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SIMULATION TO UNDERSTAND ESTIMATORS BETTER

Generally we always had (y ,x) are and i.i.d. draw from some F
Then all “statistics”, including estimators etc.

Tn = Tn((y1,x1),(y2,x2), ...,(yn,xn),θ))

e.g. t-ratio (θ̂ − θ)/s(θ̂)
or some estimator θ̂ (or β̂)

depends on “the data” and F , it’s distribution.
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DEFINITION 2

We know Tn (estimators, test statistics) are just another random variable
With it’s own expectation and distribution.
So we model the c.d.f. as:

Gn(u,F ) = Pr(Tn < u |F )

but while the asymptotic behavior of Tn may be known, the one of Gn generally is not
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LETS GO TO THE CASINO

We can learn about the statistic, by simulation.
Here’s how:

▶ We choose some F and then simulate data.
▶ This nails down a true θ
▶ Now we pass that data to our estimator...
▶ ...and see if it “get’s it right”

it’e like simulating it in a sandbox
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HERE IS WHAT TO DO:

Define some DGP (i.e. F ) and draw n observations.
we get n observations (y∗

i ,xi
∗) i = 1, ...,n

compute Tn = Tn((y1,x1),(y2,x2), ...,(yn,xn),θ)) on the pseudo data.

This generates one random draw of the unknown Gn(u,F )
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NOTATION - BTH EXPERIMENT

repeat over and over.
B times. (like 1000 or 5000 times)
see how the estimator performs by varying n and F

Notation:
▶ Tnb ... is the outcome of the bth experiment (b = 1, ...,B)
▶ So Repeating B times gives:

▶ a “random sample of size B”
▶ coming from Gn(u,F ) = Pr(Tnb < u) = Pr(Tn < u |F )
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RESULTING TEST-STATISTICS

e.g. Bias

B̂ias(θ̂) =
1
B

B∑
b=1

Tnb =
1
B

B∑
b=1

θ̂b − θ

MSE:

M̂SE(θ̂) =
1
B

B∑
b=1

(Tnb)2 =
1
B

B∑
b=1

(θ̂b − θ)2

or even the type I error of a two-sided t-test with Tn = (θ̂ − θ)/s(θ̂)

P̂ =
1
B

B∑
b=1

1(Tnb) ≤ 1.96)

...with 1() the indicator function, takes value 1 if condition true
in other words simply counting.
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COMPUTER TASK

1 Simulate some data for an interesting DGP (with a known Problem), absent other ideas,
revisit the omitted variables bias problem

2 Now run this not only once but B = 1000 times.
3 Each time run the estimation procedure and store the result.

▶ Note: You can either save 1000 datasets, or keep only the estimator.

4 Then compute the EDF of that estimation.
5 Compare with the CDF you know.

6 You can vary n and see whether the estimation gets better.
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INTRODUCTION

Previous lectures were using well defined and understood estimator.
Asymptotic behavior has been researched by earlier research.
BUT: On high level research (as PhD-level applied research) the “straight forward”methods
are not available

A useful non-parametric method is “the Bootstrap”
▶ works in many settings.
▶ frequently also for data or residuals from unknown distributions.

M Kummer Econometrics 1: Monte Carlo & Bootstrap NovaSBE, OTIM 11 / 1 11



INTRODUCTION

Previous lectures were using well defined and understood estimator.
Asymptotic behavior has been researched by earlier research.
BUT: On high level research (as PhD-level applied research) the “straight forward”methods
are not available

A useful non-parametric method is “the Bootstrap”
▶ works in many settings.
▶ frequently also for data or residuals from unknown distributions.

M Kummer Econometrics 1: Monte Carlo & Bootstrap NovaSBE, OTIM 11 / 1 11



DEFINITION

Start from “some test-statistic.”

