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Statistics: Random Variables and their
Probability Distributions

Purpose: learn this vocabulary



Random Variables

A random variable is variable whose value is subject to variations due to
chance.

Examples of random variables:

m Number of heads appearing in 10 flips of a coin
m Number of sunny days in a calendar year

m Number of people showing up for a flight

u ...

What is chance?

m Chance does not need to be really random

m In most cases it can be a phenomenon that we are unable or not
interested in understanding or predicting




Discrete Random Variables

A discrete random variable is one that takes on only a finite or countably
infinite number of values.

Examples:

m Number of heads appearing in 10 flips of a coin
m Number of sunny days in a calendar year

m Number of people showing up for a flight

A Bernoulli random variable is the simplest example of a discrete random
variable.

Example (1 flip of a coin)

B P(X =1) =1/2 (read as "the probability that X equals one is one-half")
m Probabilities must sumto 1, so: P(X =0) = 1/2



Discrete Random Variables: pdf

The probability density function (pdf) of X summarizes the information
concerning the possible outcomes of X and the corresponding probabilities:

f(Xj) = p]’j = 1’27"'7k

with f(x) = 0 for any x not equal to x;.

The sum of all probabilities must be 1:

> flx) =1

j=1



Discrete Random Variables: pdf

Example

m X is the number of free throws made by a basketball player out of
two attempts.

m X can take the values {0,1,2}
m Assume the pdf of X is f(0) = 0.2, f(1) = 0.44, and f(2) = 0.36
m Q: What is the probability that a player misses both throws?

m Q: What is the probability that a player scores at least once?

m Q: What is the probability that a player scores three times?




Continuous Random Variables

A variable X is a continuous random variable if it takes any real value
with zero probability.

"A continuous random variable X can take on so many possible values that
we cannot count them or match them up with the positive integers"
Wooldridge, Appendix B

Examples:

m Commute time on a rainy day
® Max. temperature on a given day
® Unemployment rate



Continuous Random Variables: pdf

The probability density function (pdf) of a continuous random variable
is a continuous function.

Because the probability of obtaining any real value is zero, we use the pdf
to compute events that involve a range of values

Example:

m X is the time between two buses showing up in the same stop

® Q: What is the probability that the next bus will arrive in more than 5
min. but less than 10 min.?



Continuous Random Variables: pdf

P(a < X < b) corresponds to the shaded area below:

The integral of f(x) over all its support must be 1:

/:: f(x)dx =1




Cumulative Density Function (cdf)

The cumulative density function (cdf) describes the probability that a
random variable takes a variable smaller than a given number:

F(a) =P(X < a)
Properties:

m F(—o0) =0

mFloo)=1

m For any number ¢, P(X > c) =1 — F(c)

m For any numbers a and b, P(a < X < b) = F(b) — F(a)



Joint Distributions

We are usually interested in the occurrence of events involving more than
one random variable

m Example: What is the probability that it will rain tomorrow and it will
be more than 10 degrees Celcius?

Let X and Y be discrete random variables. Then, (X, Y) have a joint

distribution, which is fully described by the joint probability density
function of (X,Y):

fy(x,y) =P(X=x,Y =y)



Joint Distributions and Independence

Two random variables, X and Y are independent, if and only if:

fxy (X, y) = K (X)fr ()

In the discrete case we have:

PX=x,Y=y)=PX=x)P(Y =)



Joint Distributions and Independence

Example: Free Throw Shooting

m A basketball player is shooting two free throws
m X is a Bernoulli random variable equal to 1 if first throw is a success

®m Y is a Bernoulli random variable equal to 1 if second throw is a
success

m Assume the player succeeds in 80% of the free throws
mPX=1)=P(Y=1)=0.8

m Q: What is the probability of the player making both free throws?
m If X and Y are independent, then:

PX=1,Y=1)=P(X =1)P(y =1) =0.8% = 0.64

Note: if the throws are not independent then these calculations are not
valid




Conditional Distributions

We are usually interested in how one random variable is related to
one or more other random variables

The conditional distribution of Y given X tells us the distribution of Y
conditional on us having information about X:

frix(yIx) = fxy (%, )/ fx(x)

Discrete case:
frix(y|x) = P(Y = y|X = x)

Examples

m Height of a person given that we know their age
m Height of a person given that we know their age and gender
m Probability of blue eyes given that is Portuguese



Conditional Distributions

Example: Free Throw Shooting

m A basketball player is shooting two free throws
mEP(X=1)=0.8
m Conditional density:

® fyx(1[1) = 0.85, fy x(0[1) = 0.15
= f,1x(1]0) = 0.70, £, x(0]0) = 0.30

m Q: What is the probability of the player making both free throws?

