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Treatment Effects
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INTRODUCTION
@ In economics (and policy) researchers may be interested in:

How does university education affect future earnings?

How does early life malnutrition affect schooling outcomes?

How does tax cut affect labor participation?

How does having extensive health insurance affect health care use? (moral hazard)

How does a gun law affect the murder rate?

@ The researcher is interested in obtaining the causal effect of participating in some treatment
on future outcomes.

@ Treatment encompasses many definitions, it might refer to an actual intervention, choice
variable, individual behavior, or endogenous variable.

@ In economic literature, models for analyzing causal effects called models for
treatment/policy/program/impact evaluation.
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OVERVIEW OF TODAY'S LECTURE

@ Define relevant treatment effect parameters.
o Relate potential outcome framework to structural framework.
@ ldentification through conditional independence assumptions.

@ Regression and matching evaluation methods.
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POTENTIAL OUTCOMES MODEL

o Potential Outcome Model (aka. Rubin or Neyman-Rubin causal model) finds roots in
Neyman (1923) Msc. thesis.

o Further groundwork in statistics by, Rubin (1974), Holland (1986 review).

@ In economics, Heckman one of pioneering researchers on policy evaluation (often referring to
Roy model).

o Let D; be an indicator for receiving treatment (D; = 1) or not (D; = 0).

YP:O without

@ Each individual has two potential outcomes, YP:I with treatment and
treatment. We will also denote the realizations of these random variables as yI.D:1 and yl.D:O.

@ The effect for each individual of participating in the treatment equals

A;=yP=l_yP=0

@ Since only one of the random variables Yle and YP:O can be observed, A; will always be
an unobserved random variable. The unobserved outcome is the counterfactual outcome.

v
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ATE, ATET & ATENT
o Parameter of interest depends on the context of the study and the (sub-)population of
interest. One often considered is Average Treatment Effect,

ATE = E[yP=! —vP=0| = E[yP=!] - E[vP™

o If the selection into treatment is not entirely random and some individuals are more likely to
enter treatment then it may be preferable to focus on Average Treatment Effect on the
Treated

ATET = E[yP=1 —vP=0|p; = 1] = E[vP=!|p; = 1] - E[yP=%|p; = 1]
o Notice that ATE can be decomposed into a weighted average effect on the treated and
non-treated.
ATE = (E[vP=!|p; = 1] - E[¥P=%|p; = 1]) - Pr(p; = 1)
+ (BIxP= [p; = 0] - E[P=°| n; = 0]) - Px(n; = 0)
= ATET -Pr(D; = 1)+ ATENT - Pr(D; = 0)
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SOCIAL EXPERIMENTS

o In field experiments, treatment assignment is randomized across individuals.
D=1 ,,D=0
(Yi ) Y ) 1 D
o Treatment assignment is statistically independent of potential outcomes, which solves the
problem of self-selection.
ATE = E[yP= —E[yP=0 = E[yP=}|p=1] - E[vP=°|p =0]
=E[y;|p=1]—-E[Y;|D=0]
@ This is because treated and non-treated are random sub-samples of population,
E[P="] = B[P~ |o; = 1] = E[YP=" | p; = 0]

E[yP=] = E[y?=0|p; = 1] = E[y?=0 | p; = 0]

@ This also implies ATE = ATET = ATENT.
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QUANTILE TREATMENT EFFECTS

Average treatment effect (on the treated) only focusses on mean.

Even if mean treatment effects are zero, it might be that for some individuals treatment
effects are positive.

Knowing effects at different quantiles may allow more efficient targeting of policy.

Effect at quantile g of distribution of the outcome F(-) given by Quantile Treatment Effect

1 = 1 =
QTEG = F 5, (a°™) = F 5 _o(a°°)

where gP=1 is quantile in treated distribution Fyp-1 at which non-treated individuals at qP=0
in FYD:O would have been located had they received treatment (and vice versa for treated).

