{
"cells": [
{
"cell_type": "markdown",
"id": "db3c2e94-9499-4d7d-bf0f-1ab892a61fa1",
"metadata": {},
"source": [
"### ASSOCIATION RULES"
]
},
{
"cell_type": "markdown",
"id": "7e642b4f-11cf-4bd5-bc7f-c97da0efc7e2",
"metadata": {},
"source": [
"#### FACEPLATE DATASET"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "c6b19ec8-aa53-4b0f-b2ab-3c3e5c8eacbd",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Red | \n",
" White | \n",
" Blue | \n",
" Orange | \n",
" Green | \n",
" Yellow | \n",
"
\n",
" \n",
" Transaction | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1 | \n",
" 1 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" 2 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 3 | \n",
" 0 | \n",
" 1 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 4 | \n",
" 1 | \n",
" 1 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 5 | \n",
" 1 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 6 | \n",
" 0 | \n",
" 1 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 7 | \n",
" 1 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 8 | \n",
" 1 | \n",
" 1 | \n",
" 1 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" 9 | \n",
" 1 | \n",
" 1 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 10 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Red White Blue Orange Green Yellow\n",
"Transaction \n",
"1 1 1 0 0 1 0\n",
"2 0 1 0 1 0 0\n",
"3 0 1 1 0 0 0\n",
"4 1 1 0 1 0 0\n",
"5 1 0 1 0 0 0\n",
"6 0 1 1 0 0 0\n",
"7 1 0 1 0 0 0\n",
"8 1 1 1 0 1 0\n",
"9 1 1 1 0 0 0\n",
"10 0 0 0 0 0 1"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = pd.read_csv(r'/Users/patriciaxufre/Documents/SBE - Disciplinas/2957 | ABA/2024-25/Datasets Examples/Faceplate.csv')\n",
"df.set_index('Transaction', inplace = True)\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "97b4e61c-c99e-447c-b160-a9d9c4748fd2",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/opt/anaconda3/lib/python3.12/site-packages/mlxtend/frequent_patterns/fpcommon.py:161: DeprecationWarning: DataFrames with non-bool types result in worse computationalperformance and their support might be discontinued in the future.Please use a DataFrame with bool type\n",
" warnings.warn(\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" antecedents | \n",
" consequents | \n",
" support | \n",
" confidence | \n",
" lift | \n",
" representativity | \n",
" leverage | \n",
" zhangs_metric | \n",
" jaccard | \n",
" certainty | \n",
" kulczynski | \n",
"
\n",
" \n",
" \n",
" \n",
" 12 | \n",
" (Red, White) | \n",
" (Green) | \n",
" 0.2 | \n",
" 0.5 | \n",
" 2.500000 | \n",
" 1.0 | \n",
" 0.12 | \n",
" 1.000 | \n",
" 0.500000 | \n",
" 0.375 | \n",
" 0.750000 | \n",
"
\n",
" \n",
" 15 | \n",
" (Green) | \n",
