Applied Methods for PhD Estimations Strategies - Overview

Michael E. Kummer Theoretical Slide Set 6, based on Stephen Kastoryano

NovaSBE, OTIM

Overview/Intro					
0000	0000000	000000	000000	000000000000	00000

METHODS FOR ESTIMATING TREATMENT EFFECTS

Treatment effect literature provides wide range of quite different estimators, many of which are regularly used in empirical work.

- Field (or Social) experiments.
- ② Regression (including factor models).
- Matching.
- G Regression discontinuity.
- Instrumental variable.
- Ontrol Functions.
- O Difference-in-difference.
- 8 Nonparametric bounds.
- Itiming-of-events.
- Structural estimation (Roy-type models).

Overview/Intro					
0000	0000000	000000	000000	000000000000	00000

METHODS FOR ESTIMATING TREATMENT EFFECTS

Treatment effect literature provides wide range of quite different estimators, many of which are regularly used in empirical work.

- Field (or Social) experiments.
- ② Regression (including factor models).
- Matching.
- O Regression discontinuity.
- Instrumental variable.
- Ontrol Functions.
- O Difference-in-difference.
- 8 Nonparametric bounds.
- Itiming-of-events.
- Structural estimation (Roy-type models).

Overview/Intro 00●0			DiD 00000

POTENTIAL OUTCOMES MODEL

- Potential Outcome Model (aka. Rubin or Neyman-Rubin causal model) finds roots in Neyman (1923) Msc. thesis.
- Further groundwork in statistics by, Rubin (1974), Holland (1986 review).
- In economics, Heckman one of pioneering researchers on policy evaluation (often referring to Roy model).
- Let D_i be an indicator for receiving treatment $(D_i = 1)$ or not $(D_i = 0)$.

Overview/Intro 00●0			DiD 00000

POTENTIAL OUTCOMES MODEL

- Potential Outcome Model (aka. Rubin or Neyman-Rubin causal model) finds roots in Neyman (1923) Msc. thesis.
- Further groundwork in statistics by, Rubin (1974), Holland (1986 review).
- In economics, Heckman one of pioneering researchers on policy evaluation (often referring to Roy model).
- Let D_i be an indicator for receiving treatment $(D_i = 1)$ or not $(D_i = 0)$.
- Each individual has two potential outcomes, $Y_i^{D=1}$ with treatment and $Y_i^{D=0}$ without treatment. We will also denote the realizations of these random variables as $y_i^{D=1}$ and $y_i^{D=0}$.
- The effect for each individual of participating in the treatment equals

$$\Delta_i = \mathbf{Y}_i^{\mathrm{D}=1} - \mathbf{Y}_i^{\mathrm{D}=0}$$

• Since only one of the random variables $\mathbf{v}_i^{\mathrm{D}=1}$ and $\mathbf{v}_i^{\mathrm{D}=0}$ can be observed, Δ_i will always be an unobserved random variable. The unobserved outcome is the *counterfactual outcome*.

Overview/Intro 000●			DiD 00000

ATE, ATET & ATENT

• Parameter of interest depends on the context of the study and the (sub-)population of interest. One often considered is Average Treatment Effect,

$$ATE = \mathbf{E}[\mathbf{y}_i^{\mathrm{D}=1} - \mathbf{y}_i^{\mathrm{D}=0}] = \mathbf{E}[\mathbf{y}_i^{\mathrm{D}=1}] - \mathbf{E}[\mathbf{y}_i^{\mathrm{D}=0}]$$

• If the selection into treatment is not entirely random and some individuals are more likely to enter treatment then it may be preferable to focus on Average Treatment Effect on the Treated

Overview/Intro 000●			DiD 00000

ATE, ATET & ATENT

• Parameter of interest depends on the context of the study and the (sub-)population of interest. One often considered is Average Treatment Effect,

$$ATE = \mathbf{E}[\mathbf{y}_i^{\mathrm{D}=1} - \mathbf{y}_i^{\mathrm{D}=0}] = \mathbf{E}[\mathbf{y}_i^{\mathrm{D}=1}] - \mathbf{E}[\mathbf{y}_i^{\mathrm{D}=0}]$$

 If the selection into treatment is not entirely random and some individuals are more likely to enter treatment then it may be preferable to focus on Average Treatment Effect on the Treated

$$ATET = E[Y_i^{D=1} - Y_i^{D=0} | D_i = 1] = E[Y_i^{D=1} | D_i = 1] - E[Y_i^{D=0} | D_i = 1]$$

Overview/Intro 000●			DiD 00000

ATE, ATET & ATENT

• Parameter of interest depends on the context of the study and the (sub-)population of interest. One often considered is Average Treatment Effect,

$$\boldsymbol{ATE} = \mathrm{E}[\mathbf{y}_i^{\mathrm{D}=1} - \mathbf{y}_i^{\mathrm{D}=0}] = \mathrm{E}[\mathbf{y}_i^{\mathrm{D}=1}] - \mathrm{E}[\mathbf{y}_i^{\mathrm{D}=0}]$$

 If the selection into treatment is not entirely random and some individuals are more likely to enter treatment then it may be preferable to focus on Average Treatment Effect on the Treated

$$ATET = E[Y_i^{D=1} - Y_i^{D=0} | D_i = 1] = E[Y_i^{D=1} | D_i = 1] - E[Y_i^{D=0} | D_i = 1]$$