But to obtain this effect we must assume treatment does not change an individual’s quantile
in the distribution...which is a quite strong assumption.
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QUANTILE TREATMENT EFFECTS

o If we are not willing to make strong assumption of quantile invariance then we still can
define how outcome at a given quantile of the treatment changes due to treatment

QTEq=F_p_,(a) — Fp_(a)

o For example, if Y is education and g = 0.5 then treatment effect we estimate represents
difference in median education (not individuals at median under D = 0).
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SELECTION PROBLEM IN OBSERVATIONAL STUDIES

@ Main problem in observational studies: treatment participation is often not independent of
potential outcomes, individuals self-select into treatment.

@ If there is self-selection into the treatment,

E[vP=Y #ENP=![p;=1] and E[vP=Y]#ENP=!|p;=0]

o Example: Unemployed training program

Unemployed workers who are very motivated to find work are more likely to participate in job
training programs.

Because these individuals are motivated to find work their unemployment duration (both potential
outcomes) will probably be lower than the potential outcomes of less motivated unemployed whether
they receive treatment or not. workers.

So if we compare observed unemployment duration outcome for treated who are motivated to
unemployment duration outcome of non-treated who are not motivated, our treatment estimate will
suffer from selection bias which is simply a form of omitted variable bias.

M Kummer
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IDENTIFICATION WITHOUT SOCIAL EXPERIMENTS
@ Social experiments are less common in economics than in other sciences, such as biology and
medicine.

e Without social experiment E[yP=C|p; = 1] and E[yP=!|D; = 0] are unobserved.

o Without social experiments, researcher must justify that, perhaps given a set of covariates,
there exist comparable individuals besides the fact that some randomly received treatment
and others did not.

@ To identify ATE without social experiment must make additional assumptions.

@ Conditional Independence Assumption

@ Common Support Assumption

© (Stable Unit Treatment Value Assumption)
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IDENTIFICATION: CONDITIONAL INDEPENDENCE ASSUMPTION FOR ATE

@ Conditional Independence Assumption: after conditioning on x;, D; is as good as randomly
assigned,

(P2 vP=h) L pilx

So no self-selection on unobservables.

Pr(p; = 1|x; = x,yP=0 = yP=0 vP=1 — yD=1) — pr(p; = 1|x; = x)
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IDENTIFICATION: COMMON SUPPORT ASSUMPTION FOR ATE

o |dentification also requires Common Support Assumption (overlap assumption):
0<Pr(p;=1x;=x)<1 or simply 0<Pr(pj=1x;)<1

@ This assumption says there are a sufficiently large number of individuals for all x; and there
exist both treated and untreated individuals with these characteristics.

@ Common Support Assumption can be tested, Conditional Independence Assumption cannot.
o Common support assumption can be tested simply by investigating if for all values of X; both

treated an untreated individuals exist (see also Black & Smith (JoEctrics, 2004) for a
graphical test).
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IDENTIFICATION: STABLE UNIT TREATMENT VALUE ASSUMPTION

@ Stable Unit Treatment Value Assumption (SUTVA): treatment participation of one/some
units does not affect the potential outcomes of other individuals (or themselves).

@ Spillover effects: non-treated individuals benefit from treatment (same classroom).

@ Substitution: non-treated individuals seek alternative treatment (parents find substitute
outside classes).

© Hawthorne effect: individuals behave differently in experiment (teachers grade differently
during experiment).
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ASSUMPTIONS FOR IDENTIFICATION OF ATET

Non-experimental methods do not rule out selection bias, they simply balance selection bias
for the treated and non-treated.

If we are only interested in ATET then assumptions required for identification are less strong.

CIA for ATET: Even if some people select into treatment, no one selects out of treatment
conditional on X;.

D=0

YI

1 Dj |X,‘

This can be understood as assuming that hypothetically the controls who we match to the
treated based on observables are the same as the treated besides that they were, for some
reason, unaware about the possibility to enter treatment or the possibility of entering
treatment was unavailable.

We exclude for instance that non-treated status results from an a priori cost-benefit analyses
of treatment by individual.

This is also known as Selection on observables or ignorability of treatment conditional on
observables or unconfoundedness and can be rewritten as,

F(xP=0|x; = x,p; =1) = F(¥P=°|x; = x,D; = 0)
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ASSUMPTIONS FOR IDENTIFICATION OF ATET

@ CSA now only needs to find matches for treated individuals.
Pr(pi=1lx;) < 1

@ No one can have characteristics which imply always receiving treatment.
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SELECTION TO TREATMENT IN STRUCTURAL MODEL: BALANCING

o Consider structural models,

yP=0 = E[yP=0|p; = 0,x;] + uP~°
yP=l = E[yP=!|p; = 1,x;] + P!