" (Red, White) | \n",
" 0.2 | \n",
" 1.0 | \n",
" 2.500000 | \n",
" 1.0 | \n",
" 0.12 | \n",
" 0.750 | \n",
" 0.500000 | \n",
" 1.000 | \n",
" 0.750000 | \n",
"
\n",
" \n",
" 4 | \n",
" (Green) | \n",
" (Red) | \n",
" 0.2 | \n",
" 1.0 | \n",
" 1.666667 | \n",
" 1.0 | \n",
" 0.08 | \n",
" 0.500 | \n",
" 0.333333 | \n",
" 1.000 | \n",
" 0.666667 | \n",
"
\n",
" \n",
" 14 | \n",
" (White, Green) | \n",
" (Red) | \n",
" 0.2 | \n",
" 1.0 | \n",
" 1.666667 | \n",
" 1.0 | \n",
" 0.08 | \n",
" 0.500 | \n",
" 0.333333 | \n",
" 1.000 | \n",
" 0.666667 | \n",
"
\n",
" \n",
" 7 | \n",
" (Orange) | \n",
" (White) | \n",
" 0.2 | \n",
" 1.0 | \n",
" 1.428571 | \n",
" 1.0 | \n",
" 0.06 | \n",
" 0.375 | \n",
" 0.285714 | \n",
" 1.000 | \n",
" 0.642857 | \n",
"
\n",
" \n",
" 8 | \n",
" (Green) | \n",
" (White) | \n",
" 0.2 | \n",
" 1.0 | \n",
" 1.428571 | \n",
" 1.0 | \n",
" 0.06 | \n",
" 0.375 | \n",
" 0.285714 | \n",
" 1.000 | \n",
" 0.642857 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" antecedents consequents support confidence lift \\\n",
"12 (Red, White) (Green) 0.2 0.5 2.500000 \n",
"15 (Green) (Red, White) 0.2 1.0 2.500000 \n",
"4 (Green) (Red) 0.2 1.0 1.666667 \n",
"14 (White, Green) (Red) 0.2 1.0 1.666667 \n",
"7 (Orange) (White) 0.2 1.0 1.428571 \n",
"8 (Green) (White) 0.2 1.0 1.428571 \n",
"\n",
" representativity leverage zhangs_metric jaccard certainty kulczynski \n",
"12 1.0 0.12 1.000 0.500000 0.375 0.750000 \n",
"15 1.0 0.12 0.750 0.500000 1.000 0.750000 \n",
"4 1.0 0.08 0.500 0.333333 1.000 0.666667 \n",
"14 1.0 0.08 0.500 0.333333 1.000 0.666667 \n",
"7 1.0 0.06 0.375 0.285714 1.000 0.642857 \n",
"8 1.0 0.06 0.375 0.285714 1.000 0.642857 "
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Frequent ItemSets\n",
"\n",
"# Association Rules\n"
]
},
{
"cell_type": "markdown",
"id": "ca7d7ef3-8080-45fe-84cb-2b4e460db23c",
"metadata": {},
"source": [
"#### BOOK CLUB DATASET"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "a8e53481-02ba-450d-9d1f-ad2ecd8458cf",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import matplotlib.pylab as plt\n",
"from mlxtend.frequent_patterns import apriori, association_rules"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "c3eb56d6-3b1c-4044-b70c-1ac81bd56384",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Seq# | \n",
" ID# | \n",
" Gender | \n",
" M | \n",
" R | \n",
" F | \n",
" FirstPurch | \n",
" ChildBks | \n",
" YouthBks | \n",
" CookBks | \n",
" ... | \n",
" ItalCook | \n",
" ItalAtlas | \n",
" ItalArt | \n",
" Florence | \n",
" Related Purchase | \n",
" Mcode | \n",
" Rcode | \n",
" Fcode | \n",
" Yes_Florence | \n",
" No_Florence | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 1 | \n",
" 25 | \n",
" 1 | \n",
" 297 | \n",