• Notice that ATE can be decomposed into a weighted average effect on the treated and non-treated.

$$\begin{aligned} ATE &= (\mathrm{E}[\mathrm{Y}_{i}^{\mathrm{D}=1} \,|\, \mathrm{D}_{i}=1] - \mathrm{E}[\mathrm{Y}_{i}^{\mathrm{D}=0} \,|\, \mathrm{D}_{i}=1]) \cdot \mathrm{Pr}(\mathrm{D}_{i}=1) \\ &+ (\mathrm{E}[\mathrm{Y}_{i}^{\mathrm{D}=1} \,|\, \mathrm{D}_{i}=0] - \mathrm{E}[\mathrm{Y}_{i}^{\mathrm{D}=0} \,|\, \mathrm{D}_{i}=0]) \cdot \mathrm{Pr}(\mathrm{D}_{i}=0) \\ &= ATET \cdot \mathrm{Pr}(\mathrm{D}_{i}=1) + ATENT \cdot \mathrm{Pr}(\mathrm{D}_{i}=0) \end{aligned}$$

	Experiment				
0000	0000000	000000	000000	000000000000	00000

Table of Contents

Overview/Intro

2 Experiment

3 Matching

Introduction RD

5 MM - Linear IV

6 DiD

0000 0000000 0000000 0000000000000000	00000

SOCIAL EXPERIMENTS

• In field experiments, treatment assignment is randomized across individuals.

$$(\mathbf{Y}_i^{\mathrm{D}=1},\mathbf{Y}_i^{\mathrm{D}=0}) \perp \mathbf{D}_i$$

• Treatment assignment is statistically independent of potential outcomes, which solves the problem of self-selection.

$$\begin{split} \textit{ATE} &= \mathrm{E}[\mathrm{Y}_i^{\mathrm{D}=1}] - \mathrm{E}[\mathrm{Y}_i^{\mathrm{D}=0}] = \mathrm{E}[\mathrm{Y}_i^{\mathrm{D}=1} \mid \mathrm{D}=1] - \mathrm{E}[\mathrm{Y}_i^{\mathrm{D}=0} \mid \mathrm{D}=0] \\ &= \mathrm{E}[\mathrm{Y}_i \mid \mathrm{D}=1] - \mathrm{E}[\mathrm{Y}_i \mid \mathrm{D}=0] \end{split}$$

	Experiment		DiD
0000	0000000		00000

SOCIAL EXPERIMENTS

• In field experiments, treatment assignment is randomized across individuals.

$$(\mathbf{Y}_i^{\mathrm{D}=1},\mathbf{Y}_i^{\mathrm{D}=0}) \perp \mathbf{D}_i$$

• Treatment assignment is statistically independent of potential outcomes, which solves the problem of self-selection.

$$\begin{aligned} ATE &= \mathrm{E}[\mathrm{Y}_i^{\mathrm{D}=1}] - \mathrm{E}[\mathrm{Y}_i^{\mathrm{D}=0}] = \mathrm{E}[\mathrm{Y}_i^{\mathrm{D}=1} \mid \mathrm{D}=1] - \mathrm{E}[\mathrm{Y}_i^{\mathrm{D}=0} \mid \mathrm{D}=0] \\ &= \mathrm{E}[\mathrm{Y}_i \mid \mathrm{D}=1] - \mathrm{E}[\mathrm{Y}_i \mid \mathrm{D}=0] \end{aligned}$$

• This is because treated and non-treated are random sub-samples of population,

$$\begin{split} & \mathrm{E}[\mathrm{Y}_{i}^{\mathrm{D}=1}] = \mathrm{E}[\mathrm{Y}_{i}^{\mathrm{D}=1} \, | \, \mathrm{D}_{i} = 1] = \mathrm{E}[\mathrm{Y}_{i}^{\mathrm{D}=1} \, | \, \mathrm{D}_{i} = 0] \\ & \mathrm{E}[\mathrm{Y}_{i}^{\mathrm{D}=0}] = \mathrm{E}[\mathrm{Y}_{i}^{\mathrm{D}=0} \, | \, \mathrm{D}_{i} = 1] = \mathrm{E}[\mathrm{Y}_{i}^{\mathrm{D}=0} \, | \, \mathrm{D}_{i} = 0] \end{split}$$

• This also implies ATE = ATET = ATENT.

0000 00000000 000000 000000 000000000 0000	Experiment		
	0000000		

DIFFERENCE-IN-MEANS ESTIMATOR

• With unconditional randomization from social experiment, $E[Y_i^{D=1} | D_i = 1]$ and $E[Y_i^{D=0} | D_i = 0]$ can be estimated by their sample means,

$$\mathbf{E}[\mathbf{Y}_{i}^{\widehat{\mathbf{D}=1}|\mathbf{D}_{i}}=1] = \frac{\sum_{i=1}^{n}\mathbf{D}_{i}\mathbf{Y}_{i}}{\sum_{i=1}^{n}\mathbf{D}_{i}} \quad \text{and} \quad$$

Experiment		
0000000		

DIFFERENCE-IN-MEANS ESTIMATOR

• With unconditional randomization from social experiment, $E[Y_i^{D=1} | D_i = 1]$ and $E[Y_i^{D=0} | D_i = 0]$ can be estimated by their sample means,

$$E[Y_{i}^{\widehat{D-1} | D_{i}} = 1] = \frac{\sum_{i=1}^{n} D_{i} Y_{i}}{\sum_{i=1}^{n} D_{i}} \text{ and } E[Y_{i}^{\widehat{D-0} | D_{i}} = 0] = \frac{\sum_{i=1}^{n} (1 - D_{i}) Y_{i}}{\sum_{i=1}^{n} (1 - D_{i})}$$

with $D_i = 0, 1$ and $Y_i = (1 - D_i) Y_i^{D=0} + D_i Y_i^{D=1}$ which are always observed.