@ When we have selection to treatment, estimation of ATET does not rule out selection bias,
so we do not impose
E[UP:0| Dj = l,X,'] =0

@ Instead we assume that conditioning on covariates we balance selection bias
D=0 D=0
E[u,- |D,' = 1,X,'] = E[Ll,- |D,‘ = O,X,']

@ So the zero conditional mean assumption can be violated.

o For ATENT we need similar assumptions on uP=1

on uPZl and uP=0.

i

and for ATE we need these assumptions
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METHODS FOR ESTIMATING TREATMENT EFFECTS

Treatment effect literature provides wide range of quite different estimators, many of which are
regularly used in empirical work.

O Field (or Social) experiments.
Regression (including factor models).
Matching.

Regression discontinuity.
Instrumental variable.

Control Functions.
Difference-in-difference.
Nonparametric bounds.

Timing-of-events.

& 06 © © 6 6 6 ©0 ©

Structural estimation (Roy-type models).
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DIFFERENCE-IN-MEANS ESTIMATOR
e With unconditional randomization from social experiment, E[yP=!|p; = 1] and

E[YiD=0 |Dj = 0] can be estimated by their sample means,

n n
— . . DiY; — . (1—Dpj)v;
E:[YP:1 | D = 1] =] —Zl:l i and E[YP:O |D,‘ =] 0] = —Zl:l( l) !

27:1])" 27:1(1_]3’)

with D; =0,1 and v; = (1— D,-)YP=0 +D,-YP=1 which are always observed.

@ The resulting estimator for the treatment effects is called the difference-in-means estimator,

YorapiYi o > (1=Di)Y;

ATE = ATET = -

27:1 Di 27:1(1 —Di)

o The difference-in-means estimator does not impose any structure on the model.
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ASYMPTOTIC DISTRIBUTION OF ATE ESTIMATOR

@ Assuming unconfoundedness, overlap and some smoothness assumptions on the conditional
expectations of potential outcomes Hahn (1998) shows,

V(B —A) S N(O,V,a)
o where for 02(x;) = Var(yP=?|x; = x) we can show that,

af(xi) | ag(x) |~
Va2 B[S+ 12 o+ (Ax) — ]

@ Hahn also shows that asymptotically linear estimators exist that achieve the efficiency bound.
v
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HETEROGENEOUS TREATMENT EFFECTS

However, ATE may not be only parameter of interest if individuals respond differently to
treatment.

Individuals with different characteristics X; have different treatment effects

In such cases, we may want to evaluate treatment effects given a covariate level,
ATE(x) = E[YyP= —vP=0 x; = x] = E[vyP=! |x; = x] - E[YyP=0 |x; = x]

In case of a social experiments D; is also independent of X;, so

ATE(x) = ATET (x) = ATENT (x)

...so why do we often see X; included in field experiment regressions?

If X; discrete and low dimensional can stratify and apply the difference-in-means estimator.

Difference-in-means becomes inefficient if X; includes continuous variables or if the stratified
samples become small.
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LINEAR REGRESSION MODEL

Alternatively, can specify a linear regression model (here only with one discrete covariate X;),
which can be estimated by OLS

Y = Bo+ B1X;+B2Dj +B3D; X; +u;

The linear regression model imposes stronger functional form assumption than difference in
means.

Since distribution of X; is similar in the treatment and control group we have,

ATE(x) =B+ Bsx and ATE = f + B3E[X/]

But what happens if we no longer have a social experiment and the set of conditioning
variables in the CSA can not be saturated in the model? Do the parameters still represent
the ATE?
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REGRESSION ESTIMATION OF TREATMENT EFFECTS

o Consider first a simple linear regression model,

Y; =X+ 6D +u;

@ § captures treatment effect although it is not always clear in practice whether this is ATE or
ATET or something else.

@ This regression is most often used when randomization of D; is unconditional since in that
case we know ATE = ATET.

