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Framing the
problem



Causality and Correlation

Causality is the relation between two events: a first event, the cause, and a second

event, the effect. The second event is a consequence of the first event;

·

In causal studies are interested in knowing whether X causes Y;·

Correlation refers to any of a broad class of statistical relationships involving

dependence of events;

·

Correlation studies are concerned with the association between a variable X an an

outcome Y

·
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Example 1: Do hospitals make people healthier
? (1/3)

How would you address this question ?·

A natural approach consists in comparing the health status of those who have been

to the hospital to the health of those who have not. In the US, the National Health

Interview Survey (NHIS) contains the information needed to make this comparison:

·

it includes a question During the past 12 months, was the respondent a patient in

a hospital overnight?

it includes a question Would you say your health in general is excellent (1), very

good, good, fair, poor(5)?

-

-
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Example 1: Do hospitals make people healthier
? (2/3)

Group Sample Size Mean health Std. Error

Hospitalized 7,774 2.79 0.014

Not Hospitalized 90,049 2.07 0.003

The following table displays the mean health status among those who have been

hospitalized and those who have not (tabulated from the 2005 NHIS):

·

H0: E( Health | Hospitalized ) - E( Health | Not Hospitalized ) = 0·

The difference in the means is 0.71 with a t-statistic of 55.8 a highly significant

contrast in favor favor of the health for the non-hospitalized

-

By the way … how do you get the t-stat ?·
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Example 1: Do hospitals make people healthier
? (3/3)

Taken at face value, this result suggests that going to the hospital makes people

sicker

·

It is not impossible this is the right answer …Hospitals are full of other sick people

who might infect us, and dangerous machines and chemicals that might hurt us

·

Still, it is easy to see why this comparison should not be taken at face value: people

who go to the hospital are probably less healthy to begin with. Moreover, even after

hospitalization people who have sought medical care are not as healthy, on average,

as those who never get hospitalized in the first place, though they may well be better

than they otherwise would have been

·

How do we link this problem to what we have been learning about regression ?·
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Consider the following notation for the
hospital example

Let  if individual  went to the hospital and  otherwise

Let  be the health status of patient  indexed by  data determines whether he

went to the hospital such that

· = 1Di i = 0Di

· Yji i j

= {Yi
Y0i

Y1i

if = 0Di

if = 1Di

Now note that we can write  and don't forget it because

this will be the key …

 is called the causal effect of going to the hospital for individual 

· = + ( − ) ×Yi Y0i Y1i Y0i Di

· −Y1i Y0i i
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So our goal is to know  (1/2)−Y1i Y0i

Problem: we can never see both outcomes  and  at the same time· Y0i Y1i

One person either goes to the hospital or it does not (does not do both at the

same time)

-

Solution: we must learn about the effects of hospitalization by comparing the

average health of those who were and were not hospitalized

Very slowly lets use the board to replace  by its equivalent 

in and see what we get

·

This is what we did before with the t-test … so where is the problem !?

- E[ | = 1] − E[ | = 0]Yi Di Yi Di

-

· Yi + ( − ) ×Y0i Y1i Y0i Di
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So our goal is to know  (2/2)−Y1i Y0i

· E[ | = 1] − E[ | = 0] =Yi Di Yi Di

Causal effect :  +

Selection Bias:  - 

- E[ − | = 1]Y1i Y0i Di

- E[ | = 1]Y0i Di E[ | = 0]Y0i Di

Our simple t-test analysis adds to the causal effect the selection bias·

If the sick are more likely than the healthy to seek treatment, those who were

hospitalized haveworse  which makes selection bias negative in this example

·

Y0i

The selection bias may be so large (in absolute value) that it completely masks a

positive treatment effect

·

The goal of most empirical research is to overcome selection bias, and therefore

to say something about the causal effect of a variable like 

·

Di
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The gold standard of social science research
are randomized experiments

Remember that if X and Y are independent then · E[X|Y] = E[X]

Random assignment of  solves the selection problem because random assignment

makes  independent of potential outcomes:

· Di
Di

 (selection bias cancels

out)

- E[ | = 1] − E[ | = 0] = E[ ] − [ ] = 0Y0i Di Y0i Di Y0i Y0i

How relevant is our hospitalization allegory?·

Experiments often reveal things that are not what they seem on the basis of

naive comparisons alone

An iconic example from labor economics is the evaluation of government-

subsidized training programs (novas oportunidades in Portugal for example)

-

-
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How do we link all this talk to regression ?