M Kummer	Econometrics 1: What Works	UEA, ECO	8 / 44
----------	----------------------------	----------	--------

Experiment		
0000000		

DIFFERENCE-IN-MEANS ESTIMATOR

• With unconditional randomization from social experiment, $E[v_i^{D=1} | D_i = 1]$ and $E[v_i^{D=0} | D_i = 0]$ can be estimated by their sample means,

$$E[\mathbf{y}_{i}^{\mathbf{D}=1} | \mathbf{D}_{i} = 1] = \frac{\sum_{i=1}^{n} \mathbf{D}_{i} \mathbf{Y}_{i}}{\sum_{i=1}^{n} \mathbf{D}_{i}} \text{ and } E[\mathbf{y}_{i}^{\mathbf{D}=0} | \mathbf{D}_{i} = 0] = \frac{\sum_{i=1}^{n} (1 - \mathbf{D}_{i}) \mathbf{Y}_{i}}{\sum_{i=1}^{n} (1 - \mathbf{D}_{i})}$$

with $D_i = 0, 1$ and $Y_i = (1 - D_i) Y_i^{D=0} + D_i Y_i^{D=1}$ which are always observed.

• The resulting estimator for the treatment effects is called the difference-in-means estimator,

$$\widehat{ATE} = \widehat{ATET} = \frac{\sum_{i=1}^{n} D_i Y_i}{\sum_{i=1}^{n} D_i} - \frac{\sum_{i=1}^{n} (1 - D_i) Y_i}{\sum_{i=1}^{n} (1 - D_i)}$$

• The difference-in-means estimator does not impose any structure on the model.

Overview/Intro Expe	riment l			MM - Linear IV	DiD
0000 000	00000	000000	000000	000000000000	00000

HETEROGENEOUS TREATMENT EFFECTS

- However, ATE may not be only parameter of interest if individuals respond differently to treatment.
- Individuals with different characteristics X_i have different treatment effects
- In such cases, we may want to evaluate treatment effects given a covariate level,

Overview/Intro Expe	eriment 🕴	Matching	Introduction RD	MM - Linear IV	DiD
0000 00	000000 (000000	000000	000000000000	00000

HETEROGENEOUS TREATMENT EFFECTS

- However, ATE may not be only parameter of interest if individuals respond differently to treatment.
- Individuals with different characteristics X_i have different treatment effects
- In such cases, we may want to evaluate treatment effects given a covariate level,

$$ATE(\mathbf{x}) = \mathrm{E}[\mathrm{Y}_i^{\mathrm{D}=1} - \mathrm{Y}_i^{\mathrm{D}=0} | \mathrm{X}_i = \mathbf{x}] = \mathrm{E}[\mathrm{Y}_i^{\mathrm{D}=1} | \mathrm{X}_i = \mathbf{x}] - \mathrm{E}[\mathrm{Y}_i^{\mathrm{D}=0} | \mathrm{X}_i = \mathbf{x}]$$

- In case of a social experiments D_i is also independent of X_i, so ATE(x) = ATET(x) = ATENT(x)
- ...so why do we often see X_i included in field experiment regressions?

Overview/Intro Expe	eriment 🕴	Matching	Introduction RD	MM - Linear IV	DiD
0000 00	000000 (000000	000000	000000000000	00000

HETEROGENEOUS TREATMENT EFFECTS

- However, ATE may not be only parameter of interest if individuals respond differently to treatment.
- Individuals with different characteristics X_i have different treatment effects
- In such cases, we may want to evaluate treatment effects given a covariate level,

$$ATE(\mathbf{x}) = \mathrm{E}[\mathrm{Y}_i^{\mathrm{D}=1} - \mathrm{Y}_i^{\mathrm{D}=0} | \mathrm{X}_i = \mathbf{x}] = \mathrm{E}[\mathrm{Y}_i^{\mathrm{D}=1} | \mathrm{X}_i = \mathbf{x}] - \mathrm{E}[\mathrm{Y}_i^{\mathrm{D}=0} | \mathrm{X}_i = \mathbf{x}]$$

- In case of a social experiments D_i is also independent of X_i, so ATE(x) = ATET(x) = ATENT(x)
- ...so why do we often see X_i included in field experiment regressions?
- $\bullet\,$ If x_i discrete and low dimensional can stratify and apply the difference-in-means estimator.
- Difference-in-means becomes inefficient if x_i includes continuous variables or if the stratified samples become small.

