PREDICTION AND CLASSIFICATION MODELS

k-Nearest Neighbors (k-NN)

NOvVA 4120

OOOOOOOOOOOO
ssssssssssssss

PATRICIA XUFRE

APPLIED BUSINESS ANALYTICS @

[[]
The £-NN Classifier '
e o
v e e
\CategoryB
1. Select the number K of the neighbors . " % R s
2. Calculate the distance of k number of neighbors ¢ ¢ ¢ point
3. Take the K nearest neighbors o *
4. Among these k neighbors, count the number of the data points Category A >
in each category. (X1
5. Assign the new data points to that category for which the
number of the neighbor is maximum. 01
* e
@ * ¢ Category A:3 neighbors
E' [‘ 9. @@& Category B
2 g ¢ New Data
|'|-ftlS lmPOI"t.dn't \/(xl —_ yl)z + ces + (xn —_ yn)z P @. point
o normalize o *
the numerical Category A
variables >®

N 2 VA 4191 PATRICIA XUFRE

NOVA SCHOOL OF
ssssssssssssss

APPLIED BUSINESS ANALYTICS

Riding Mowers

A riding-mower manufacturer would like to find a way of classifying families in a city into those likely to purchase a riding
mower and those not likely to buy one. A pilot random sample is undertaken of 12 owners and 12 nonowners in the city.

M mower_df = pd.read_csv('RidingMowers.csv')
mower_df['Number'] = mower_df.index + 1

trainData, validData = train_test_split(mower_df, test_size=0.4, random_state=123) 24 5
mower_df.head()
1 o8
22 1 L o3
PEr o1 o4 e 10
9 12
. 20 * PREE! .
N
&
’ . ol ol @20
Income Lot_Size Ownership Number S 18
& 18 & 1F e/
0 600 18.4 Owner 1 L .2
o 21
1 85.5 16.8 Owner 2 16 4 o 19
2 648 216 Owner 3 24 @ Owner
* & Nonowner
3 61.5 20.8 Owner 4 14 4 ¢ 23 Y New household
4 870 236 Owner 5 a0 50 60 70 80 % 100 110

Income

-
N 2 VA 4192 PATRICIA XUFRE

NOVA SCHOOL OF
BUSINESS & ECONOMICS

APPLIED BUSINESS ANALYTICS

Riding Mowers

M predictors = ['Income', 'Number']

scaler = preprocessing.StandardScaler()
scaler.fit(trainData[['Income’, ‘Lot_Size']])

Transform the full dataset
mowerNorm = pd.concat([pd.DataFrame(scaler.transform(mower_df[['Income’, 'Lot_Size']]),

columns=['zIncome', 'zLot_Size']), mower_df[['Ownership’', 'Number®]]], axis=1)
mowerNorm. head()

M trainNorm = mowerNorm.iloc[trainData.index]
validNorm = mowerNorm.iloc[validData.index]
newHouseholdNorm = pd.DataFrame(scaler.transform(newHousehold),
columns=['zIncome', 'zLot_Size'])

knn = NearestNeighbors(n_neighbors=3)
knn.fit(trainNorm.iloc[:, ©:2])
distances, indices = knn.kneighbors(newHouseholdNorm)

indices 1is a List of lists, we are only interested in the first element N f gg }

trainNorm.iloc[indices[@], :]

zincome zlLot_Size Ownership Number

13 -0.956146 1.053566 Nonowner 14
0 -0.535081 0.012395 Owner 1
2 -0.254387 1.400623 Owner 3

-
N 2 VA 4193 PATRICIA XUFRE

NOVA SCHOOL OF
BUSINESS & ECONOMICS

APPLIED BUSINESS ANALYTICS

Riding Mowers

M predictors = ['Income', 'Number']

scaler = preprocessing.StandardScaler()
scaler.fit(trainData[['Income’, ‘Lot_Size']])