Regression is a useful tool for the study of causal questions·

Suppose (for now) that the treatment effect is the same for everyone, say

, a constant

·

− =Y1i Y0i β1

Then we can re-write  as:· Yi

- = + +Yi β0 β1Di ϵi

- = E[ ]β0 Y0i

- = − E[ ]ϵi Y0i Y0i

Lets return to the board to see what this means …·
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Correlation does not imply causation (not
everything is what it seems)

Shoe size is positively correlated with reading skills (why?)

Icecream production is positively correlated with drowning events (why?)

Fire destruction is correlated with the number of fire trucks that try to estinguish it

(why)

·

·

·
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The Fundamentals of
Regression and Causality



Refresh your memory about the Gauss Markov
Assumptions (JWB page 47)

SLR.1 in the population model, the dependent variable, y, is related to the

independent variable, x, and the error (or disturbance), u, as: 

SLR.2 we have a random sample of size n,  following the

population model laid out in SLR.1

SLR.3 The sample outcomes x ,  are not all the same value

SLR.4 The error u has an expected value of zero given any value of the explanatory

variable:  (conditional independence assumption – CIA)

SLR.5  (homoskedasticity)

·

y = + x + uβ0 β1

· ( , ) : i ∈ 1, 2, . . . , nxi yi

· , i ∈ 1, . . . , nxi

·

E(u|x) = 0

· V(u|x) = σ2

Which assumption is being violated when we have selection bias ?·
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When does regression analaysis have a causal
interpretation ?

When the path to random assignment is blocked, we look for alternate routes to

causal knowledge. The most basic of these tools is regression, which compares

treatment and control subjects who have the same observed characteristics

·

Regression-based causal inference is predicated on the assumption that when key

observed variables have been made equal across treatment and control groups,

selection bias from the things we can’t see is also mostly eliminated

·

Formaly, a regression is causal when the conditional expectation function (CEF) —

 — that it approximates is causal

·

E[Y |X]

The CEF is causal when it describes average potential outcomes for a fixed reference

population

·

Example: The effect of hospital on health in a radomized trial (as we seen before)-
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When does regression analaysis have a causal
interpretation ? (1/2)

To make concrete assume that we want to find the causal connection of years of

schooling (s) to earnigs as the functional relation that determines how much an

individual would earn if he obtained different levels of eduction

·

Start with model  (we assume this to be a causal existing relation)· (s) = α + βs +fi ϵi

s does not have a subscript bcause  tells us what an individual would earn for

evey level of  not just observed the 

· ()fi
s Si

When using regression we substitue s by its oberserved value :· Si

- = α + β +Yi Si ϵi

Because  was not randomly determined – it was the consequence of personal

choice – it is possible that it is related to variables in . In that case SLR.4 will not

hold

· Si
ϵi
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When does regression analaysis have a causal
interpretation ? (2/2)

We may be able to solve this if we can decompose  in the variables that make  as

good as randomly assigned:

· ϵi Si

 (  and  are vectors of variables and parameters respectively)- = γ +ϵi Xi vi Xi γ

By construction · E[ | ] = γϵi Xi Xi

Then · E( (s)| ) = α + βs + γfi Xi Xi

And  has causal interpretation· = α + β + γ +Yi Si Xi vi

The key assumption is that  are the only reason why  and  are correlated

(selection on observables)

· Xi ϵi Si
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Quantifying the problem of omitted variables

Option 1:·

True population model: 

Model estimate: 

- y = + + + uβ0 β1x1 β2x2

- = + +y ̂ β0̂ β1̂x1 β2̂x2

Option 2:·

Wrong population model: 

Model estimate: 

- y = + + ϵβ0 β1x1

- = +y ̃ β0
~ β1

~ x1

In general  ?· ≠β1̂ β1
~

Fortunately turns out there is a simple relationship between  and  which allows

understanding the potential direction of our bias

· β1̂ β1
~
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Direction of the bias on the single regressor
case

In the single regressor case we are able to know exactly the direction of the bias:·

 is the slope coefficient from the simple regression of  on 

( )