Overview/Intro Exp	periment N				DiD
0000 00	0000000	000000	000000	000000000000	00000

LINEAR REGRESSION MODEL

• Alternatively, can specify a linear regression model (here only with one discrete covariate x_i), which can be estimated by OLS

$$\mathbf{Y}_i = \beta_0 + \beta_1 \, \mathbf{X}_i + \beta_2 \, \mathbf{D}_i + \beta_3 \, \mathbf{D}_i \, \mathbf{X}_i + u_i$$

• The linear regression model imposes stronger functional form assumption than difference in means.

	Experiment			DiD
0000	0000000	000000		00000

LINEAR REGRESSION MODEL

• Alternatively, can specify a linear regression model (here only with one discrete covariate x_i), which can be estimated by OLS

$$\mathbf{Y}_i = \beta_0 + \beta_1 \mathbf{X}_i + \beta_2 \mathbf{D}_i + \beta_3 \mathbf{D}_i \mathbf{X}_i + u_i$$

- The linear regression model imposes stronger functional form assumption than difference in means.
- Since distribution of x_i is similar in the treatment and control group we have,

$$ATE(x) = \beta_2 + \beta_3 x$$
 and $ATE = \beta_2 + \beta_3 E[x_i]$

• But what happens if we no longer have a social experiment and the set of conditioning variables in the CSA can not be saturated in the model? Do the parameters still represent the *ATE*?

Experiment		
00000000		

REGRESSION ESTIMATION OF TREATMENT EFFECTS

• Consider first a simple linear regression model,

 $Y_i = X'_i \boldsymbol{\beta} + \delta D_i + u_i$

• δ captures treatment effect although it is not always clear in practice whether this is *ATE* or *ATET* or something else.

Experiment		
00000000		

REGRESSION ESTIMATION OF TREATMENT EFFECTS

• Consider first a simple linear regression model,

 $Y_i = X'_i \boldsymbol{\beta} + \delta D_i + u_i$

- δ captures treatment effect although it is not always clear in practice whether this is *ATE* or *ATET* or something else.
- This regression is most often used when randomization of D_i is unconditional since in that case we know ATE = ATET.
- Sometimes also used within the context of factor models.
- This simple specification is unlikely to adequately capture correlations between covariates, treatment and unobservables.
- Errors are therefore unlikely to be balanced.

00000

FREQUENTLY USED

- Real Credible Randomization is considered the Gold Standard
 - it is hard to get
 - Hence, NOT frequent.
- A very common application are Economic Programs in Development Evaluation
 - e.g.: teacher training in schools, microcredit programs
 - How done?: If you have 400 schools in need, you select randomly from them.
- Other Nice examples:
 - Lottery Tickets
 - Vietnam Lottery (for war service)
 - Random Discounts

	Experiment Matching Introduction RD MM - Linear IV D	DiD
00000 0000000 0000000 0000000000000000	0000000 000000 000000 000000000000000	00000

OUTLOOK - TWO STEP FITTED REGRESSION

- Regression approach with weaker specification assumption is to:
- Estimate model for E[x_i^{D=1}|D_i = 1, x_i = x] by linear regression E[y_i|D_i = 1, x_i]. Using estimated coefficients generate predicted (fitted) values ŷ_i^{D=1} for all treated and non-treated individuals.
- ② Estimate model for E[Y_i^{D=0} | D_i = 0, X_i = x] by linear regression E[Y_i | D_i = 0, x_i]. Using estimated coefficients generate predicted (fitted) values Ŷ_i^{D=0} for all treated and non-treated individuals.
- Ompute

$$\begin{aligned} ATE &= \frac{1}{n} \sum_{i=1}^{n} \hat{\mathbf{Y}}_{i}^{\mathrm{D}=1} - \hat{\mathbf{Y}}_{i}^{\mathrm{D}=0} \\ ATET &= \left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{D}_{i} (\hat{\mathbf{Y}}_{i}^{\mathrm{D}=1} - \hat{\mathbf{Y}}_{i}^{\mathrm{D}=0})\right) / \frac{1}{n} \sum_{i=1}^{n} \mathbf{D}_{i} \end{aligned}$$

Occupies the standard errors by bootstrapping this procedure.

Econometrics 1: What Works

		Matching			
0000	0000000	000000	000000	000000000000	00000

Table of Contents

Overview/Intro

2 Experiment

3 Matching

Introduction RE

5 MM - Linear IV

6 DiD

	Matching		DiD
	000000		00000

- Regression estimators can be sensitive to differences in the covariate distributions for treated and control units.
- If distribution of covariates for treated different than that for controls then fitted values can be sensitive to changes in specification.
- Matching also fits counterfactual outcomes but in a way less sensitive to specification.

M	к		er	

	Matching		DiD
	000000		00000

- Regression estimators can be sensitive to differences in the covariate distributions for treated and control units.
- If distribution of covariates for treated different than that for controls then fitted values can be sensitive to changes in specification.
- Matching also fits counterfactual outcomes but in a way less sensitive to specification.
- Idea is to find for each treated unit (a set of) 'similar' non-treated individuals (and vice-versa for non-treated).
- Assuming conditional independence holds, we can then estimate treatment effect by comparing outcomes for individuals with similar covariates.

