squared error criterion function for OLS.
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ML IN NORMAL REGRESSION MODEL

@ Maximization with respect to 3 yields f.o.c.

0 1 N
%E(ﬁ,oz) = 5 (X'y=X'XB) =0

& Bu=XX)"IXYy

@ The equivalence of ﬁML = ,éOLS should not be surprising since maximizing £(8,0?) with
respect to B is equivalent to minimizing sum of squared error criterion function for OLS.

@ Maximization with respect to o2 vyields f.o.c.

1s] n
— LB =t
20%/” 2(0'%/”_)2

53 (y=XB) (y—=XB) = 0

Plugging in EML for B and solving for &%/IL results in

1 A ~
O = ~(y=XBuw)'(y = XBp)
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____________________________________
SCORE AND HESSIAN

@ The likelihood score is the gradient (vector of partial derivatives) of the log-likelihood
evaluated at true parameter 6,

) o
Si= %51(90) = %I"f(y"‘x"’e())

@ The Hessian is the matrix of partial derivatives of the score,
52

Hi(9) = Za007

oL (00) Inf(yl‘xlieo)

02
0600’

@ We use here following shorthand notation,

~ o o ~
Si(0) = (%lnf(y,-|x,-,0) = %Inf(y;|xi,9)

0?2
/nf()//|xhe) 8980’ /nf()//|xr76)

~ 82
Hi(6) = 0000’

M Kummer Econometrics 1: Monte Carlo & Bootstrap NovaSBE, OTIM 38/1 38



PROPERTIES OF LIKELIHOOD

=0
=0,

0
%Eﬂo(/nf(.)/ib(ive))

where Eg,(-) means we are taking expectation under the DGP characterized by 6.

@ Proof:

1o}
Ego(lnf(y,|x,, ) Inf (yi|x;, 0)f (vilxi,00)dyi

a0

=0, ~ a0

0 f(yilxi,00)
= [ Zf(yilx;, 0) XELT0)
/89 (yllxlv )f(y,-\X,-,B) Yi
Is] f(yilxi,00)
= | —f(yi|xi,00) =————=dy;
/80 (vilx O)f(yi\x,',ﬁ?o) ly

0
= / %f(yflx,-,e)dy,-

0
~ a0

=0,

=06,

0=60,

=0
=0,

-9

f(y,|x,,9)dy,
=6, 260
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PROPERTIES OF LIKELIHOOD

Eg,(Si(60)) =0

@ Proof:
0
Eg,(Si(60)) = Eeo(%/nf(yl'lxl'ﬁo))

o
= %Eeo(’"f()’dxi,@))

0=60g
=0

2
By Sesg7 f (vilxi,00) _o
o f(yilxi,60)

@ and similarly,
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THE HESSIAN AND THE EXPECTED OUTER PRODUCT SCORE

—Eg,(Hi(60)) = Eg, (Si(60)S;(60))

@ Proof:

2
92 Inf (yi[x5,80) = Foma F(vilxi, 00) 3 25 (yilxi,00) 35 (vilxi, 00)'
o0oe | YilXi:%0 f(yilxi, 60) 7 (yi|xi,60)2

o Take expectations on both sides under the DGP characterized by 6y,

—Eg,(Hi(60)) = Eg,(S:(60)Si(60)")
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INFORMATION MATRIX EQUALITY

o Define H = —EgU(Hi(GO)) and "= Eg, (Si(60)Si(60)") then
H="=1

o 7 is the Fisher information matrix, it is a way of measuring the amount of information that
observable random variables (y;,x;) carry about 6g.

@ The relation H =" =T is called the information matrix equality.
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____________________________________
ML ASYMPTOTIC DISTRIBUTION

o We will not go extensively through the proof since it is very similar to that of a GMM
estimator.

o Check Newey and McFadden (1994) for thorough proof and B. Hansen (appendix B.11) for
proof sketch.

@ Under regularity conditions,

Vn(Bu—00) S HTINO,) = N(0,HTH L) = N(0,27Y)
@ This is a beautiful result since it shows that the asymptotic variance of the MLE estimator is

Vo,,=H 1="1=1"
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INTUITION BEHIND Vg, =H 1=""1=7"1

o Intuitively, think of asymptotic variance Vg,, as measure of precision of 6. It is expected
value of (scaled) square of ‘average’ spread of @y when we have infinite data.

o Right side of information matrix equality says that the precision of éML depends on shape of
log-likelihood function near éML-

o If log-likelihood very curved or steep around By, then 8y will be precisely estimated. In this
case, we say that we have a lot of information about 6.
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INTUITION BEHIND Vg, =H 1=""1=7"1

o Intuitively, think of asymptotic variance Vg,, as measure of precision of 6. It is expected
value of (scaled) square of ‘average’ spread of @y when we have infinite data.

o Right side of information matrix equality says that the precision of éML depends on shape of
log-likelihood function near éML-

o If log-likelihood very curved or steep around By, then 8y will be precisely estimated. In this
case, we say that we have a lot of information about 6.

o Steepness of log-likelihood captured by first derivative which relates to S;(6g).