@ Sometimes also used within the context of factor models.

@ This simple specification is unlikely to adequately capture correlations between covariates,
treatment and unobservables.

o Errors are therefore unlikely to be balanced.
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TWO STEP FITTED REGRESSION

o Regression approach with weaker specification assumption is to:

O Estimate model for E[yP=!|p; = 1,X; = x] by linear regression E[y;|D; = 1,x;]. Using
estimated coefficients generate predicted (fitted) values \?le for all treated and non-treated
individuals.

@ Estimate model for E[YP:0 |Dj = 0,X; = x| by linear regression E[y;|D; = 0,x;]. Using
estimated coefficients generate predicted (fitted) values ¥P=° for all treated and non-treated
individuals.

© Compute

n
1 AD— AD—
ATE ==Y "4P=t—4P=°
n
i=1

n
(1 oD=1 _ D=0 1 )
ATET = ;ZD,(Y,- -7 /;ZD,
i=1 i

© Compute standard errors by bootstrapping this procedure.
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MATCHING ESTIMATORS TO ACCOUNT FOR SELECTION ON
OBSERVABLES

Regression estimators can be sensitive to differences in the covariate distributions for treated
and control units.

If distribution of covariates for treated different than that for controls then fitted values can
be sensitive to changes in specification.

Matching also fits counterfactual outcomes but in a way less sensitive to specification.

Idea is to find for each treated unit (a set of) ‘similar’ non-treated individuals (and vice-versa
for non-treated).

Assuming conditional independence holds, we can then estimate treatment effect by
comparing outcomes for individuals with similar covariates.
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MATCHING ESTIMATORS TO ACCOUNT FOR SELECTION ON
OBSERVABLES

@ Suppose: n; individuals observed to receive treatment and ng individuals without treatment
1 ny no
ATET = — E Y;i-Dj— E W(i,j)-Yj-(l—Dj)
n
i=1 j=1

o W(i,j), where Z}’il W(i,j) =1 for all i, weights non-treated individuals in such a way to
construct the counterfactual for individual i in the treatment group.

@ Many types of weighs to specify W(i,j). Lead to different matching estimators: Nearest
Neighbour Matching, Kernel Matching, one-to-one (with or without replacement), etc.

o If W(i,j) =1/ng, then we have the difference-in-means estimator.
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MATCHING BASED ON PROPENSITY SCORE

@ Finding identical individuals in the treatment and control group suffers from the curse of
dimensionality.

o Exact matching on covariates is often not feasible.

@ One commonly used approach to reduce dimensionality problem is to match based on
propensity score.

@ Propensity score is probability of entering treatment conditional on covariates:
p(x;) = Pr(p; = 1|X; = x)
@ Rosenbaum and Rubin (Biometrika, 1983) show that CIA for ATE and ATET imply

(vP=LvP=0 1L pi|p(x;) and vP=0 1 p;|p(x;)

i

Instead of matching on all X;, we can match on p(x;).
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MATCHING BASED ON PROPENSITY SCORE: ESTIMATION

@ Estimate binary model Pr(D; = 1|X; = x) nonparametricaly or for example with Logit model.
@ Next compute the p(x;) for all i.

© Use nearest-neighbor matching, kernel-matching, etc. on p(x;) to match treated to an
(weighted set of) individual(s).

@ In large samples, different estimators tend to be very similar.

© After using propensity score matching, researchers often compare the distribution of
Xj-variables in the treatment and constructed control group.

@ Check if Xj-variables are balanced, if not, trim for the group of treated which have
overlapping non-treated (this will again affect the subpopulation you define as ‘treated’).
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PROPENSITY SCORE WEIGHTING

@ Another approach instead of matching based on the propensity score is weighting on the

propensity score (e.g. Hirano, Imbens and Ridder, Ectra 2003).

o If the true propensity score p(x;) were known the ATE and ATET would be given by,

n
1 DiY; (1 = D,') Y
ATE= = " 2iYi A7 D)Yi
22 o) (3= r)
1N\ N (DiY; _ (1-DjY;
7 22 P (5 — Gpban)

ATET = |
15 p(xi)
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PROPENSITY SCORE WEIGHTING

n

_ A (o)
ATE‘nZ;p(x.-) (1 p(x)

i=

@ Since p(x;) is unknown, estimating the above by replacing p(x;) by some estimator p(x;) is
not necessarily efficient.

o Why? Consider the treated. In the population it is clear that

E%Z:’llp E[E[X = lp i = x] =1 holds.
@ But in the sample % Zlnll p([i) =1 will not exactly hold because Var[-- z Zlnil p([i"_)] >0

(and similar arguments for the untreated).

o Essentially, by using the true propensity score we are attributing too much weight to some
observations while attributing too little to others within the sample.