Tn = Tn((y1,x1),(y2,x2), ...,(yn,xn),F))

e.g. t-ratio (θ̂ − θ)/s(θ̂)
or some estimator θ̂ (or β̂)

depends on “the data” and F , it’s distribution.
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DEFINITION 3

But we do not know F
So what can we do?

We do not know F , but we have tons of data, that were generated by F

Let’s pull ourselves out of the swamp on our own Bootstraps
▶ by learning about the distribution from our data.

G∗
n (u) = Gn(u,Fn)
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EMPIRICAL DISTRIBUTION FUNCTION 1

Recall

F(y,x) = Pr(yi < y ,xi < x) = E(1(yi < y)1(xi < x))

The corresponding method of moments estimator simply plugs in the empirical counterpart:
(...as always.)
Hence,

Fn(y,x) =
1
n

n∑
i=1

1(yi < y)1(xi < x)

This is called the “Empirical Distribution Function” (EDF)
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EMPIRICAL DISTRIBUTION FUNCTION - ASYMPTOTICS

EDF consistently estimates CDF. Proof is based on
▶ the insight that for any (y ,x), 1(yi < y)1(xi < x) is an i.i.d. RV drawn from F (y ,x)
▶ WLLN
▶ CLT

Hence,
√

n(Fn(y,x) − F(y,x)) d→ N(0,F (y ,x)(1 − F (y ,x))
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EMPIRICAL DISTRIBUTION FUNCTION - ASYMPTOTICS

And the EDF is a valid discrete prob. distribution.
Probability mass is 1/n for each data-point (yi ,xi)

i.o.w. think of a random pair (y∗
i ,xi

∗) as drawn from Fn

Pr(y∗
i < y ,x∗

i < x) = Fn(y,x)
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EMPIRICAL DISTRIBUTION FUNCTION - ASYMPTOTICS

Sample moments of (y∗
i ,x∗

i )

Eh(y∗
i ,x∗

i ) =
∫

(h(yi ,xi )Fn(y,x))

=
n∑

i=1

h(yi ,xi )Pr(y∗
i = yi )1(x∗

i = xi )

=
1
n

n∑
i=1

h(yi ,xi )
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EMPIRICAL DISTRIBUTION FUNCTION - ASYMPTOTICS
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NONPARAMETRIC BOOTSTRAP

Use EDF as the estimate Fn of F
Use Monte-Carlo simulations to approximate G∗

n

Note:
▶ The sample size in the simulation should be the same as the sample size
▶ (y∗

i ,x∗
i ) are drawn from the data, i.e.

▶ You randomly sample (WITH REPLACEMENT!) n observations (y ,x)

And you get your first instance of T ∗
n :

T ∗
n = Tn((y∗

1 ,x∗
1 ),(y∗

2 ,x∗
2 ), ...,(y∗

n ,x∗
n ),Fn))

...that’s simply the statistic computed with the simulated sample you have just drawn.
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NONPARAMETRIC BOOTSTRAP

Now we need to get the distribution (confidence interval)
Hence repeat this B times.

Note:
▶ B is the number of bootstrap replications.
▶ Large B is better, but takes longer to compute
▶ A theory about that was developed (Andrews and Buchinsky, 2000), but
▶ B = 1000 is typically sufficient and reasonable to compute.
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EXAMPLE: T-RATIO

Now we need to get the distribution (confidence interval)
Hence repeat this B times.

Note:
▶ B is the number of bootstrap replications.
▶ Large B is better, but takes longer to compute
▶ A theory about that was developed (Andrews and Buchinsky, 2000), but
▶ B = 1000 is typically sufficient and reasonable to compute.