	Matching		DiD
	000000		00000

• Suppose: n_1 individuals observed to receive treatment and n_0 individuals without treatment

$$ATET = \frac{1}{n_1} \sum_{i=1}^{n_1} \left(\mathbf{Y}_i \cdot \mathbf{D}_i - \sum_{j=1}^{n_0} W(i,j) \cdot \mathbf{Y}_j \cdot (1 - \mathbf{D}_j) \right)$$

• W(i,j), where $\sum_{j=1}^{n_0} W(i,j) = 1$ for all *i*, weights non-treated individuals in such a way to construct the counterfactual for individual *i* in the treatment group.

	Matching		DiD
	000000		00000

• Suppose: n_1 individuals observed to receive treatment and n_0 individuals without treatment

$$ATET = \frac{1}{n_1} \sum_{i=1}^{n_1} \left(\mathbf{Y}_i \cdot \mathbf{D}_i - \sum_{j=1}^{n_0} W(i,j) \cdot \mathbf{Y}_j \cdot (1 - \mathbf{D}_j) \right)$$

- W(i,j), where \$\sum_{j=1}^{n_0} W(i,j) = 1\$ for all i, weights non-treated individuals in such a way to construct the counterfactual for individual i in the treatment group.
- Many types of weighs to specify W(i,j). Lead to different matching estimators: Nearest Neighbour Matching, Kernel Matching, one-to-one (with or without replacement), etc.
- If $W(i,j) = 1/n_0$, then we have the difference-in-means estimator.

	eriment 🛛 🛛 🕅	Vlatching		MM - Linear IV	DiD
0000 000	000000 C	0000000	000000	000000000000	00000

OUTLOOK - Matching based on propensity score

- Finding identical individuals in the treatment and control group suffers from the curse of dimensionality.
- Exact matching on covariates is often not feasible.
- One commonly used approach to reduce dimensionality problem is to match based on propensity score.

	DiD
0000 0000000 000000 0000000 0000000000	00000

OUTLOOK - Matching based on propensity score

- Finding identical individuals in the treatment and control group suffers from the curse of dimensionality.
- Exact matching on covariates is often not feasible.
- One commonly used approach to reduce dimensionality problem is to match based on propensity score.
- Propensity score is probability of entering treatment conditional on covariates:

$$p(\mathbf{x}_i) = Pr(\mathbf{D}_i = 1 | \mathbf{X}_i = \mathbf{x})$$

• Rosenbaum and Rubin (Biometrika, 1983) show that CIA for ATE and ATET imply

$$(\mathbf{Y}_{i}^{\mathrm{D}=1},\mathbf{Y}_{i}^{\mathrm{D}=0}) \perp \mathbf{D}_{i} | \boldsymbol{p}(\mathbf{x}_{i}) \text{ and } \mathbf{Y}_{i}^{\mathrm{D}=0} \perp \mathbf{D}_{i} | \boldsymbol{p}(\mathbf{x}_{i})$$

• Instead of matching on all X_i , we can match on $p(\mathbf{x}_i)$.

	Matching		
	0000000		

OUTLOOK - Matching based on propensity score: estimation

- **)** Estimate binary model $Pr(D_i = 1 | X_i = x)$ nonparametrically or for example with Logit model.
- 2 Next compute the $\hat{p}(\mathbf{x}_i)$ for all *i*.
- Use nearest-neighbor matching, kernel-matching, etc. on p̂(x_i) to match treated to an (weighted set of) individual(s).
- In large samples, different estimators tend to be very similar.
- After using propensity score matching, researchers often compare the distribution of x_i-variables in the treatment and constructed control group.
- Ocheck if x_i-variables are balanced, if not, trim for the group of treated which have overlapping non-treated (this will again affect the subpopulation you define as 'treated').

	kperiment 🕴 🕅	Matching	Introduction RD	MM - Linear IV	DiD
0000 00	0000000 (0000000	000000	000000000000	00000

FREQUENT APPLICATIONS

- SOME matching is usually easy to do.
- The question is whether the matching is sufficient to address the endogeneity concern.
- Matching SHOULD be applied,
 - when enough observations available, but
 - treated are obviously different. (Selection on observables)
- Useful: Depending on Paper, it's something between
 - An improvement over your baseline specification ("Robustness Check")
 - Your identification strategy, if your matching is SUPER convincing...
- That said,
 - SOME Matching is usually better than no bother.
 - even if the condition you are satisfying is rather a necessary, not a sufficient one.

	Matching		DiD
	000000		00000

EXAMPLES

Twins

Android Apps

M		

			Introduction RD		
0000	0000000	000000	00000	000000000000	00000

Table of Contents

Overview/Intro

2 Experiment

3 Matching

Introduction RD

5 MM - Linear IV

6 DiD

			Introduction RD		DiD
0000	0000000	000000	00000	000000000000	00000

REGRESSION DISCONTINUITY DESIGN

- The credibility of your identification strategy relies on the credibility of your randomization.
- In the real world, treatment is rarely result of an arbitrary flip of a coin.
- But we can look for natural experiments or quasi-experiments which produce a credible randomization for (possibly a subset of) the population.

	Introduction RD	
	00000	

REGRESSION DISCONTINUITY DESIGN

- The credibility of your identification strategy relies on the credibility of your randomization.
- In the real world, treatment is rarely result of an arbitrary flip of a coin.
- But we can look for natural experiments or quasi-experiments which produce a credible randomization for (possibly a subset of) the population.
- Regression discontinuity (RD) design is an example of a quasi-experimental design in which the probability of receiving a treatment is a discontinuous function of one or more underlying variables.
- Regression discontinuity research designs exploit the fact that some administrative or organizational rule. rules are quite arbitrary.