@ Solution is simply to use ‘incorrect’ finite sample propensity score estimates p(x;) which
converge to p(x;) as n — co.

@ Hirano, Imbens and Ridder (2003) propose a series logit estimator where order of series
terms is a function of the sample size..
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INTUITION BEHIND PROPENSITY SCORE WEIGHTING

@ A relevant question you may ask is why this probability of treatment ends up in the
denominator?

n no
individuals observed to receive treatment have a higher propensity to treatment based on
observable variables.

o Recall that by construction ll E:’;l p(x;) > 2 Z;’il p(x;) which simply says that those

o Now suppose we observe a treated subject with propensity score of 0.2.

@ So we observe that treatment occurred despite this individual having relatively low
propensity to treatment based on covariates.

o This individual therefore carries a relatively large amount of information concerning the effect
of the treatment for the non-treated.

o More generally, treated observations with low propensity score and un-treated observations
with high propensity score carry relatively more information about the ATE.

o Using p(x;) rather than p(x;) in this sense produces the appropriate representation of each
observation in the hypothetical post-interventional data given the observed sample.
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TREATMENT EFFECT METHODS SO FAR
Let's recap two regression methods we have used so far to estimate ATE and ATET:
© Regression 1: linear regression model
Y; =X|B+ 6D +uj

& captures a treatment effect (in case of randomized experiment, ATE = ATET).

@ Regression 2: Two step fitted regression

n
1 oD=1 _ D=0
ATE:;E Vi =Y
i=1

n
(1 oD=1 _ D=0 1 )
ATET = ;E D;(¥; i) /;E Dj
i=1 i
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TREATMENT EFFECT METHODS SO FAR
Let's recap two matching methods we have used so far to estimate ATE and ATET:
O (Propensity Score) Matching:

Calculate ATE and ATET by creating a synthetic un-treated observation for each treated
observation and a synthetic treated observation for each un-treated observation.

Then for i =1,...,n; treated and j =1,...,ny controls we have
1 n o
ATET = — E (Y,‘-D,‘* E W(I’,j)Yj-(l*Dj))
ny
i=1 Jj=1
n no
ATE ! E Y;i-D E W(i,j)Y;-(1—=Dj) |+
— D — i (1—D:
- it Dij 5J) Y )
i=1 j=1
. g n
W(@G,)Y;-Di—Y;-(1—Dj
I OL ;-n))
Jj=1 i=1

@ Propensity Score Weighting:
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TREATMENT EFFECT METHODS SO FAR

Let's recap two matching methods we have used so far to estimate ATE and ATET:
@ Propensity Score Matching:
@ Propensity Score Weighting:

For some normalized estimate p(x;) of p(x;) we can obtain ATE and ATET by:

1 d D;Y; (1-Di)Y;
ATE=S Zp(x,) (1= B0))

1 D;Y; D)Y;
[ 52 P (x')(f(x, __'_(1 )
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HOW CAN WEIGHTING AND OTHER METHODS BE COMPARED?

©

A relevant question that should come out of the previous overview is why weighting vs.
non-weighting methods would both estimate same treatment effects?

To answer this let's consider simple situation where we have Y = 0,1 binary, D = 0,1 binary
and some characteristic X (from J. Pearl blog).

Let's say X is discrete and we have the pre-treatment joint distribution
Pr(vy=1,p=d,X =x).

This can be decomposed into a product of three conditional probabilities. In the case of
D =1 (treatment actually occurs in the future):

Pr(vy=1,p=1,x=x)=Pr(v=1p=1,x=x)-Pr(b=1|x = x)-Pr(x = x)

Pr(y =1|p = 1,X = x) describes how the outcome depends on treatment and covariate X.
Pr(p = 1|x = x) describes how subjects choose treatment prior to treatment.