Finally: The general test statistic Tn usually is a function of F
▶ e.g. t-ratio (θ̂ − θ)/s(θ̂) depends on θ:

Bootstrap replaces F with Fn and similarly θ with θn
▶ ...usually that’s simply the newly estimated θ̂
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ESTIMATING BIAS

Denote the Bias E(θ̂ − θ0) = τn

Let Tn(θ) = (θ̂ − θ) (*...for any theta*), hence τn = E(Tn(θ0))
The Bootstrap estimate of τn is given by

τ∗
n = E(T ∗

n (θ0))

...it’s all in the stars

M Kummer Econometrics 1: Monte Carlo & Bootstrap NovaSBE, OTIM 25 / 1 25



ESTIMATING BIAS

Denote the Bias E(θ̂ − θ0) = τn

Let Tn(θ) = (θ̂ − θ) (*...for any theta*), hence τn = E(Tn(θ0))
The Bootstrap estimate of τn is given by

τ∗
n = E(T ∗

n (θ0))

...it’s all in the stars

M Kummer Econometrics 1: Monte Carlo & Bootstrap NovaSBE, OTIM 25 / 1 25



COMPUTATION OF THE ESTIMATE
Denote the Bias E(θ̂ − θ0) = τn

Let Tn(θ) = (θ̂ − θ) (*...for any theta*), hence τn = E(Tn(θ0))
Using the simulation, the estimate of τn is given by

τ̂∗
n =

1
B

B∑
b=1

T ∗
nb

=
1
B

B∑
b=1

θ̂∗ − θ̂

= θ̂∗ − θ̂

...that is, subtract your “real” estimate from the BS average estimate. Similarly the variance:

V̂ ∗
n =

1
B

B∑
b=1

(θ̂∗
b − θ̂∗)2

This procedure also can afford a bias-correction and Percentile Interval Estimation,
Symmetric Percentile-t Intervals, Asymptotic Expansion etc. (cf. Hansen, ch. 10)
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NON-LINEAR IN ERRORS
Models which can not be transformed into linear models. For example, models with limited
dependent variables

▶ Binary variables: employed vs. not employed outcome.
▶ Categorical variables: Choose between 5 political candidates.
▶ Nonnegative variables: wages, prices, interest rates.
▶ Nonnegative variables with excess zeros: labor supply, doctor visits.
▶ Count variables: the number of cigarettes smoked per day.
▶ Censored variables: unemployment durations.

The partial effects no longer straightforward

∂E(yi |xi )
∂xi

̸= β

Now the effects depend upon the level of the variables xi .

The average partial effects (APE): E ∂E(yi |xi )
∂xi

estimated by 1
n
∑n

i
∂E(yi |xi )

∂xi
.

The partial effects at the average (PEA): Partial effects ∂E(yi |xi )
∂xi

when fixing xi = E(xi )
estimated by x = 1

n
∑n

i=1 xi .
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LIKELIHOOD PRINCIPLE

Likelihood principle (R. A. Fisher, 1922): Choose as estimator of parameter vector θ0 the
value of θ which maximizes likelihood of observing the actual data in sample within proposed
model.

▶ In discrete case: likelihood is the probability obtained from the probability mass function.
▶ In continuous case: likelihood is the is the density (since probability of observing single realization of

continuous variable is always 0).

Example in discrete case: If one value of θ implies that probability of the observed data
occurring is 0.0010, and other value of θ gives a higher probability of 0.0015, then second
value better estimator.
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LIKELIHOOD AND LOG LIKELIHOOD FUNCTION

Joint probability mass function or density f (y,X|θ) is viewed here as a function of θ given
the data (y,X).

This is called the likelihood function and is denoted by = L(θ|y,X).

Maximizing L(θ) is equivalent to maximizing the log-likelihood function

L(θ) = lnL(θ)

ML estimator special property: it is most efficient estimator among consistent and
asymptotically normal estimators.
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LIKELIHOOD FUNCTION AND CONDITIONAL LIKELIHOOD

Given data (yi ,xi ), the likelihood L(θ) = f (y,X|θ) = f (y|X,θ)f (X|θ) requires specification of
conditional density of y given X and the marginal density of X.

Often we assume data generating process (DGP) of y given X and of X depend on mutually
exclusive set of parameters, f (y|X,θ,η) = f (y|X,θ) and f (X|θ,η) = f (X|η).

