The R Language and Environment

What is R? (www.r-project.org)

R is a language and environment for statistical computing and graphics

- http://www.r-project.org/about.html

Why use R?

R offers many advantages:

- Free: As an open-source project, you can use R free of charge
- A language: In R, you do data analysis by writing functions and scripts, not by pointing and clicking.
- Flexible statistical analysis toolkit: All of the data analysis tools that you can think of are built into the R language
- Powerful, cutting-edge analytics: Leading academics and researches use R to develop the latest methods in statistics, machine learning, and predictive modeling
- A robust, growing community: thousands of contributors and over two millions users. If you have a question about R, someone's answered it (or they can and will)

Why use R?

R is growing in the research and business community

<u>Note</u>: Excludes the incumbents SAS and SPSS, which the most used but in strong decline

RStudio (www.rstudio.com)

RStudio Hands On

Generating Random Variables in R

Random Variable: Number of heads appearing in 10 flips of a coin

simulate 10 coin flips: coin.flip

s <- rbinom(n=10, size=1, prob=0.5) coin . flips

[1] 1 0 1 1 0 0 0 1 0 1

count the number of heads (number of "1"s) x<-</p>

sum(coin . flips)

х

[1] 5

Generating Random Variables in R

Simulate and plot 1000 coin flips

library(ggplot2)
X <-- rbinom(n=1000, size=10, prob=0.5)
gplot(factor(X), geom="histogram")</pre>

Display first rows

dt.grades[1:10]

	student_id	hw1	hw2	hw3	hw4	hw5	hw6	hw7	hw8	hw_avg	particip	midterm	final_exam	final_grade	pass
1:	1	20	16.3	17.5	19.5	16.8	16.0	14.7	15.3	17.0	1	17.0	18.6	18	TRUE
2:	2	20	20.0	19.3	19.0	14.0	15.6	17.2	16.9	17.8	NA	15.1	14.3	16	TRUE
3:	3	20	15.0	16.7	19.0	15.5	15.8	17.3	17.2	17.1	1	7.7	15.6	15	TRUE
4:	4	20	18.8	18.0	20.0	14.3	16.0	16.5	18.9	17.8	1	14.9	17.8	17	TRUE
5:	5	20	16.3	17.1	16.5	16.8	16.0	14.7	13.6	16.4	1	7.5	13.0	14	TRUE
6:	6	20	17.5	17.0	14.9	15.3	16.2	16.1	16.4	16.7	NA	12.5	8.1	14	TRUE
7:	7	20	20.0	19.3	19.0	14.0	15.6	17.2	16.4	17.7	NA	17.2	18.3	18	TRUE
8:	8	20	16.3	20.0	19.5	13.3	15.8	18.9	19.1	17.8	1	13.9	19.7	18	TRUE
9:	9	20	18.8	16.5	20.0	16.5	15.3	16.7	15.3	17.4	1	14.7	18.6	17	TRUE
10:	10	20	18.8	16.3	17.0	15.5	15.8	17.3	18.1	17.3	1	11.0	16.1	16	TRUE

Summarize the data

summary(dt.grades)

student_id	hw1	hw2	hw3	hw4	hw5	hw6	
Min. : 1.00	Min. :20	Min. :12.50	Min. : 0.00	Min. :10.90	Min. :10.3	Min. :12.20	
1st Qu.: 25.75	1st Qu.:20	1st Qu.:15.00	1st Qu.:14.30	1st Qu.:16.50	1st Qu.:13.3	1st Qu.:14.40	
Median : 50.50	Median :20	Median :17.50	Median :16.30	Median :18.00	Median :14.3	Median :15.80	
Mean : 50.50	Mean :20	Mean :17.17	Mean :15.69	Mean :17.42	Mean :14.5	Mean :15.12	
3rd Qu.: 75.25	3rd Qu.:20	3rd Qu.:18.80	3rd Qu.:17.10	3rd Qu.:19.00	3rd Qu.:16.0	3rd Qu.:16.00	
Max. :100.00	Max. :20	Max. :20.00	Max. :20.00	Max. :20.00	Max. :20.0	Max. :16.60	
hw7	hw8	hw_avg	particip	midterm	final_exam	final_grade	
Min. :10.20	Min. : 0.00	Min. :13.20	Min. :1	Min. : 2.7	Min. : 2.70	Min. : 8.00	
1st Qu.:14.70	1st Qu.:12.00	1st Qu.:15.40	1st Qu.:1	1st Qu.: 8.3	1st Qu.:11.00	1st Qu.:13.00	
Median :16.50	Median :13.90	Median :16.40	Median :1	Median :12.2	Median :13.65	Median :14.00	
Mean :15.92	Mean :13.25	Mean :16.12	Mean :1	Mean :11.2	Mean :13.09	Mean :14.44	
3rd Qu.:17.20	3rd Qu.:16.30	3rd Qu.:16.70	3rd Qu.:1	3rd Qu.:13.8	3rd Qu.:15.62	3rd Qu.:16.00	
Max. :18.90	Max. :19.10	Max. :17.80	Max. :1	Max. :17.2	Max. :19.70	Max. :18.00	
			NA's :70				

pass Mode :logical FALSE:1 TRUE :99 NA's :0

Plot Final Grades

qplot(factor(final_grade), geom="histogram", data=dt.grades)

Plot Midterm Grades against Final Exam Grades

qplot(midterm, final_exam, geom="point", data=dt.grades)

Plot Midterm Grades against Final Exam Grades

qplot(midterm, final exam, geom="point", data=dt.grades) + geom smooth(method=Im, se=FALSE)

Sample Covariance between midterm and final exam grades

dt.grades[, cov(final_exam, midterm)]

[1] 5.284127

Sample Conditional Mean

dt.grades[midterm < 10, mean(final_exam)]
dt.grades[midterm >= 10, mean(final_exam)]

[1] 11.87368
[1] 14.38025

Sample Conditional Mean

ggplot(dt.grades[, list(avg_final_exam = mean(final_exam)), by=list(midterm=round(midterm))]) +
geom_point(aes(midterm, avg_final_exam))