" 14 | \n",
" 2 | \n",
" 22 | \n",
" 0 | \n",
" 1 | \n",
" 1 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 5 | \n",
" 4 | \n",
" 2 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 1 | \n",
" 2 | \n",
" 29 | \n",
" 0 | \n",
" 128 | \n",
" 8 | \n",
" 2 | \n",
" 10 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 4 | \n",
" 3 | \n",
" 2 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 2 | \n",
" 3 | \n",
" 46 | \n",
" 1 | \n",
" 138 | \n",
" 22 | \n",
" 7 | \n",
" 56 | \n",
" 2 | \n",
" 1 | \n",
" 2 | \n",
" ... | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 2 | \n",
" 4 | \n",
" 4 | \n",
" 3 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 3 | \n",
" 4 | \n",
" 47 | \n",
" 1 | \n",
" 228 | \n",
" 2 | \n",
" 1 | \n",
" 2 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 5 | \n",
" 1 | \n",
" 1 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 4 | \n",
" 5 | \n",
" 51 | \n",
" 1 | \n",
" 257 | \n",
" 10 | \n",
" 1 | \n",
" 10 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 5 | \n",
" 3 | \n",
" 1 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 24 columns
\n",
"
"
],
"text/plain": [
" Seq# ID# Gender M R F FirstPurch ChildBks YouthBks CookBks \\\n",
"0 1 25 1 297 14 2 22 0 1 1 \n",
"1 2 29 0 128 8 2 10 0 0 0 \n",
"2 3 46 1 138 22 7 56 2 1 2 \n",
"3 4 47 1 228 2 1 2 0 0 0 \n",
"4 5 51 1 257 10 1 10 0 0 0 \n",
"\n",
" ... ItalCook ItalAtlas ItalArt Florence Related Purchase Mcode \\\n",
"0 ... 0 0 0 0 0 5 \n",
"1 ... 0 0 0 0 0 4 \n",
"2 ... 1 0 0 0 2 4 \n",
"3 ... 0 0 0 0 0 5 \n",
"4 ... 0 0 0 0 0 5 \n",
"\n",
" Rcode Fcode Yes_Florence No_Florence \n",
"0 4 2 0 1 \n",
"1 3 2 0 1 \n",
"2 4 3 0 1 \n",
"3 1 1 0 1 \n",
"4 3 1 0 1 \n",
"\n",
"[5 rows x 24 columns]"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = pd.read_csv(r'/Users/patriciaxufre/Documents/SBE - Disciplinas/2957 | ABA/2024-25/Datasets Examples/CharlesBookClub.csv')\n",
"df.head(5)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "c351597f-fca7-44de-bf56-b0d39d3a4371",
"metadata": {},
"outputs": [],
"source": [
"ignore = ['Seq#', 'ID#', 'Gender', 'M', 'R', 'F', 'FirstPurch', 'Related Purchase', 'Mcode', 'Rcode', 'Fcode', 'Yes_Florence', 'No_Florence']\n"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "43eafcb8-1579-46e6-af4e-c2328c40643a",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/opt/anaconda3/lib/python3.12/site-packages/mlxtend/frequent_patterns/fpcommon.py:161: DeprecationWarning: DataFrames with non-bool types result in worse computationalperformance and their support might be discontinued in the future.Please use a DataFrame with bool type\n",
" warnings.warn(\n"
]
}
],
"source": [