Transform the full dataset
mowerNorm = pd.concat([pd.DataFrame(scaler.transform(mower_df[['Income’, 'Lot_Size']]),

columns=['zIncome', 'zLot_Size']), mower_df[['Ownership’', 'Number®]]], axis=1)
mowerNorm. head()

M trainNorm = mowerNorm.iloc[trainData.index]
validNorm = mowerNorm.iloc[validData.index]
newHouseholdNorm = pd.DataFrame(scaler.transform(newHousehold),
columns=['zIncome', 'zLot_Size'])

knn = NearestNeighbors(n_neighbors=3)
knn.fit(trainNorm.iloc[:, ©:2])
distances, indices = knn.kneighbors(newHouseholdNorm)

indices 1is a List of lists, we are only interested in the first element N f gg }

trainNorm.iloc[indices[@], :]

zincome zlLot_Size Ownership Number

13 -0.956146 1.053566 Nonowner 14
0 -0.535081 0.012395 Owner 1
2 -0.254387 1.400623 Owner 3

-
N 2 VA 4193 PATRICIA XUFRE

NOVA SCHOOL OF
BUSINESS & ECONOMICS

APPLIED BUSINESS ANALYTICS

Riding Mowers

M train_X = trainNorm[['zIncome', 'zLot_Size']]
train_y = trainNorm['Ownership’]
valid_X = validNorm[['zIncome', 'zLot_Size']]
valid_y = validNorm['Ownership’]

Train a classifier for different values of k
results = []
for k in range(l, 15):

knn = KNeighborsClassifier(n_neighbors=k).fit(train_X, train_y)
results.append({ Me/m
s,))
‘accuracy': accuracy score(valid y, knn.predict(valid X)) M # Retrain with full dataset
H mower_X = mowerNorm[['zIncome', 'zlot_Size']]
mower_y = mowerNorm['Ownership']
Convert results to a pandas data frame knn = KNeighborsClassifier(n_neighbors=3).fit(mower_X, mower_y)
results = pd.DataFrame(results)
print(results)

distances, indices = knn.kneighbors(newHouseholdNorm)

k accuracy print(knn.predict(newHouseholdNorm))
2} 1 0.8 print('Distances’,distances)
12 0.7 print(’'Indices’, indices)
§ i g'g print(mowerNorm.iloc[indices[@], :])
s 6 o ['Ouner]
6 7 9.5 Distances [[©.35797119 0.52631868 ©.54565179]]
7 8 0.4 Indices [[3 8 13]]
8 9 0.7 zIncome zlLot_Size Ownership Number
9 1o 8.5 3 -90.447371 1.0853566 Owner 4
ﬁ E g-z 8 -0.808772 ©.706509 Owner 9
12 13 e:a 13 -0.956146 1.053566 Nonowner 14
13 14 0.4

N 2 VA 4193 PATRICIA XUFRE

NOVA SCHOOL OF
BUSINESS & ECONOMICS

APPLIED BUSINESS ANALYTICS

The £-NN Classifier: other versions

More than two classes
1) new record is classified as a member of the majority class of its k neighbors, or

2) when there is a specific class that we are interested in identifying, the proportion of the k
neighbors that belong to this class of interest can be used as an estimate of the probability
(propensity) that the new record belongs to that class, and then comparing with an user-specified

cutoff value we decide whether to assign the new record to that class.

Categorical variables
1) Should be replaced by dummies variables
2) All categories of the categorical variable should be considered

-
N 2 VA 4124 PATRICIA XUFRE

OOOOOOOOOOOO
ssssssssssssss

APPLIED BUSINESS ANALYTICS

The £-NN Classifier for a Numerical
Outcome

1) Determine the k neighbors by computing distances

2) Calculate the (weighted) average outcome value of the k-nearest neighbors to determine the
prediction

The weights of the weighted average
decrease with increasing distance from the

point at which the [oreo(ic‘tion is required.

-
N 2 VA 4125 PATRICIA XUFRE

OOOOOOOOOOOO
ssssssssssssss

