Applied Methods - LAB Panel Data

Michael Kummer

Why do we use panel data?

¢ To eliminate individual unobserved time constant factors.
o To study treatment effects (for instance, policy change).

Exercise 1

Setup:

library(data.table)

library(ggplot2)

library(stargazer)
#install.packages("plm")

library(plm)

library(lmtest)

library(stats)
setwd("C:/TopicsDig/Labs/Lab_07W_Panel/")
# change the file's path to your own

Exercise 2

load("rental.RData")
head(dt.rental)

## city year rent lrent pop 1lpop avginc lavginc  pctstu y90
## 1: 1 80 197 5.283204 75211 11.22805 11537 9.353314 20.34676 O
## 2: 1 90 342 5.834811 77759 11.26137 19568 9.881651 23.17031 1
## 3: 2 80 323 5.777652 106743 11.57818 19841 9.895506 21.04307 O
## 4: 2 90 496 6.206576 141865 11.86263 31885 10.369891 20.98403 1
## 5: 3 80 216 5.375278 36608 10.50802 11455 9.346182 32.36178 O
## 6: 3 90 351 5.860786 42099 10.64778 21202 9.961851 24.38300 1

Goal: Does a stronger presence of students affect rental rates?

e What is the unit of analysis? City.

e What are the time periods?

e How many periods?

e Is there a treatment? No.

e What are the key variables of interest?

o Dependent variable (y)? Rent or log(rent). Which one will we use? lrent for % effects.
e What is the independent variable of interest? pctstu.

o What factors should we control for?



Estimate the equation by pooled OLS.

out.ols <- plm( 1lrent ~ pctstu + lpop + lavginc + y90

s index("city", "year")
5 "pooling"
s dt.rental)
stargazer (out.ols, "text")
##
##
## Dependent variable:
# e
## lrent
# -
## pctstu 0.005%xx*
## (0.001)
##
## lpop 0.041x*
## (0.023)
##
## lavginc 0.571%xx
## (0.053)
##
## y90 0.262%%*
## (0.035)
##
## Constant -0.569
## (0.535)
##
# -
## Observations 128
## R2 0.861
## Adjusted R2 0.857
## F Statistic = 190.922x** (df = 4; 123)
#i# =
## Note: *p<0.1; **p<0.05; ***xp<0.01

The coefficient on pctstu means that a one percentage point increase in pctstu increases rent by half a percent
(.5%). pctstu is very statistically significant.

% variation in y = 100* betal* variation in x = 0.005 * 100 * variation in x

The positive and very significant coefficient on d90 simply means that, other things in the equation fixed,
nominal rents grew by over 26% over the 10 year period.

% variation in y = 100* betal* variation in x = 0.262 * 100 * variation in x

Test for serial correlation
Serial Correlation
What is serial correlation?

The residuals are correlated over time.

What are the consequences of serial correlation?

Positive Serial Correlation



This means that if you get a positive residual in one period, you are more likely to get a positive residual in
the following period. The consequences of this are:

o Standard errors are underestimated
o T-statistics are inflated
o Type-I error increases (false positive, you incorrectly reject the null)

Negative Serial Correlation

This means that if you get a negative residual in a one period, you are more likely to get a positive residual
in the following period. The consequences of this are:

o Standard errors are overstated
o F-statistics are understated
o Type-II error increases (false negative, you incorrectly do not reject the null)

How to test for serial correlation?

In order to test for serial correlation you regress the residuals on the residuals from the previous period. lm(u
~ lag(u)). In order to run the regression we need to compute the residuals first. Then we will add these
residuals to our panel data frame in order to run the regression.

In this case we ran a pooled OLS, therefore, we did not loose any observations (note the differences in the
code from the case presented above.)

u <- residuals(out.ols)
length(u)
## [1] 128

nrow(dt.rental)

## [1] 128

dt.rentall[,'u'] <- u
head(dt.rental)

## city year rent lrent pop lpop avginc lavginc  pctstu y90

## 1: 1 80 197 5.283204 75211 11.22805 11537 9.353314 20.34676 0

## 2: 1 90 342 5.834811 77759 11.26137 19568 9.881651 23.17031 1

## 3: 2 80 323 5.777652 106743 11.57818 19841 9.895506 21.04307 O

## 4: 2 90 496 6.206576 141865 11.86263 31885 10.369891 20.98403 1

## 5: 3 80 216 5.375278 36608 10.50802 11455 9.346182 32.36178 0

## 6: 3 90 351 5.860786 42099 10.64778 21202 9.961851 24.38300 1

## u

## 1: -0.052352509

## 2: -0.080484228

## 3: 0.114505724

## 4: -0.001158549

## 5: 0.012495132

## 6: -0.081490174

dt.rental$Ll_u <- c(NA, dt.rental$ul[-nrow(dt.rental)])

summary (dt.rental$Ll_u)