Since our primary interest is in the relationship between yi and xi we usually focus on
conditional likelihood function: L(θ) = f (y|X,θ)

Can you think about situation where this would not be appropriate?

For endogenous sampling, consistent estimation requires full density.

For time series case (leaving out X for simplicity) we might have for t = 0, . . . ,T ,

f (y|θ) = f (yT |yT−1, . . . ,y1,θ) · f (yT−1|yT−2, . . . ,y1,θ) · · · f (y2|y1,θ) · f (y1|θ)

=
T∏

t=1

f (yt |yt−1, . . . ,y1,θ)
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MAXIMUM LIKELIHOOD ESTIMATOR

Joint density of IID sample (y1, . . . ,yn) given (x1, . . . ,xn) is,

L(θ) =
n∏

i=1

f (yi |xi ,θ)

The log-likelihood in turn can be written,

L(θ) =
n∑

i=1

lnf (yi |xi ,θ)

Note that likelihood-based models should not be specified by making assumptions on the
distribution of an error term.

Assuming linear CEF model and yi |xi ∼ N (x′
iβ,σ2), and independence of ui and xi implies

ui |xi ∼ N (0,σ2).

So it is simpler to say errors are normally distributed ui |xi ∼ N (0,σ2), but this is because of
assumed additivity of errors.
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MAXIMUM LIKELIHOOD ESTIMATOR

The maximum likelihood estimator (MLE) θ̂ML is parameter value which maximizes the
log-likelihood,

θ̂ML = argmax
θ

L(θ)

We can view θ̂ML as estimator within class of extremum estimators.

Notice that 1
n L(θ) = 1

n
∑n

i=1 lnf (yi |xi ,θ) p→ E(lnf (yi |xi ,θ)).

The f.o.c. imply that θ̂ML maximises population function at θ = θ0:

∂

∂θ
E(lnf (yi |xi ,θ))

∣∣∣∣
θ=θ0

= 0

Sample counterpart f.o.c. imply that θ̂ML solves,

1
n

n∑
i=1

∂lnf (yi |xi ,θ)
∂θ

= 0

In some simple cases, explicit expression exists for θ̂ML as a function of data, but typically
θ̂ML must be estimated using numerical methods.
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ML IN NORMAL REGRESSION MODEL

Normal regression model assumes linear CEF model and yi |xi ∼ N (x′
iβ,σ2), and

independence of ui and xi (homoskedasticity)

The log-likelihood of the normal regression model is,

L(β,σ2) =
n∑

i=1

ln
(

1
(2πσ2)1/2 exp(−

1
2σ2 (yi − x′

iβ)2)
)

= −
n
2

ln(2π) −
n
2

ln(σ2) −
n

2σ2 (y − Xβ)′(y − Xβ)
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ML IN NORMAL REGRESSION MODEL

Maximization with respect to β yields f.o.c.

∂

∂β
L(β,σ2) =

1
σ2 (X′y − X′Xβ̂ML) = 0

⇔ β̂ML = (X′X)−1X′y

The equivalence of β̂ML = β̂OLS should not be surprising since maximizing L(β,σ2) with
respect to β is equivalent to minimizing sum of squared error criterion function for OLS.

Maximization with respect to σ2 yields f.o.c.

∂

∂σ2 L(β,σ2) = −
n

2σ̂2
ML

+
1

2(σ̂2
ML)2 (y − Xβ)′(y − Xβ) = 0

Plugging in β̂ML for β and solving for σ̂2
ML results in

σ̂2
ML =

1
n

(y − Xβ̂ML)′(y − Xβ̂ML)
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SCORE AND HESSIAN

The likelihood score is the gradient (vector of partial derivatives) of the log-likelihood
evaluated at true parameter θ0,

Si =
∂

∂θ
Li (θ0) =

∂

∂θ
lnf (yi |xi ,θ0)