@ Curvature of log-likelihood captured by its second derivative. Information in sample therefore
also relates to minus the Hessian —H;(6p) (since the Hessian is negative semi-definite).

o Information matrix equality says when sample size ‘plays no role’ in increasing efficiency, all
three measures have a simple equivalence.
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BuL AND Vg, ESTIMATORS FOR NORMAL REGRESSION UNDER
HOMOSKEDASTICITY

@ Under homoskedasticity assumption, asymptotic distribution of MLE estimators is

] (e )
ML 0 n

o Additive separability and normality of the errors implies here that covariance terms are 0.
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CRAMER-RAO LOWER BOUND AND INFORMATION MATRIX

@ Cramer-Rao Lower Bound theorem shows that asymptotic variance of the MLE estimator is
smallest possible within a certain class of estimators.

o Cramer-Rao Lower Bound (CRLB): If 6 is an unbiased regression estimator of , then
Vé > (nI)_l.

o Implies asymptotic variance of the standardized estimator ﬁ(éML —6p) is bounded below by
-1

° éML is therefore asymptotically efficient.

o Efficiency bounds: CRLB is to likelihood framework what Gauss-Markov theorem (or GMM
extension) is to second moment context.
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CRAMER-RAO LOWER BOUND PROOF
@ Define S(6g) = %Inf(y|x,00) = Z7=1 Si(6o) which from slide 14-15 we know has mean
E(S(60)) =0 and variance E(S(60)S’(6o)) = nZ.

@ We assume 6 is unbiased estimator for any 8 and writing 8 = 8(y, X) as function of (y,X) we
have,

ozE(é):/é(y,X)f(yIXﬁ)dy
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CRAMER-RAO LOWER BOUND PROOF
@ Define S(6g) = %Inf(y|X,00) = Z;’:l Si(6o) which from slide 14-15 we know has mean
E(S(60)) =0 and variance E(S(60)S’(6o)) = nZ.

@ We assume 6 is unbiased estimator for any 8 and writing 8 = 8(y, X) as function of (y,X) we
have,

ozE(é):/é(y,X)f(yIXﬁ)dy

@ Differentiating both sides with respect to 8’ and evaluating at 6y,

~ 14)
|=/9(Y7X)wf(ﬂx79)dy

= /é(y,X)S(Go)'f(y|X,00)dy (see slide 13)

=E((0—-00)S(60)')  (from E(6oS(60)) = OoE(S(60)) = 0)
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CRAMER-RAO LOWER BOUND PROOF

@ Define S(6g) = 689 Inf(y|X,600) = Z _, Si(60) which from slide 14-15 we know has mean
E(S(60)) =0 and variance E(S(6o)S’ (00)) =nZ.

@ We assume 6 is unbiased estimator for any 8 and writing 8 = 8(y, X) as function of (y,X) we
have,

9:E(5):/5(y,x)f(yl>(70)dy

@ Differentiating both sides with respect to 8’ and evaluating at 6y,
= [ 8(y,X) o f(y|X,8)d
= Yy 96 yiR,0)ay

= /é(y,X)S(Oo)'f(y|X,00)dy (see slide 13)

=E((6—60)S(60)')  (from E(BoS(60)) = BoE(S(80)) = 0)
@ Last, by Cauchy-Schwartz inequality for matrices we have,
=E((6—60)(8 —60)")
> E((6—60)S (90)')E(5(90)5(90)')_1E(5(90)(é* 6o)")
E(S((’o)s(@o) )~
AL
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CRAMER-RAO LOWER BOUND AND INVARIANCE PRINCIPLE

o Finally, consider functions of parameters. If 1) = g(6) then the MLE of 9y is g(dp).

@ This is because maximization of objective function is unaffected by parameterization and
transformation.

V(P — )~ Gov/n(Ou —80) % HTIN(0,GHTGo)
with Go = 2;g(6o).

o A useful extension is that Cramer-Rao lower bound for ¢ = g() is GyZ7'Gp , and the MLE
L = g(Oume) is asymptotically efficient.
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