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## -0.2423317 -0.0783143 -0.0135525 0.0002261 0.0457265 0.4808174 1
out.u <- plm( u ~ L1_u, dt.rental, 'pooling')

stargazer (out.u, "text")



##

# =
## Dependent variable:

## e
## u

## -
## L1_u 0.381%x*x

## (0.083)

##

## Constant 0.0003

## (0.010)

#

##H -
## Observations 127

## R2 0.146

## Adjusted R2 0.139

## F Statistic 21.290***x (df = 1; 125)
#i =
## Note: *p<0.1; **p<0.05; ***xp<0.01

o Why do we have serial correlation? We are not getting rid of the a; (individuals unobserved time
invariante factors).

e Can these a; also bias our beta estimates? Think whether the percentage of students in one city can be
related to some unobservable characteristic that also has an impact on the rent value; what things can
you think of?

e What are the consequences of serial correlation to our estimate?
e What model should we use?
Now, estimate the model by first-differences. Compare your estimate of beta pctstu with your

previous estimation. Does the relative size of the student population appear to affect rental
prices?

Change data do pdata.frame an define the index:
pdt.rental <- pdata.frame( dt.rental, c("city", "year"))

Alternatively, you can just use “dt.rental” and define the index inside the plm function.

Create a dummy variable for the year 1990. This is an alternative way to create a dummy:

pdt.rental$d2 <- as.double(pdt.rental$year==90)

Run fd regression.

out.fd <- plm( 1lrent ~ pctstu + lpop + lavginc,

5 "fd"

s pdt.rental)
stargazer (out.fd, "text")
#it
#i# =
## Dependent variable:
# o oo
#it lrent
HH -
## pctstu 0.011**x*



#i# (0.004)

##

## lpop 0.072

## (0.088)

#t

## lavginc 0.310%x*x*

## (0.066)

##

## Constant 0.386%xx*

#t (0.037)

#t

## -
## Observations 64

## R2 0.322

## Adjusted R2 0.288

## F Statistic 9.510%** (df = 3; 60)

#t

## Note: *p<0.1; **p<0.05; ***p<0.01

Interestingly, the effect of pctstu is over twice as large as we estimated in the pooled OLS equation. Now, a
one percentage point increase in pctstu is estimated to increase rental rates by about 1.1%. The intercept
(constant) gives us the time trend, or the coefficient of the dummy y90. Not surprisingly, we obtain a much
less precise estimate when we difference (although the OLS standard errors are likely to be much too small
because of the positive serial correlation in the errors within each city). While we have differenced away the
a;, there may be other unobservables that change over time and are correlated with pctstu.

We can test for the presence of heteroskedasticity using the bptest:
bptest (out.fd)

##

## studentized Breusch-Pagan test

##

## data: out.fd

## BP = 5.5058, df = 3, p-value = 0.1383

We do not reject the null - that we have homoskedasticity.

In the first-differences case, serial correlation is not an issue because we have no time component in the
equation.

In any case, when using panel data, we can always use vcov. = vecovHC(out.fd, method = c(“arellano™)) to
correct for both heteroskedasticity and serial correlation. (Note, this correction can only be done for panel
data.)

stargazer (coeftest(out.fd, vcovHC (out . fd, c("arellano"))), "text")
##

##

## Dependent variable:

# @
##

#H -
## pctstu 0.01 1%k

## (0.003)

##

## lpop 0.072

#it (0.067)



##

## lavginc 0.310%*x

## (0.086)

##

## Constant 0.386%*x*

## (0.047)

##

## ==
##

## Note: *p<0.1; **p<0.05; **xxp<0.01

Estimate the model by fixed effects to verify that you get identical estimates and standard
errors to those in the first-differences model.

out.fe <- plm( 1lrent ~ O + pctstu + lpop + lavginc + y90

, index("city", "year")
) "within"
s dt.rental)
stargazer (out.fe, "text")
#i#
##
## Dependent variable:
# e
## lrent
# -
## pctstu 0.011+xx
## (0.004)
##
## lpop 0.072
## (0.088)
##
## lavginc 0.310%xx*
## (0.066)
##
## y90 0.386%**
## (0.037)
##
# -
## Observations 128
## R2 0.977
## Adjusted R2 0.950
## F Statistic 624.146+x* (df = 4; 60)
##
## Note: *p<0.1; **p<0.05; ***xp<0.01

Additional Resources:

https:/ /rstudio-pubs-static.s3.amazonaws.com/372492_ 3e05{38dd3f248e89cdedd317d603b9a.html#4562__
controlling_ for heteroskedasticity:_ fixed_ effects
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