P(X=1,Y=1)=P(Y =1]X =1)P(Y = 1) = 0.85 % 0.80 = 0.68



Features of Probability Distributions

We are usually interested in a few features of the distributions of
random variables

The features of interest can be put in three categories:
m Measures of central tendency

m Measures of variability or spread

m Measures of association between two random variables



Central Tendency Measures: Expected Value

The expected value of a random variable X, E(X), is a weighed average of
all possible values of X.

E(X) = xaf(x1) + X2f(x2) + ... + xef (xi) = > xif(x;)

Example:

m X can take the values -1, 0, 2 with probabilities 1/8, 1/2, and 3/8,
respectively

® Q: What is the expected value of X?

E(X) = (~1)-(1/8)+0-(1/2)+2-(3/8) = 5/8



Measures of Central Tendency: The
Expected Value

If X is a continuous random variable, then E(X) is defined as an integral:

E(X) = /_O:Ox f(x)dx



Properties of the Expected Value

Given a random variable, X, and a function g(-), we can create a new
random variable: g(X)

m Example: g(X) = —X

The expected value of a function of X is the weighted average of the
function of X over the density of X:

Elg(x)] = a(x)f(x))

j=1

Continuous case:

Elg0)] = | g fex)ax

— o0



Properties of the Expected Value

Property E.1

For any constant ¢, E(c) = ¢

Property E.2

For any constants a and b, E(aX + b) = aE(X) + b

Property E.3

If {a1,a2,...,an} are constants and {X1,X2,...,X,} are random variables,
then:

E(a1X1 =+ 32X2 4+ ...+ a,,X,,) = alE(Xl) + azE(Xz) + ...+ anE(X,,)



Measures of Variability: Variance

The variance of a random variable X is a measure of its dispersion around
the expected value, u = E(X):

0’ = Var(X) = E[(X — p)°]

o = E(X* = 2Xp + pi*) = E(X*) = 2p* + p* = E(X*) — i



Properties of the Variance

Property VAR.1

Var(X) = 0 if and only if X is a constant, i.e., there is a constant ¢ such that
P(X = c¢) = 1. In this case, E(X)=c.

Property VAR.2

For any constants a and b, Var(aX + b) = a? Var(X).

Note that b does not affect the variance. This means that adding a constant
to a random variable does not change it's variance.



Measures of Variability: Standard Deviation

The standard deviation of a random variable, sd(X), is simply the square
root of the variance:

o = sd(X) = +/Var(X)

Property SD.1

For any constant ¢, sd(c) =0

Property SD.2

For any constants a and b, sd(aX + b) = |a| sd(X).



Example: Standardizing a Random Variable

Let’s create a new random variable from random variable X:

Expected value of Z:

First rewrite Zas Z = X — £

o

1
E(Z) = ;E(X) —
Variance of Z:

1 m 1 o
Var(Z) =Var(— X — =)= —=Var(X) = — =1
(2) =Var(CX = 0) = S Var(x) = 7



Measures of Association: Covariance

It is useful to have summary measures of how two random variables
vary with one another

The covariance between two random variable X and Y, is defined as:

Oxy = COV(X, Y) = E[(X — ,ux)(Y — /Ly)]

If, oxy > 0, then, on average, when X is above its mean, Y is also above its
mean



Properties of Covariance

Property COV.1:

If X and Y are independent, then Cov(X,Y) =0

Property COV.2:

For any constants a1, b1, a2, bz,

COV(a1X + bl, aY + bz) = 3132COV(X, Y)

Note: Cov(X,X) = E[(X — ux) (X — px)] = Var(X)



Variance of Sums of Random Variables

Property VAR.3

For constants a and b,

Var(aX + bY) = a’Var(X) + b*Var(Y) 4+ 2abCov(X, Y)

Note: If X and Y are uncorrelated, i.e., Cov(X,Y) = 0, then:

Var(X +Y) = Var(X) + Var(Y)

and
Var(X — Y) = Var(X) + Var(Y)



Conditional Expectation

Usually, in social sciences we want to explain a variable, Y, in terms of
another variable, say X.

One way to summarize this information is to calculate the conditional
expectation, that for the discrete case is:

E(Y|X = x) Zy,fy‘x (yilx)

Example:

m How does the expected hourly wage (WAGE) change with the years
of formal education (EDUC)?

m What the meaning of E(WAGE|EDUC = 12)?
m and E(WAGE|EDUC = 16)?



Conditional Expectation

Example:

Suppose that the expected value of WAGE given EDUC is the linear function:

E(WAGE|EDUC) = 1.05 + 0.45EDUC

m What is the expected hourly wage for a person with 9 years of
education?

m E(WAGE|EDUC = 9) = 1.05 4 0.45 * 9 = 5.1 Eur/Hour



Properties of Conditional Expectation

Property CE.1

E[c(X)|X] = c(X) for any function c(X)

Property CE.2

For any functions a(X) and b(X),

E[a(X)Y + b(X)|X] = a(X)E(Y|X) + b(X)

Property CE.3

If X and Y are independent, then E(Y|X) = E(Y)
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