- = +β1
~ β1̂ β2̂δ ̃

- δ ̃ x2 x1
= α + δ + vx2 x1

·
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When  we have δ = 0 =β1
~ β1̂

#-- Simulate x variables
ssize <- 1000
x1 <- rnorm( n = ssize , sd = 3 )
x2 <- rnorm( n = ssize , sd = 5 )
y  <- 2 + 3*x1 + 5 * x2 + rnorm(n = ssize, sd = 5)

out.y.full  <- lm( y  ~ x1 + x2)
out.y.x1.om <- lm( y  ~ x1)
out.y.x2.om <- lm( y  ~ x2 ) 

cor.test(x = x1, y = x2)

## 
##  Pearson's product-moment correlation
## 
## data:  x1 and x2
## t = -0.501, df = 998, p-value = 0.6165
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.07777428  0.04618083
## sample estimates:
##         cor 
## -0.01585765

#-- output
stargazer(out.y.full, out.y.x1.om, out.y.x2.om,
  type = 'text', omit.stat = c('f','ser'), no.space=T)

## 
## ==========================================
## Dependent variable:     
## -----------------------------
## y
## (1)       (2)       (3)   
## ------------------------------------------
## x1 2.969***  2.843***
## (0.055)   (0.257)
## x2 4.994*** 4.965*** 
## (0.034) (0.068) 
## Constant     1.982***  2.790***  2.124*** 
## (0.167)   (0.783)   (0.331) 
## ------------------------------------------
## Observations   1,000     1,000     1,000  
## R2 0.960     0.109     0.841  
## Adjusted R2    0.959     0.108     0.841  
## ==========================================
## Note: *p<0.1; **p<0.05; ***p<0.01

20/42



When  we have δ ≠ 0 ≠β1
~ β1̂

#-- Simulate x variables
ssize <- 1000
x1 <- rnorm( n = ssize , sd = 3 )
x2 <- rnorm( n = ssize , mean = x1, sd = 5 )
y  <- 2 + 3*x1 + 5 * x2 + rnorm(n = ssize, sd = 5)

out.y.full  <- lm( y  ~ x1 + x2)
out.y.x1.om <- lm( y  ~ x1)
out.y.x2.om <- lm( y  ~ x2 ) 

cor.test(x = x1, y = x2)

## 
##  Pearson's product-moment correlation
## 
## data:  x1 and x2
## t = 19.1359, df = 998, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.4712417 0.5620403
## sample estimates:
##       cor 
## 0.5180991

#-- Output
stargazer(out.y.full, out.y.x1.om, out.y.x2.om,
  type = 'text', omit.stat = c('f','ser'), no.space =T)

## 
## ==========================================
## Dependent variable:     
## -----------------------------
## y
## (1)       (2)       (3)   
## ------------------------------------------
## x1 3.075***  7.944***
## (0.060)   (0.260)
## x2 4.957*** 5.797*** 
## (0.032) (0.052) 
## Constant     1.936***  2.719***  2.042*** 
## (0.156)   (0.785)   (0.296) 
## ------------------------------------------
## Observations   1,000     1,000     1,000  
## R2 0.980     0.484     0.926  
## Adjusted R2    0.980     0.483     0.926  
## ==========================================
## Note: *p<0.1; **p<0.05; ***p<0.01
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We can check that = +β1
~ β1̂ β2̂ δ̃

y  <- 2 + 3*x1 + 5 * x2 + rnorm(n = 1000, sd = 5)
out.y.full      <- lm( y  ~ x1 + x2)
out.y.incomp.x1 <- lm( y  ~ x1 )
out.y.incomp.x2 <- lm( y  ~ x2 )
out.x1.parti    <- lm( x1 ~ x2 )
out.x2.parti    <- lm( x2 ~ x1 )
stargazer(
  out.x1.parti,
  out.x2.parti,
  out.y.full,
  out.y.incomp.x1,
  out.y.incomp.x2,
  type = 'text', omit.stat = c('f','ser'))

## 
## =========================================================
## Dependent variable:
## --------------------------------------------
## x1       x2 y
## (1)      (2)      (3)      (4)      (5)   
## ---------------------------------------------------------
## x2 0.273*** 5.006*** 5.806***
## (0.014) (0.033) (0.050) 
##
## x1                    0.982*** 2.929*** 7.846***