The Hessian is the matrix of partial derivatives of the score,

Hi (θ) =
∂2

∂θ∂θ′ Li (θ0) =
∂2

∂θ∂θ′ lnf (yi |xi ,θ0)

We use here following shorthand notation,

Si (θ̃) =
∂

∂θ
lnf (yi |xi ,θ)

∣∣∣∣
θ=θ̃

=
∂

∂θ
lnf (yi |xi , θ̃)

Hi (θ̃) =
∂2

∂θ∂θ′ lnf (yi |xi ,θ)

∣∣∣∣
θ=θ̃

=
∂2

∂θ∂θ′ lnf (yi |xi , θ̃)
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PROPERTIES OF LIKELIHOOD

∂

∂θ
Eθ0 (lnf (yi |xi ,θ))

∣∣∣∣
θ=θ0

= 0

where Eθ0 (·) means we are taking expectation under the DGP characterized by θ0.

Proof:

∂

∂θ
Eθ0 (lnf (yi |xi ,θ))

∣∣∣∣
θ=θ0

=
∂

∂θ

∫
lnf (yi |xi ,θ)f (yi |xi ,θ0)dyi

∣∣∣∣
θ=θ0

=
∫

∂

∂θ
f (yi |xi ,θ)

f (yi |xi ,θ0)
f (yi |xi ,θ)

dyi

∣∣∣∣
θ=θ0

=
∫

∂

∂θ
f (yi |xi ,θ0)

f (yi |xi ,θ0)
f (yi |xi ,θ0)

dyi

=
∫

∂

∂θ
f (yi |xi ,θ)dyi

∣∣∣∣
θ=θ0

=
∂

∂θ

∫
f (yi |xi ,θ)dyi

∣∣∣∣
θ=θ0

=
∂

∂θ
1

∣∣∣∣
θ=θ0

= 0
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PROPERTIES OF LIKELIHOOD

Eθ0 (Si (θ0)) = 0

Proof:

Eθ0 (Si (θ0)) = Eθ0 (
∂

∂θ
lnf (yi |xi ,θ0))

=
∂

∂θ
Eθ0 (lnf (yi |xi ,θ))

∣∣∣∣
θ=θ0

= 0

and similarly,

Eθ0

(
∂2

∂θ∂θ′ f (yi |xi ,θ0)
f (yi |xi ,θ0)

)
= 0
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THE HESSIAN AND THE EXPECTED OUTER PRODUCT SCORE

−Eθ0 (Hi (θ0)) = Eθ0 (Si (θ0)S′
i (θ0))

Proof:

∂2

∂θ∂θ′ lnf (yi |xi ,θ0) =
∂2

∂θ∂θ′ f (yi |xi ,θ0)
f (yi |xi ,θ0)

−
∂

∂θ
f (yi |xi ,θ0) ∂

∂θ
f (yi |xi ,θ0)′

f (yi |xi ,θ0)2

Take expectations on both sides under the DGP characterized by θ0,

−Eθ0 (Hi (θ0)) = Eθ0 (Si (θ0)Si (θ0)′)
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INFORMATION MATRIX EQUALITY

Define H = −Eθ0 (Hi (θ0)) and ˙ = Eθ0 (Si (θ0)Si (θ0)′) then

H = ˙ ≡ I

I is the Fisher information matrix, it is a way of measuring the amount of information that
observable random variables (yi ,xi ) carry about θ0.

The relation H = ˙ ≡ I is called the information matrix equality.
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ML ASYMPTOTIC DISTRIBUTION

We will not go extensively through the proof since it is very similar to that of a GMM
estimator.

Check Newey and McFadden (1994) for thorough proof and B. Hansen (appendix B.11) for
proof sketch.

Under regularity conditions,

√
n(θ̂ML −θ0) d→ H−1N (0, ˙) = N (0,H−1˙H−1) = N (0,I−1)

This is a beautiful result since it shows that the asymptotic variance of the MLE estimator is

VθML = H−1 = ˙−1 = I−1
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INTUITION BEHIND VθML = H−1 = ˙−1 = I−1

Intuitively, think of asymptotic variance VθML as measure of precision of θML. It is expected
value of (scaled) square of ‘average’ spread of θML when we have infinite data.