			Introduction RD		DiD
0000	0000000	000000	00000	000000000000	00000

REGRESSION DISCONTINUITY DESIGN

- The credibility of your identification strategy relies on the credibility of your randomization.
- In the real world, treatment is rarely result of an arbitrary flip of a coin.
- But we can look for natural experiments or quasi-experiments which produce a credible randomization for (possibly a subset of) the population.
- Regression discontinuity (RD) design is an example of a quasi-experimental design in which the probability of receiving a treatment is a discontinuous function of one or more underlying variables.
- Regression discontinuity research designs exploit the fact that some administrative or organizational rule. rules are quite arbitrary.
- These arbitrary rules provide good quasi-experiments when you compare people (or cities, firms, countries,...) who are just affected by the rule with people who are just not affected by the rule.
- Example: Van der Klaauw (2003) estimates effect of financial aid offers on student's decision to attend a college, exploiting discontinuity in administrative rule that relates aid to student's SAT score and the grade point average.

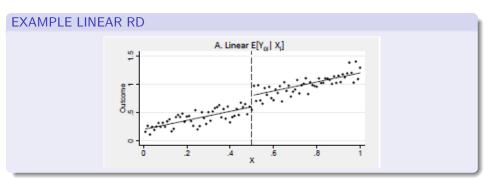
0000 00000000 000000 000000 00000 00000		Introduction RD	
		000000	

SHARP AND FUZZY RD DESIGN

There are two types of RD designs:

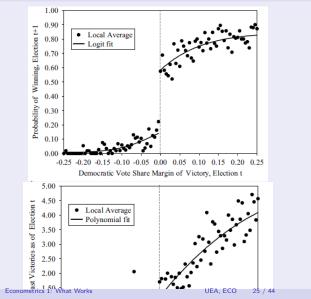
- **()** Sharp RD: treatment is a deterministic function of a covariate x_i .
- Fuzzy RD: treatment is a probabilistic function of a covariate x_i (there is only partial compliance to the discontinuity).
- x_i called *running variable* or *assignment variable* or *forcing variable*.

0000 0000000 000000 00000 00000 00000 0000		Introduction RD	
		000000	



	Introduction RD	
	000000	

EFFECT OF WINNING PREVIOUS ELECTION ON PROBABILITY OF WINNING CURRENT ELECTION



25

M Kummer

	Introduction RD	DiD
	00000	00000

FREQUENT APPLICATIONS

- A credible RD is almost as good as an experiment.
 - A good RD, these days, is hard to find...
 - Hence, infrequent.
- Typical use is when a legislation has a rigorous cutoff
- Critical Questions: Ask yourself:
 - does the cutoff coincide with other important things?
 - A country border is not a good cutoff if the countries are quite different.
 - When including observations. How far can you afford to go away from the cutoff?
- $\bullet\, \rightarrow$ people will ask you these questions

		MM - Linear IV	
		000000000000	

Table of Contents

- Overview/Intro
- 2 Experiment
- 3 Matching
- Introduction RD
- 5 MM Linear IV
- 6 DiD

		MM - Linear IV	
		000000000000	00000

OUTLOOK - What is a method of moments estimator?

- Method of moments (MM) estimator solves sample moment conditions corresponding to population moment conditions (analogy principle).
- Example: if y_i is IID and $E(y_i \mu) = 0$ in the population
 - Use MM estimator $\hat{\mu}$ that solves corresponding sample moment condition $\frac{1}{n}\sum_{i=1}^{n}(y_i \mu) = 0$.
 - This leads to sample mean $\hat{\mu} = \overline{y}$.
- General Method of Moments (GMM) allows more moment conditions than parameters.
- GMM encompasses all methods we have seen/shall see: OLS, GLS, IV, 2SLS and ML.

		latching li		MM - Linear IV	
0000 000	000000 c	000000 0	00000	00000000000	00000

MM ESTIMATOR IN LINEAR MODEL

• We assume the linear structural model

$$y_i = \mathbf{x}'_i \boldsymbol{\beta} + u_i$$

• And assume all x_{ik} are exogenous, so $E(\mathbf{x}_i u_i) = \mathbf{0}$ holds and can be rewritten as,

$$\mathrm{E}(\mathbf{x}_i(y_i - \mathbf{x}'_i\beta)) = \mathbf{0}$$

• If $E(\mathbf{x}_i \mathbf{x}'_i)$ has full rank then above equation has unique solution

$$\beta = (\mathrm{E}(\mathbf{x}_i \mathbf{x}_i'))^{-1} \mathrm{E}(\mathbf{x}_i y_i)$$

Method of Moments estimator replaces these two population moments by sample moments

$$\frac{1}{n}\sum_{i=1}^{n}\mathbf{x}_{i}(y_{i}-\mathbf{x}_{i}'\beta) = 0 \quad \text{from which} \quad \hat{\beta}_{MM} = \left(\frac{1}{n}\sum_{i=1}^{n}\mathbf{x}_{i}\mathbf{x}_{i}'\right)^{-1}\left(\frac{1}{n}\sum_{i=1}^{n}\mathbf{x}_{i}y_{i}\right)$$
$$= (\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\mathbf{y})$$
$$= \hat{\beta}_{OLS}$$

• So MM estimator of β is equivalent to OLS estimator of β .