##                       (0.051)  (0.062)  (0.262)
##
## Constant      0.035    0.158   1.905*** 2.696*** 2.006***
## (0.082)  (0.155)  (0.161)  (0.793)  (0.289) 
##
## ---------------------------------------------------------
## Observations  1,000    1,000    1,000    1,000    1,000  
## R2 0.268    0.268    0.978    0.473    0.930  
## Adjusted R2   0.268    0.268    0.978    0.472    0.930  
## =========================================================
## Note: *p<0.1; **p<0.05; ***p<0.01

coef(out.y.full)['x1'] + coef(out.y.full)
['x2']*coef(out.x2.parti)['x1']

##       x1 
## 7.846219

coef(out.y.full)['x2'] + coef(out.y.full)
['x1']*coef(out.x1.parti)['x2']

##       x2 
## 5.806257
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As a side note, lets think about the partialling 
out interpretation of regression

#----------------------
#-- Simulate x variables
ssize <- 1000
x1 <- rnorm( n = ssize , sd = 3 )
x2 <- rnorm( n = ssize , mean = x1 ,sd = 3 )
y  <- 2 + 3*x1 + 5 * x2 + rnorm(n = ssize, sd = 5)

out.y.full      <- lm( y  ~ x1 + x2)
out.parti.x2    <- lm( x1 ~ x2 ) 
out.y.x1 <- lm( y  ~ residuals(out.parti.x2))
out.y.x1.om     <- lm( y  ~ x1)

#-----------------
#-- Unify Output
stargazer(
   out.y.full,
   out.parti.x2,
   out.y.x1.om,
   out.y.x1,
  type = 'text', 
  omit.stat = c('f','ser'), no.space =T)

## 
## ===========================================================
## Dependent variable:
## -----------------------------------
## y        x1            y
## (1)      (2)      (3)      (4)   
## -----------------------------------------------------------
## x1 2.992*** 8.044***
## (0.077) (0.171)
## x2 4.971*** 0.485***
## (0.053)  (0.016)
## residuals(out.parti.x2) 2.992***
## (0.420) 
## Constant 2.283***  0.016   2.784*** 3.811***
## (0.164)  (0.068)  (0.514)  (0.897) 
## -----------------------------------------------------------
## Observations 1,000    1,000    1,000    1,000  
## R2 0.968    0.493    0.689    0.048  
## Adjusted R2 0.968    0.492    0.688    0.047  
## ===========================================================
## Note: *p<0.1; **p<0.05; ***p<0.01
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What about when we have more than one
regressors ?

When there are multiple regressors in the estimated model things are harder·

Correlation between a single explanatory variable and the error generally results in

all OLS estimators being biased

·

Consider the population model  such that  is

correlated with  and  and  are not correlated

· y = + + + uβ0 β1x1 β2x2 β3x3 x1
x3 x2 x3

It is tempting to think that omitting  will only bias , but that is only true when 

and  are not correlated. If they are, omitting  will also bias the estimate for .

· x3 β1 x1
x2 x3 β2

24/42



Examples of Omitted
Variable Bias



Example 1: Does stork population cause birth
rates ? (1/4)

We all know how babies are made: "The stork can be seen flying over rooftops with a

little cloth bundle before landing at the doorstep of a happy couple who then unwrap

their precious, smiling newborn—right? This myth was once a common story to tell

children who were deemed too young to be told anything different."

·

·

Storks have been associated with babies and family for centuries. Can we test it with

data ?

·
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Example 1: Does stork population cause birth
rates ? (2/4)

dataset <-  read.csv(
    file = '../datasets/stork_population.dsv' ,sep  =';')
names(dataset)

## [1] "country" "area_km2"
## [3] "stork_pairs" "human_population_millions"  
## [5] "yearly_birth_rate_thousands"

dataset[1:8,c('country','stork_pairs','yearly_birth_rate_thousands')]

##    country stork_pairs yearly_birth_rate_thousands
## 1  Albania 100 83
## 2  Austria 300 87
## 3  Belgium 1 118
## 4 Bulgaria 5000 117
## 5  Denmark 9 59
## 6   France 140 774
## 7  Germany 3300 901
## 8   Greece 2500 106
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Example 1: Does stork population cause birth
rates ? (3/4)

  library(ggplot2)
  qplot( data = dataset,x = stork_pairs
        , y = yearly_birth_rate_thousands
        , geom = 'point') +  
  stat_smooth(method='lm') + theme_bw()

out.lm <- lm( yearly_birth_rate_thousands ~ stork_pairs, data 
= dataset)
stargazer(out.lm, type = 'text')