"# Frequent itemsets and Rules\n"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "418d33c4-150e-48b3-80db-ab28ec5694bf",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" antecedents | \n",
" consequents | \n",
" support | \n",
" confidence | \n",
" lift | \n",
" representativity | \n",
" leverage | \n",
" conviction | \n",
" zhangs_metric | \n",
" jaccard | \n",
" certainty | \n",
" kulczynski | \n",
"
\n",
" \n",
" \n",
" \n",
" 64 | \n",
" (RefBks, YouthBks) | \n",
" (ChildBks, CookBks) | \n",
" 0.05525 | \n",
" 0.680000 | \n",
" 2.809917 | \n",
" 1.0 | \n",
" 0.035588 | \n",
" 2.368750 | \n",
" 0.701080 | \n",
" 0.206157 | \n",
" 0.577836 | \n",
" 0.454153 | \n",
"
\n",
" \n",
" 73 | \n",
" (RefBks, DoItYBks) | \n",
" (ChildBks, CookBks) | \n",
" 0.06125 | \n",
" 0.662162 | \n",
" 2.736207 | \n",
" 1.0 | \n",
" 0.038865 | \n",
" 2.243680 | \n",
" 0.699207 | \n",
" 0.224154 | \n",
" 0.554304 | \n",
" 0.457631 | \n",
"
\n",
" \n",
" 60 | \n",
" (YouthBks, DoItYBks) | \n",
" (ChildBks, CookBks) | \n",
" 0.06700 | \n",
" 0.648910 | \n",
" 2.681448 | \n",
" 1.0 | \n",
" 0.042014 | \n",
" 2.158993 | \n",
" 0.699266 | \n",
" 0.240791 | \n",
" 0.536821 | \n",
" 0.462885 | \n",
"
\n",
" \n",
" 80 | \n",
" (RefBks, GeogBks) | \n",
" (ChildBks, CookBks) | \n",
" 0.05025 | \n",
" 0.614679 | \n",
" 2.539995 | \n",
" 1.0 | \n",
" 0.030467 | \n",
" 1.967190 | \n",
" 0.660276 | \n",
" 0.183729 | \n",
" 0.491661 | \n",
" 0.411162 | \n",
"
\n",
" \n",
" 69 | \n",
" (YouthBks, GeogBks) | \n",
" (ChildBks, CookBks) | \n",
" 0.06325 | \n",
" 0.605263 | \n",
" 2.501087 | \n",
" 1.0 | \n",
" 0.037961 | \n",
" 1.920267 | \n",
" 0.670211 | \n",
" 0.223301 | \n",
" 0.479239 | \n",
" 0.433313 | \n",
"
\n",
" \n",
" 77 | \n",
" (DoItYBks, GeogBks) | \n",
" (ChildBks, CookBks) | \n",
" 0.06050 | \n",
" 0.599010 | \n",
" 2.475248 | \n",
" 1.0 | \n",
" 0.036058 | \n",
" 1.890321 | \n",
" 0.662959 | \n",
" 0.214159 | \n",
" 0.470989 | \n",
" 0.424505 | \n",
"
\n",
" \n",
" 66 | \n",
" (ChildBks, CookBks, GeogBks) | \n",
" (YouthBks) | \n",
" 0.06325 | \n",
" 0.577626 | \n",
" 2.424452 | \n",
" 1.0 | \n",
" 0.037162 | \n",
" 1.803495 | \n",
" 0.659782 | \n",
" 0.222320 | \n",
" 0.445521 | \n",
" 0.421552 | \n",
"
\n",
" \n",
" 71 | \n",
" (ChildBks, RefBks, CookBks) | \n",
" (DoItYBks) | \n",
" 0.06125 | \n",
" 0.591787 | \n",
" 2.323013 | \n",
" 1.0 | \n",
" 0.034883 | \n",
" 1.825642 | \n",
" 0.635276 | \n",
" 0.206229 | \n",
" 0.452247 | \n",
" 0.416110 | \n",
"
\n",
" \n",
" 49 | \n",
" (DoItYBks, GeogBks) | \n",
" (YouthBks) | \n",
" 0.05450 | \n",
" 0.539604 | \n",
" 2.264864 | \n",
" 1.0 | \n",
" 0.030437 | \n",
" 1.654554 | \n",
" 0.621215 | \n",
" 0.191396 | \n",
" 0.395607 | \n",
" 0.384178 | \n",
"
\n",
" \n",
" 62 | \n",
" (ChildBks, RefBks, CookBks) | \n",