Pr(x = x) describes the prior distribution of the covariates.
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HOW CAN WEIGHTING AND OTHER METHODS BE COMPARED?

However, to calculate the treatment effects we are interested in comparing the
post-treatment distributions E[yP=9] = ZX Pr*(y=1,p=d,Xx=x) for D =0,1.

Let's decompose again Pr*(y = 1,0 = d,X = x) when D =1 (treatment has actually
occured):

Pr*(vy=1,p=1,x=x)=Pr*(vy=1p=1,x=x)-Pr'(D=1|x = x) - Pr*(x = x)

Which of the three mechanisms remains invariant?

Clearly, Pr*(x = x) = Pr(x = x) as long as there is no attrition and X does not contain
variables endogenous to treatment.

Also Pr*(y =1|p=1,X = x) =Pr(y = 1|D = 1,X = x) because X is assumed to be complete
set of confounders, so, Y depends on D and X plus random noise (error) that is not affected
by the treatment.
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HOW CAN WEIGHTING AND OTHER METHODS BE COMPARED?

o However, the treatment mechanism changes drastically since now Pr*(p=1|x=x)=1
because everyone gets the treatment.

As a result, our post-treatment distribution of interest is equal to the product:
Pr*(vy=1,p=1,x=x)=Pr(y=1D=1,Xx =x)-Pr(x = x)
@ Or the function

Pr(vy=1,D=1,X=x)
Pr(p=1|x=x)

Pr*(vy=1,D=1,x=x) =

o First perspective leads to estimation by regression, stratification, or (propensity score)
matching, while the second leads to Inverse Probability Weighting.

o The asymptotic equivalence of the two approaches is assured by the equality of the two
equations for Pr*(y =1,p =1,X = x).
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ROBUSTNESS OF SPECIFICATION VS IDENTIFICATION

@ Some say that the choice of methods should be guided by which process you as a researcher
think you can model best:

@ If you know assignment mechanism on covariates and this assignment mechanism is unknown to
agents, then propensity weighting may be reasonable.

@ If you know the outcome mechanism given the treatment or think you can adjust selection bias
adequately in the outcome equation, then a regression type approach may be reasonable.

@ But if you don’t have a strong knowledge of the mechanism inducing randomization then you
have an identification problem.

o Without clear identification, none of the estimators can guarantee you are estimating a
meaningful parameter.

o If you know the covariates determining selection but are unsure (or the are high
dimensional/continuous) and you fear model misspecification then can use doubly robust
estimator.

@ In the assignment you will explore these difference further both in theory and practice.
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Weighting vs. Regression
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DOUBLY ROBUST ESTIMATION

@ Doubly robust estimator combines regression and weighting and is consistent even if one of

outcome or treatment mechanisms is misspecified

o Consider the weighted model,
W75 1
—=—(X B+0Dj+ui) = —(m(x)+ u;)
w; wi

@ We can combine inverse probability weighting and regression by using weights

D; 1-D;
1wj= 4 — g 2
M=\ o) T TG

@ Least squares estimation results in the doubly robust estimator

ATE =32t _P=0
= SR INJ(Xi)ﬁ, X
Z P(X P(X ) ( )
JINS @Dy D) o
L (1—p(x)  1—p(x) 0(x)
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Weighting vs. Regression
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DOUBLY ROBUST ESTIMATOR PROPERTY

o Appealing property of doubly robust estimator is that it remains consistent as long as one of
the propensity score or the outcome regression are correctly specified.

. . ~D=1 .
@ To see this, consider the term Y; and rewrite

5=~ 2
D= P(X/)

:E[Y 1+ 50x) (vP= fml(x))]
=E[:P=] B[ 2P )

o We can see that the second term is equal to O if
D; —p(x; _ 1 —
B[E[ B xPx] —0 or B[E[sP=—m(]I¥Px] =0
1

@ The double robust estimator was developed by Robins & Rotnitzky (1995) in the context of
missing data. In that context, the inverse probability weighting adjusts for the propensity to
be missing in the sample.
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