Right side of information matrix equality says that the precision of θ̂ML depends on shape of
log-likelihood function near θ̂ML.

If log-likelihood very curved or steep around θ̂ML, then θ0 will be precisely estimated. In this
case, we say that we have a lot of information about θ0.

Steepness of log-likelihood captured by first derivative which relates to Si (θ0).

Curvature of log-likelihood captured by its second derivative. Information in sample therefore
also relates to minus the Hessian −Hi (θ0) (since the Hessian is negative semi-definite).

Information matrix equality says when sample size ‘plays no role’ in increasing efficiency, all
three measures have a simple equivalence.
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β̂ML AND V̂βML ESTIMATORS FOR NORMAL REGRESSION UNDER
HOMOSKEDASTICITY

Under homoskedasticity assumption, asymptotic distribution of MLE estimators is[
β̂ML
σ̂2

ML

]
d→ N

([
β0
σ2

0

]
,

[
σ2(X′X)−1 0

0 2
n σ4

])
Additive separability and normality of the errors implies here that covariance terms are 0.
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CRAMER-RAO LOWER BOUND AND INFORMATION MATRIX

Cramer-Rao Lower Bound theorem shows that asymptotic variance of the MLE estimator is
smallest possible within a certain class of estimators.

Cramer-Rao Lower Bound (CRLB): If θ̃ is an unbiased regression estimator of θ, then
Vθ̃ ≥ (nI)−1.

Implies asymptotic variance of the standardized estimator
√

n(θ̂ML −θ0) is bounded below by
I−1.

θ̂ML is therefore asymptotically efficient.

Efficiency bounds: CRLB is to likelihood framework what Gauss-Markov theorem (or GMM
extension) is to second moment context.
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CRAMER-RAO LOWER BOUND PROOF
1 Define S(θ0) = ∂

∂θ
lnf (y|X,θ0) =

∑n
i=1 Si (θ0) which from slide 14-15 we know has mean

E(S(θ0)) = 0 and variance E(S(θ0)S′(θ0)) = nI.
2 We assume θ̃ is unbiased estimator for any θ and writing θ̃ = θ̃(y,X) as function of (y,X) we

have,

θ = E(θ̃) =
∫
θ̃(y,X)f (y|X,θ)dy

3 Differentiating both sides with respect to θ′ and evaluating at θ0,

I =
∫
θ̃(y,X)

∂

∂θ′ f (y|X,θ)dy

=
∫
θ̃(y,X)S(θ0)′f (y|X,θ0)dy (see slide 13)

= E((θ̃−θ0)S(θ0)′) (from E(θ0S(θ0)) = θ0E(S(θ0)) = 0)

4 Last, by Cauchy-Schwartz inequality for matrices we have,

Vθ̃ = E((θ̃−θ0)(θ̃−θ0)′)
≥ E((θ̃−θ0)S(θ0)′)E(S(θ0)S(θ0)′)−1E(S(θ0)(θ̃−θ0)′)
= E(S(θ0)S(θ0)′)−1

= (nI)−1
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CRAMER-RAO LOWER BOUND AND INVARIANCE PRINCIPLE

Finally, consider functions of parameters. If ψ = g(θ) then the MLE of ψ̂ML is g(θ̂ML).

This is because maximization of objective function is unaffected by parameterization and
transformation.

√
n(ψ̂ML −ψ) ≃ G0

√
n(θ̂ML −θ0) d→ H−1N (0,G′

0I−1G0)

with G0 = ∂
∂θ

g(θ0).

A useful extension is that Cramer-Rao lower bound for ψ = g(θ̂) is G′
0I−1G0 , and the MLE

ψ̂ML = g(θ̂ML) is asymptotically efficient.
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