" (YouthBks) | \n",
" 0.05525 | \n",
" 0.533816 | \n",
" 2.240573 | \n",
" 1.0 | \n",
" 0.030591 | \n",
" 1.634013 | \n",
" 0.617608 | \n",
" 0.192845 | \n",
" 0.388010 | \n",
" 0.382858 | \n",
"
\n",
" \n",
" 58 | \n",
" (ChildBks, DoItYBks, CookBks) | \n",
" (YouthBks) | \n",
" 0.06700 | \n",
" 0.524462 | \n",
" 2.201309 | \n",
" 1.0 | \n",
" 0.036564 | \n",
" 1.601869 | \n",
" 0.625652 | \n",
" 0.224080 | \n",
" 0.375729 | \n",
" 0.402840 | \n",
"
\n",
" \n",
" 57 | \n",
" (ChildBks, YouthBks, CookBks) | \n",
" (DoItYBks) | \n",
" 0.06700 | \n",
" 0.558333 | \n",
" 2.191691 | \n",
" 1.0 | \n",
" 0.036430 | \n",
" 1.687358 | \n",
" 0.617877 | \n",
" 0.217709 | \n",
" 0.407358 | \n",
" 0.410668 | \n",
"
\n",
" \n",
" 33 | \n",
" (ChildBks, RefBks) | \n",
" (DoItYBks) | \n",
" 0.07100 | \n",
" 0.553606 | \n",
" 2.173135 | \n",
" 1.0 | \n",
" 0.038328 | \n",
" 1.669490 | \n",
" 0.619255 | \n",
" 0.227564 | \n",
" 0.401015 | \n",
" 0.416155 | \n",
"
\n",
" \n",
" 75 | \n",
" (ChildBks, CookBks, GeogBks) | \n",
" (DoItYBks) | \n",
" 0.06050 | \n",
" 0.552511 | \n",
" 2.168838 | \n",
" 1.0 | \n",
" 0.032605 | \n",
" 1.665406 | \n",
" 0.605192 | \n",
" 0.199177 | \n",
" 0.399546 | \n",
" 0.395000 | \n",
"
\n",
" \n",
" 20 | \n",
" (ChildBks, GeogBks) | \n",
" (YouthBks) | \n",
" 0.07550 | \n",
" 0.516239 | \n",
" 2.166797 | \n",
" 1.0 | \n",
" 0.040656 | \n",
" 1.574642 | \n",
" 0.630734 | \n",
" 0.244337 | \n",
" 0.364935 | \n",
" 0.416567 | \n",
"
\n",
" \n",
" 46 | \n",
" (CookBks, GeogBks) | \n",
" (YouthBks) | \n",
" 0.08025 | \n",
" 0.513600 | \n",
" 2.155719 | \n",
" 1.0 | \n",
" 0.043023 | \n",
" 1.566098 | \n",
" 0.635399 | \n",
" 0.255370 | \n",
" 0.361470 | \n",
" 0.425216 | \n",
"
\n",
" \n",
" 61 | \n",
" (ChildBks, RefBks, YouthBks) | \n",
" (CookBks) | \n",
" 0.05525 | \n",
" 0.891129 | \n",
" 2.144715 | \n",
" 1.0 | \n",
" 0.029489 | \n",
" 5.368741 | \n",
" 0.569017 | \n",
" 0.130847 | \n",
" 0.813737 | \n",
" 0.512051 | \n",
"
\n",
" \n",
" 16 | \n",
" (ChildBks, YouthBks) | \n",
" (DoItYBks) | \n",
" 0.08025 | \n",
" 0.544068 | \n",
" 2.135693 | \n",
" 1.0 | \n",
" 0.042674 | \n",
" 1.634563 | \n",
" 0.623775 | \n",
" 0.249224 | \n",
" 0.388216 | \n",
" 0.429541 | \n",
"
\n",
" \n",
" 51 | \n",
" (RefBks, CookBks) | \n",
" (DoItYBks) | \n",
" 0.07450 | \n",
" 0.533095 | \n",
" 2.092619 | \n",
" 1.0 | \n",
" 0.038899 | \n",
" 1.596148 | \n",
" 0.606952 | \n",
" 0.232813 | \n",
" 0.373492 | \n",
" 0.412769 | \n",
"
\n",
" \n",
" 28 | \n",
" (RefBks) | \n",
" (ChildBks, CookBks) | \n",
" 0.10350 | \n",
" 0.505495 | \n",
" 2.088820 | \n",
" 1.0 | \n",
" 0.053950 | \n",
" 1.532844 | \n",
" 0.655468 | \n",
" 0.301529 | \n",
" 0.347618 | \n",
" 0.466590 | \n",
"
\n",
" \n",
" 72 | \n",