MI		

Econometrics 1: What Works

				MM - Linear IV	
0000	0000000	000000	000000	00000000000	00000

MM ESTIMATOR IN IV MODEL

• We assume the linear structural model

$$y_i = \mathbf{x}'_i \boldsymbol{\beta} + u_i$$

- And assume NOT all elements of x_i are exogenous.
- In particular, $E(x_{ik}u_i) = 0$ for k = 1, ..., L but $E(x_{ik}u_i) \neq 0$ for k = L+1, ..., K so x_i has K L endogenous variables.
- For notational convenience we rewrite, $\mathbf{x}_i = \begin{bmatrix} \mathbf{x}_{i1} \\ \mathbf{x}_{i2} \end{bmatrix}$, with \mathbf{x}_{i1} the vector of exogenous variables and \mathbf{x}_{i2} the vector of endogenous variables.

				MM - Linear IV	DiD
0000	0000000	000000	000000	00000000000	00000

OUTLOOK - IV estimator

- In IV model we have a K L size vector z_{i1} of additional variables z_{ij} which are exogenous $E(z_{ij}u_i) = 0, j = 1, ..., K L$.
- Taking z_i as the vector of exogenous variables we can write moment conditions,

$$\mathrm{E}(\mathbf{z}_i(y_i - \mathbf{x}'_i\beta)) = \mathbf{0} \qquad \mathbf{z}_i = \begin{bmatrix} \mathbf{x}_{i1} \\ \mathbf{z}_{i1} \end{bmatrix}$$

• If $E(\mathbf{z}_i \mathbf{x}'_i)$ has full rank then above equation has unique solution

$$\beta = (\mathrm{E}(\mathbf{z}_i \mathbf{x}_i'))^{-1} \mathrm{E}(\mathbf{z}_i y_i)$$

Method of Moments estimator replaces these population moments by sample moments

$$\frac{1}{n}\sum_{i=1}^{n} \mathbf{z}_{i}(y_{i} - \mathbf{x}_{i}'\beta) = 0 \quad \text{from which} \quad \hat{\beta}_{IV} = \left(\frac{1}{n}\sum_{i=1}^{n} \mathbf{z}_{i}\mathbf{x}_{i}'\right)^{-1} \left(\frac{1}{n}\sum_{i=1}^{n} \mathbf{z}_{i}y_{i}\right)$$
$$= (\mathbf{Z}'\mathbf{X})^{-1}(\mathbf{Z}'\mathbf{y})$$

• So MM estimator of β is the IV estimator of β .

		MM - Linear IV	
		00000000000	

TWO STAGE ESTIMATION OF IV

- We can also obtain IV estimate from two stage estimation
- **()** Regress all variable(s) x_{ik} on the instrument z_i using OLS.

$$x_{ik} = \mathbf{z}'_i \gamma + \mathbf{v}_{ik}$$

Calculate the predicted (fitted) values \hat{x}_{ik} of x_{ik} .

② Use the predicted values (instead of the actual values) \hat{x}_{ik} from the first regression as the explanatory variable in the structural equation, and estimate using OLS.

$$y_i = \hat{x}_{i1}\beta_1 + \ldots + \hat{x}_{iK}\beta_K + u_i$$

- Resulting estimate of the coefficient on predicted \hat{x}_{ik} are the IV estimate of β_k .
- Interpret this as 'purging' endogenous variable of the correlation with the error.

00000 00000000 0000000 000000 000000 0000			MM - Linear IV	
			00000000000	

IV ASSUMPTIONS

- Recall the instrument z_{ij} for endogenous variable x_{ik} must satisfy two properties:
 - (1) Exogeneity IV.1: $Cov(z_{ij}, u_{ik}) = 0$
 - **2** Relevance IV.2: $Cov(z_{ij}, x_{ik}) \neq 0$
- IV.1 is necessary otherwise moment equations do not hold.
- IV.2 is also necessary otherwise rank condition would not hold.
- To see this write in simple case of one endogenous variable x_{iK} and one instrument z_{i1} ,

 $x_{iK} = x_{i1}\gamma_1 + \ldots + x_{iK-1}\gamma_{K-1} + z_{i1}\gamma_K + v_{iK}$

• If $\gamma_K = 0$, that is $Cov(z_{i1}, x_{iK}) = 0$, then $E(\mathbf{z}_i \mathbf{x}'_i)$ will not have full rank.

		MM - Linear IV	DiD
		00000000000	00000

FREQUENT APPLICATIONS

- A really convincing IV is not easier to find than a good RD.
- Like with matching SOME IV is usually relatively easy.
- The Question will be:
 - Can you defend your exclusion restriction? (IV.1)
 - ightarrow ightarrow They will ask you, you cannot test it.
 - This is also the reason for IV's popularity.
- That said, like with matching: SOME IV is better than no IV

		MM - Linear IV 000000000000	

EXAMPLE: ANGRIST AND KRUEGER, QJE 1991

• Returns to schooling (Angrist & Krueger, QJE 1991):

 $log(earnings_i) = \beta_0 + \beta_1 schooling_i + u_i$

- OLS estimate for β_1 around 0.07.
- High ability individuals most likely stay in school longer and have higher earnings.
- Implies $E[u_i|schooling_i] \neq 0$ or $E[u_ischooling_i] \neq 0$.
- All individuals enter school at age 6 on January 1. Compulsory school until 16th birthday.
- So individuals born in first quarter experience less compulsory schooling than individuals born in fourth quarter.
- Quarter of birth is an instrumental variable.