## 
## ===============================================
##                         Dependent variable:    
##                     ---------------------------
##                     yearly_birth_rate_thousands
## -----------------------------------------------
## stork_pairs                  0.029***          
##                               (0.009)          
##                                                
## Constant                     225.029**         
##                              (93.561)          
##                                                
## -----------------------------------------------
## Observations                    17             
## R2                             0.385           
## Adjusted R2                    0.344           
## Residual Std. Error      332.185 (df = 15)     
## F Statistic            9.380*** (df = 1; 15)   
## ===============================================
## Note:               *p<0.1; **p<0.05; ***p<0.01
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Example 1: Does stork population cause birth
rates ? (4/4)

qplot( data = dataset,x = stork_pairs
        , y = yearly_birth_rate_thousands
        , geom = 'point', color = area_km2) +
  theme_bw()

out.lm <- lm( yearly_birth_rate_thousands ~ stork_pairs + 
area_km2, data = dataset)
stargazer(out.lm, type = 'text')

## 
## ===============================================
##                         Dependent variable:    
##                     ---------------------------
##                     yearly_birth_rate_thousands
## -----------------------------------------------
## stork_pairs                    0.006           
##                               (0.006)          
##                                                
## area_km2                     0.002***          
##                              (0.0002)          
##                                                
## Constant                      -7.412           
##                              (56.702)          
##                                                
## -----------------------------------------------
## Observations                    17             
## R2                             0.862           
## Adjusted R2                    0.842           
## Residual Std. Error      162.744 (df = 14)     
## F Statistic           43.787*** (df = 2; 14)   
## ===============================================
## Note:               *p<0.1; **p<0.05; ***p<0.01
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Example 2: Do high prices make movies sell
more ?

You want to estimate: 

What do you think will be the relation between sales and price ?

· movie_sales = + movie_price + uβ0 β1

·

library(data.table,verbose=FALSE,quietly=TRUE)
library(stargazer ,verbose=FALSE,quietly=TRUE)
library(ggplot2   ,verbose=FALSE,quietly=TRUE)
dataset <- read.csv(file='../datasets/vod_sales.csv')
dataset <- data.table(dataset)
qplot(data=dataset,y=price,x=leases,geom='point') + labs(x = 'Leases', y = 'Price') + theme_bw()
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Example 2: Do high prices make movies sell
more ?

summary(out     <- lm( leases ~  price,data=dataset))

## 
## Call:
## lm(formula = leases ~ price, data = dataset)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -52.293 -24.119  -5.695  10.893 204.707 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -20.46678    8.96496  -2.283   0.0237 *  
## price         0.18549    0.03012   6.158 5.21e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 34.93 on 169 degrees of freedom
## Multiple R-squared:  0.1832, Adjusted R-squared:  0.1784 
## F-statistic: 37.92 on 1 and 169 DF,  p-value: 5.214e-09

Does this make any sense ? (If not what can be happening?)·
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Example 2: Do high prices make movies sell
more ?

dataset$age     <- 2013 - dataset$year
summary(out     <- lm( leases ~  price + age,data=dataset))

## 
## Call:
## lm(formula = leases ~ price + age, data = dataset)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -53.425 -20.664  -6.367  13.102 201.575 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.72748   12.47086   0.299 0.765389    
## price        0.13712    0.03444   3.982 0.000102 ***
## age         -1.76483    0.64474  -2.737 0.006862 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 34.28 on 168 degrees of freedom
## Multiple R-squared:  0.2181, Adjusted R-squared:  0.2088 
## F-statistic: 23.43 on 2 and 168 DF,  p-value: 1.057e-09

32/42



Example 2: Do high prices make movies sell
more ?

qplot(data=dataset,y=price,x=age,geom='point') + 
  labs(x = 'age', y = 'Price') + theme_bw()
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Example 2: Do high prices make movies sell
more ?

