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Introduction
This tutorial explores the concept of bootstrapping in statistics, using R to perform bootstrapping to estimate
the confidence intervals of regression coefficients. Bootstrapping is a resampling technique used to approximate
the sampling distribution of an estimator by sampling with replacement from the original data.

Setup

First, we’ll load the required libraries:
require(data.table)

## Loading required package: data.table

## Warning: package 'data.table' was built under R version 4.1.3
require(sandwich)

## Loading required package: sandwich
require(lmtest)

## Loading required package: lmtest

## Warning: package 'lmtest' was built under R version 4.1.3

## Loading required package: zoo

## Warning: package 'zoo' was built under R version 4.1.3

##
## Attaching package: 'zoo'

## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
require(stargazer)

## Loading required package: stargazer

##
## Please cite as:

## Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables.

## R package version 5.2.3. https://CRAN.R-project.org/package=stargazer

Create Population Data

We start by creating a synthetic dataset to represent a population of 25,000 individuals with two independent
variables and a dependent variable generated by a linear model.
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set.seed(1984)
n1 <- 25000
x1 <- rnorm(n = n1, mean = 0, sd = 3) # Independent variable 1
x2 <- rnorm(n = n1, mean = 0, sd = 4) # Independent variable 2
e <- rnorm(n = n1, mean = 0, sd = 2) # Error term
y <- 2 + 3*x1 + 4*x2 + e # Dependent variable
sorting <- rnorm(n = n1, mean = 0, sd = 2) # Variable for sorting and sampling

# Creating and organizing the data table
dt.population <- data.table(y, x1, x2, sorting)
dt.population <- dt.population[order(sorting)] # Randomizing data

Sampling and Initial Regression

Now, we draw a random sample from the population and perform a regression analysis.
ssize <- 2000 # Sample size
r.sample.rows <- sample(1:nrow(dt.population), size = ssize)
r.sample <- dt.population[r.sample.rows, ]
ols1 <- lm(y ~ x1 + x2, data = r.sample)
summary(ols1)

##
## Call:
## lm(formula = y ~ x1 + x2, data = r.sample)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.9418 -1.3424 0.0165 1.3364 6.1312
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.02431 0.04346 46.58 <2e-16 ***
## x1 3.02483 0.01428 211.81 <2e-16 ***
## x2 3.99298 0.01080 369.72 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.942 on 1997 degrees of freedom
## Multiple R-squared: 0.9893, Adjusted R-squared: 0.9893
## F-statistic: 9.246e+04 on 2 and 1997 DF, p-value: < 2.2e-16

Bootstrapping

To understand the variability of our estimate, we’ll perform bootstrapping by repeatedly resampling and
recalculating the regression coefficient.
bootreps <- 5 # Number of bootstrap repetitions for demonstration
boot.resultsvec <- numeric(bootreps)

for (j in 1:bootreps) {
r.sample.rows <- sample(1:nrow(dt.population), size = ssize)
r.sample <- dt.population[r.sample.rows, ]
olsboot <- lm(y ~ x1 + x2, data = r.sample)
boot.resultsvec[j] <- coef(olsboot)["x1"]
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}
boot.resultsvec

## [1] 3.006677 2.998252 3.003211 2.997287 3.000090

Full Bootstrap Procedure

For a more robust estimation, we increase the number of repetitions.
bootreps <- 1000
boot.resultsvec <- numeric(bootreps)

for (j in 1:bootreps) {
r.sample.rows <- sample(1:nrow(dt.population), size = ssize)
r.sample <- dt.population[r.sample.rows, ]
olsboot <- lm(y ~ x1 + x2, data = r.sample)
boot.resultsvec[j] <- coef(olsboot)["x1"]

}

# Sorting results and extracting confidence intervals
boot.resultsvec <- sort(boot.resultsvec)
conf.low <- boot.resultsvec[round(bootreps*0.025)]
conf.up <- boot.resultsvec[round(bootreps*0.975)]

# Display the 95% confidence interval
list(conf.low = conf.low, conf.up = conf.up)

## $conf.low
## [1] 2.973118
##
## $conf.up
## [1] 3.031781

Conclusion

The output shows the 2.5th and 97.5th percentiles as the boundaries of the 95% confidence interval for the
coefficient of x1. This bootstrap method provides an empirical distribution of the estimator allowing us to
quantify the uncertainty around our estimate.

Feel free to compare this to the asymptotic values derived from normal theory, which should be very close if
the number of bootstrap repetitions is sufficiently large.

Clarification - Why heck?
Note that in this tutorial, you might wonder why we did all of this Bootstrapping if we could simply use the
errors we got from the OLS-package?

The reason is simple: Bootstrapping essentially ALWAYS'' works. Also when you don't know
thetheoretical’ ’ standard errors.

Last Note
In cases where you have too little data to comfortably resample a subset, consider using sampling with
replacement from the entire dataset. This approach adheres more closely to the theoretical foundations of
the bootstrap method.
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