" (RefBks, DoItYBks, CookBks) | \n",
" (ChildBks) | \n",
" 0.06125 | \n",
" 0.822148 | \n",
" 2.086669 | \n",
" 1.0 | \n",
" 0.031897 | \n",
" 3.407321 | \n",
" 0.562688 | \n",
" 0.150399 | \n",
" 0.706514 | \n",
" 0.488802 | \n",
"
\n",
" \n",
" 15 | \n",
" (YouthBks) | \n",
" (ChildBks, CookBks) | \n",
" 0.12000 | \n",
" 0.503673 | \n",
" 2.081292 | \n",
" 1.0 | \n",
" 0.062344 | \n",
" 1.527218 | \n",
" 0.682021 | \n",
" 0.333102 | \n",
" 0.345215 | \n",
" 0.499770 | \n",
"
\n",
" \n",
" 70 | \n",
" (ChildBks, RefBks, DoItYBks) | \n",
" (CookBks) | \n",
" 0.06125 | \n",
" 0.862676 | \n",
" 2.076236 | \n",
" 1.0 | \n",
" 0.031749 | \n",
" 4.256359 | \n",
" 0.557975 | \n",
" 0.144033 | \n",
" 0.765057 | \n",
" 0.505044 | \n",
"
\n",
" \n",
" 23 | \n",
" (ChildBks, CookBks) | \n",
" (DoItYBks) | \n",
" 0.12775 | \n",
" 0.527893 | \n",
" 2.072198 | \n",
" 1.0 | \n",
" 0.066101 | \n",
" 1.578560 | \n",
" 0.682613 | \n",
" 0.346206 | \n",
" 0.366511 | \n",
" 0.514682 | \n",
"
\n",
" \n",
" 25 | \n",
" (DoItYBks) | \n",
" (ChildBks, CookBks) | \n",
" 0.12775 | \n",
" 0.501472 | \n",
" 2.072198 | \n",
" 1.0 | \n",
" 0.066101 | \n",
" 1.520476 | \n",
" 0.694292 | \n",
" 0.346206 | \n",
" 0.342311 | \n",
" 0.514682 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" antecedents consequents support confidence \\\n",
"64 (RefBks, YouthBks) (ChildBks, CookBks) 0.05525 0.680000 \n",
"73 (RefBks, DoItYBks) (ChildBks, CookBks) 0.06125 0.662162 \n",
"60 (YouthBks, DoItYBks) (ChildBks, CookBks) 0.06700 0.648910 \n",
"80 (RefBks, GeogBks) (ChildBks, CookBks) 0.05025 0.614679 \n",
"69 (YouthBks, GeogBks) (ChildBks, CookBks) 0.06325 0.605263 \n",
"77 (DoItYBks, GeogBks) (ChildBks, CookBks) 0.06050 0.599010 \n",
"66 (ChildBks, CookBks, GeogBks) (YouthBks) 0.06325 0.577626 \n",
"71 (ChildBks, RefBks, CookBks) (DoItYBks) 0.06125 0.591787 \n",
"49 (DoItYBks, GeogBks) (YouthBks) 0.05450 0.539604 \n",
"62 (ChildBks, RefBks, CookBks) (YouthBks) 0.05525 0.533816 \n",
"58 (ChildBks, DoItYBks, CookBks) (YouthBks) 0.06700 0.524462 \n",
"57 (ChildBks, YouthBks, CookBks) (DoItYBks) 0.06700 0.558333 \n",
"33 (ChildBks, RefBks) (DoItYBks) 0.07100 0.553606 \n",
"75 (ChildBks, CookBks, GeogBks) (DoItYBks) 0.06050 0.552511 \n",
"20 (ChildBks, GeogBks) (YouthBks) 0.07550 0.516239 \n",
"46 (CookBks, GeogBks) (YouthBks) 0.08025 0.513600 \n",
"61 (ChildBks, RefBks, YouthBks) (CookBks) 0.05525 0.891129 \n",
"16 (ChildBks, YouthBks) (DoItYBks) 0.08025 0.544068 \n",
"51 (RefBks, CookBks) (DoItYBks) 0.07450 0.533095 \n",
"28 (RefBks) (ChildBks, CookBks) 0.10350 0.505495 \n",
"72 (RefBks, DoItYBks, CookBks) (ChildBks) 0.06125 0.822148 \n",
"15 (YouthBks) (ChildBks, CookBks) 0.12000 0.503673 \n",
"70 (ChildBks, RefBks, DoItYBks) (CookBks) 0.06125 0.862676 \n",