		MM - Linear IV 00000000000000	

EXAMPLE: ANGRIST AND KRUEGER, QJE 1991

- Quarter of birth (z_i) uncorrelated with error term $(Cov(z_i, u_i) = 0)$, but due to entry regulation correlated with years of schooling $(Cov(z_i, x_i) \neq 0)$. Therefore, it is a valid instrumental variable.
- The IV estimate of β_1 is around 0.08 (recall OLS estimate around 0.07).
- OLS is slightly downward biased, which suggest a negative correlation between schooling and the disturbance term.
- From the absence of ability a positive correlation between schooling and the disturbance would be expected.
- Could it be that one of the IV assumptions is violated?

				MM - Linear IV	DiD
0000	0000000	000000	000000	0000000000000	00000

DISCUSSION

- What if IV.1 only approximately holds?
- Should we use a 'slightly' endogenous instrument rather than OLS?
- Even if we restrict attention only to consistency, the answer is NO unless we have specific knowledge of form of endogeneity.
- What if IV.2 only approximately holds?
- If $Corr(z_i, x_i)$ is small then z_i is called a weak instrument.
- Bound, Jeager and Baker (JASA, 1995) used Angrist and Krueger's data but replaced instrument by draws from random generator. Clearly,

 $\operatorname{Cov}(z_i, u_i) = 0$ but in addition $\operatorname{Cov}(z_i, x_i) = 0$.

- With this new irrelevant instrumental variable the IV estimate for β_1 is 0.08.
- Real and irrelevant instruments give the same parameter estimate.

		MM - Linear IV	
		000000000000000000000000000000000000000	00000

OUTLOOK - Structural vs. Reduced Form Equations

- Important distinction between structural and reduced form equations.
- Structural form equation: Expresses dependent variable in terms of structural variable and parameter of interest.

$$y_i = \mathbf{x}_i^s \beta + u_i$$

- It is rarely the case that we observe variable \mathbf{x}_{i}^{s} of interest.
- More often we observe data on x_i which is 'in some way related' to x^s_i but is endogenous to the model in the sense that E(x^s_iu_i) = 0 but E(x_iu_i) ≠ 0.
- In practice people usually do not make a distinction between \mathbf{x}_i^s and \mathbf{x}_i so you must deduce from the context which variable is implied.
- Reduced form equation(s): Expresses dependent variable only in terms of exogenous variables in the data.

		MM - Linear IV	
0000		000000000000	

OUTLOOK - Reduced Form IV Equations

Reduced form equations for IV model are

$$\begin{split} \mathbf{X} &= \mathbf{Z} \mathbf{\Gamma} + \mathbf{V} \\ \mathbf{y} &= \mathbf{Z} \mathbf{\Gamma} \boldsymbol{\beta} + \boldsymbol{\varepsilon}, \qquad \qquad \boldsymbol{\varepsilon} &= \mathbf{V} \boldsymbol{\beta} + \mathbf{u} \end{split}$$

where $\Gamma_{K \times K} = E(\mathbf{z}_i \mathbf{z}'_i)^{-1} E(\mathbf{z}_i \mathbf{x}'_i)$ and **X** is the matrix of stacked vectors $\mathbf{x}'_i = \mathbf{z}'_i \Gamma + \mathbf{v}'_i$.

		DiD
		00000

Table of Contents

- Overview/Intro
- 2 Experiment
- 3 Matching
- Introduction RD
- 5 MM Linear IV
- 6 DiD

					DiD
0000	0000000	000000	000000	000000000000	00000

DiD

• Sometimes we have a shock, that does not affect "comparable" units of observation.

e.g. change in legislation in NY City, but not in Kansas

• BUT, if we get a before after too, we can account for the difference between them

$\bullet \ \to$ Difference in Differences.

- Difference between Kansas and NY
- 2 Difference before and after the regulation

		DiD
		00000

DiD

	Kansas	NYC	Diff
before	2	1	1.0
after	3.2	1.3	1.9
Diff	1.2	0.3	0.9

• No longer assuming that the observations are counterfactuals (as in matching or regression)

- Works, if the change over time can be assumed to be equal absent treatment
- That's a higher level assumption, and sometimes it's even testable!

			DiD
0000			00000

FREQUENT APPLICATIONS

- DiD is quite popular, assumptions are less restrictive and testable.
- You need
 - panel data
 - multiple observation per unit
 - some interesting economic "treatment", that you cannot easily avoid
 - ★ → regulation changes, new policies, etc.
- \rightarrow that's the big condition.
- if you can get that:
 - DiD is a nicely transparent method. This is a prime advantage over matching and IV
 - You can test the core assumption!
 - DiD strikes a nice balance between "doable" and transparent/"credible."

		DiD
		00000

Examples
Wikipedia 1 Wikipedia 2
Shown in class: Feel free to check them out here, or ask me about them: https://sites.google.com/site/kummermannheim/research