qplot(data=dataset,y=price,x=age,geom='point', position =  position_jitter(w = 0.0, h = 20)
      , size = leases, alpha = 0.5) + 
  labs(x = 'age', y = 'Price') + theme_bw()
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Example 2: Do high prices make movies sell
more ?

qplot(data=dataset,y=price,x=imdb,geom='point', position =  position_jitter(w = 0.0, h = 20)
      , size = leases, alpha = 0.5) + 
  labs(x = 'Imdb Rating', y = 'Price') + theme_bw()
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Example 2: Do high prices make movies sell
more ?

summary(out     <- lm( leases ~  price + I(age == 2) + I( age >= 3  & age <= 9) + I(age >=10) ,data=dataset))

## 
## Call:
## lm(formula = leases ~ price + I(age == 2) + I(age >= 3 & age <= 
##     9) + I(age >= 10), data = dataset)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -73.593 -15.199  -5.904  12.194 181.407 
## 
## Coefficients:
##                             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                 68.90888   16.88737   4.080 6.97e-05 ***
## price                        0.01988    0.03797   0.524    0.601    
## I(age == 2)TRUE            -11.52135    9.81053  -1.174    0.242    
## I(age >= 3 & age <= 9)TRUE -52.29505    9.75924  -5.359 2.77e-07 ***
## I(age >= 10)TRUE           -63.44998   11.99849  -5.288 3.85e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 31.66 on 166 degrees of freedom
## Multiple R-squared:  0.3409, Adjusted R-squared:  0.325 
## F-statistic: 21.46 on 4 and 166 DF,  p-value: 2.758e-14
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Reverse
Causality



Simultaneity (1/2)

So far we showed how OLS can produced biased estimates for the parameters when

we have omitted variables

·

Conceptually, this problem was straightforward. In the omitted variables case, there

is a variable (or more than one) that we would like to hold fixed when estimating the

ceteris paribus effect of one or more of the observed explanatory variables

·

We could estimate the parameters of interest by OLS if we could collect better data·

Another important form of bias of explanatory variables is simultaneity·

Simultaneity arises when one or more of the explanatory variables is jointly

determined with the dependent variable, typically through an equilibrium

mechanism

·

38/42



Simultaneity (2/2)
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Example: Murder rates and the size of the
police force

Cities often want to determine how much additional law enforcement will decrease

their murder rates

·

A simple cross-sectional model to address this question is (murdpc is murders per

capita, polpc is number of police officers per capita, and incpc is income per capita):

·

murdpc = polpc + + incpc + u1a1 b10 b11

The question we hope to answer: If a city exogenously increases its police force, will

that increase, on average, lower the murder rate?

·

But can we ever think of police force size as being exogenously determined?·

Probably not, a city’s spending on law enforcement is at least partly determined by

its expected murder rate. To reflect this, we postulate a second relationship:

·

polpc = murdpc + b20 + otherf actorsa2
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Boar Example: illustrating the problem

Explanatory variables determined simultaneously with the dependent variable are

generally correlated with the error term

·

Lets solve for  in the board to see what the following equations mean:· y2
= + +y1 α1y2 β1z1 u1
= + +y2 α2y1 β2z2 u2

· (1 − ) = + + +α1α2 y2 α2β1z1 β2z2 α2u1 u2

Because  and  are uncorrelated by assumption, the issue is whether  and 

are correlated. From the reduced form in we see that  and  are correlated if and

only if  and u1 are correlated (because z1 and z2 are assumed exogenous).

But this is a linear function of  and , so it is generally correlated with 

· z1 u1 y2 u1
y2 u1

+α2u1 u2
1−α1α2

u1 u2 u1
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Conclusion

Regression-based causal inference, the work horse of the data (policy) analyst, is

predicated on the assumption that when key observed variables have been made

equal across treatment and control groups, selection bias from the things we can’t

see is also mostly eliminated

·

The greatest threat to causal modeling in regression analysis are violations of SLR.4:·

Omitted variables: we omit a variable that actually belongs in the true (or

population) model that is correlated with a variable in the model (which we have

seen in detail)

Reverse causality: the chicken and the egg problem. One of the explanatory 
variables determines the outcome which in turn determines the explanatory 
variable (which we have only touched)

Measurement error in the explanatory variables: we use an imprecise measure

of an economic variable in a regression model (which i am just now mentioning)

-

-

-
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