"23 (ChildBks, CookBks) (DoItYBks) 0.12775 0.527893 \n",
"25 (DoItYBks) (ChildBks, CookBks) 0.12775 0.501472 \n",
"\n",
" lift representativity leverage conviction zhangs_metric jaccard \\\n",
"64 2.809917 1.0 0.035588 2.368750 0.701080 0.206157 \n",
"73 2.736207 1.0 0.038865 2.243680 0.699207 0.224154 \n",
"60 2.681448 1.0 0.042014 2.158993 0.699266 0.240791 \n",
"80 2.539995 1.0 0.030467 1.967190 0.660276 0.183729 \n",
"69 2.501087 1.0 0.037961 1.920267 0.670211 0.223301 \n",
"77 2.475248 1.0 0.036058 1.890321 0.662959 0.214159 \n",
"66 2.424452 1.0 0.037162 1.803495 0.659782 0.222320 \n",
"71 2.323013 1.0 0.034883 1.825642 0.635276 0.206229 \n",
"49 2.264864 1.0 0.030437 1.654554 0.621215 0.191396 \n",
"62 2.240573 1.0 0.030591 1.634013 0.617608 0.192845 \n",
"58 2.201309 1.0 0.036564 1.601869 0.625652 0.224080 \n",
"57 2.191691 1.0 0.036430 1.687358 0.617877 0.217709 \n",
"33 2.173135 1.0 0.038328 1.669490 0.619255 0.227564 \n",
"75 2.168838 1.0 0.032605 1.665406 0.605192 0.199177 \n",
"20 2.166797 1.0 0.040656 1.574642 0.630734 0.244337 \n",
"46 2.155719 1.0 0.043023 1.566098 0.635399 0.255370 \n",
"61 2.144715 1.0 0.029489 5.368741 0.569017 0.130847 \n",
"16 2.135693 1.0 0.042674 1.634563 0.623775 0.249224 \n",
"51 2.092619 1.0 0.038899 1.596148 0.606952 0.232813 \n",
"28 2.088820 1.0 0.053950 1.532844 0.655468 0.301529 \n",
"72 2.086669 1.0 0.031897 3.407321 0.562688 0.150399 \n",
"15 2.081292 1.0 0.062344 1.527218 0.682021 0.333102 \n",
"70 2.076236 1.0 0.031749 4.256359 0.557975 0.144033 \n",
"23 2.072198 1.0 0.066101 1.578560 0.682613 0.346206 \n",
"25 2.072198 1.0 0.066101 1.520476 0.694292 0.346206 \n",
"\n",
" certainty kulczynski \n",
"64 0.577836 0.454153 \n",
"73 0.554304 0.457631 \n",
"60 0.536821 0.462885 \n",
"80 0.491661 0.411162 \n",
"69 0.479239 0.433313 \n",
"77 0.470989 0.424505 \n",
"66 0.445521 0.421552 \n",
"71 0.452247 0.416110 \n",
"49 0.395607 0.384178 \n",
"62 0.388010 0.382858 \n",
"58 0.375729 0.402840 \n",
"57 0.407358 0.410668 \n",
"33 0.401015 0.416155 \n",
"75 0.399546 0.395000 \n",
"20 0.364935 0.416567 \n",
"46 0.361470 0.425216 \n",
"61 0.813737 0.512051 \n",
"16 0.388216 0.429541 \n",
"51 0.373492 0.412769 \n",
"28 0.347618 0.466590 \n",
"72 0.706514 0.488802 \n",
"15 0.345215 0.499770 \n",
"70 0.765057 0.505044 \n",
"23 0.366511 0.514682 \n",
"25 0.342311 0.514682 "
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Display 25 rules with highest lift\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7a15b6fc-b439-4765-a76f-f920579d4e9f",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python [conda env:base] *",
"language": "python",
"name": "conda-base-py"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}