
USING LLMs

1

2695 Introduction to Machine Learning
Masters Program in Economics, Finance and Management

Using ChatGPT

2
How I use LLMs, Andrej Karpathy

https://www.youtube.com/watch?v=EWvNQjAaOHw

knowledge from
pretraining

personality from
post training

new chat

working model

On using LLMs

3

• What is “stored” in the model knowledge base is only what was contained in the pre-training data

• LLM “knows” better things mentioned frequently on the Internet

• Recent knowledge can be obtained with additional tools

• When switching topics, change to a new chat to erase the context window, tokens in the context window
make the inference more expensive and slower, also “distracting”

• Be mindful of the model that you are using: smaller models, cheaper but less powerful

• reasoning/thinking models tuned with reinforcement learning: inference takes longer, suitable for more
complex problems in math and code

How I use LLMs, Andrej Karpathy

https://www.youtube.com/watch?v=EWvNQjAaOHw

Tool Internet search

4

• When a model knows that it does not know, it searches the web, pull that information in the context window
and uses it to answer

• Some models automatically detect when to use search, for some you have to state to use search

• Internet search + reasoning models= Deep research

• typically, available on paid plans

• model asks clarifying question

• takes a couple of minutes

• generates custom research paper

• still no guarantees that there are no hallucinations

How I use LLMs, Andrej Karpathy

https://www.youtube.com/watch?v=EWvNQjAaOHw

Different LLMs use different tools behind the scene

5
How I use LLMs, Andrej Karpathy

https://www.youtube.com/watch?v=EWvNQjAaOHw

ChatGPT writes python code to calculate

Grok did not use any calculation tools,
“remembers” the result wrongly

Claude writes JS code to calculate

Gemini did not use any calculation tools,
but knew this result

Take care when using LLMs

6

• Avoid inputting personally identifiable information, trade secrets, or other sensitive data into public LLMs, as
this data could potentially be stored, used for future training, or accessed by third parties.

• Evaluate and independently verify any factual claims, especially for important decisions. Do not treat LLM
outputs as absolute truth.

• Review, edit, and validate all LLM outputs, especially those used for important tasks.

• Check the model's knowledge cut-off date. For current information, use LLMs integrated with search
capabilities or consult up-to-date sources.

• Use LLMs as tools to augment human intelligence, not replace it entirely. Continue to develop and apply your
own judgment and expertise.

Techniques for maximizing LLM performance

7https://www.youtube.com/watch?v=ahnGLM-RC1Y

Retrieval Augmented Generation (RAG)

8

• Technique for augmenting LLM knowledge with additional data: new data, private data.
• Helps with hallucinations, as the content is controlled.

RAG has two components:

• Indexing done offline:

• ingest data from a source

• break it into chunks

• create embeddings of the chunks

• store embedding in a vector store.

• Retrieval and generation:

• take the user query at run time and create its embedding

• retrieve the most relevant data from the source by comparing with the query embedding

• concatenate this data with the original input prompt

• send to the LLM fed to the text generator which produces the final output.

Sentence embedding

9

We can also represent sequences of words, or whole blocks of text as vectors.

Sentence Embeddings using Transformer models:
• Dense: Most values in the vector are non-zero.
• Fixed-Length: Uniform length, regardless of the sentence length
• Semantic richness: Similar meanings map to nearby vectors.
• Contextual: Meaning is derived from the surrounding words within the sentence.

https://huggingface.co/spaces/mteb/leaderboard

Cosine similarity

10

Retrieval Augmented Generation (RAG)

11https://www.youtube.com/watch?v=ahnGLM-RC1Y

Step 1: Indexing

12

Documents Break the text into
smaller chunks,
parameters:
chunk size,
chunk overlap

Send chunks
of text Store embeddings in

embeddings data base
(vector store)
(each chunk of
text=embedding vector)

Steps 2: Retrieval

13

User enters a
question Question is

converted to an
embedding vector

Question + Most
similar text is sent
to an LLM

Embedding of the
question is compared to
all the embeddings we
have stored.
Top k Most similar
embeddings are selected.

Answer is shown
to the user.

ADDRESSING COMMON ISSUES

14

2695 Introduction to Machine Learning
Masters Program in Economics, Finance and Management

Missing Values & Outliers

15

• Investigate First: Don't remove rows with missing data or outliers blindly.

• Missing value
• why are they missing?
• is there a pattern?
• small Percentages add up: Removing rows with any missing value can significantly reduce your dataset if

missing are spread across many columns.
• in practice: once the model is used in practice, if your pipeline cannot handle missing data, any data

point with a missing value cannot be scored
• leakage alert: Impute after splitting data and use statistics only from the training set to fit your imputer.

Use pipelines to handle this within cross-validation.

• Outliers
• is it a data entry error, a measurement issue, or a true extreme value
• outliers can represent genuine, important, and insightful data points
• consider capping extreme values for models sensitive to outliers. Tree based models are robust to

outliers

Encoding high cardinality features

16

• Features with very many unique values (approaching the number of samples) often act like identifiers and can lead to
overfitting

• For features that are essentially unique IDs or offer no predictive value (names) after investigation, removal is justified.
Always document your reasoning

• Why one-hot encoding (dummy variables) is often a bad Idea for high-cardinality:

• Curse of Dimensionality: If a feature has hundreds or thousands of unique values (e.g., "ZIP Code“, "Product Name"),
one-hot encoding will create an equal number of new binary (0/1) features.

• This massively increases the number of columns (dimensionality) in the dataset.
• Sparsity: Most of these new dummy features will be zero for any given sample
• Increased Computational Cost: Training models on datasets with very high dimensions is computationally expensive

and slow.
• Overfitting Risk: With many features, models are more likely to find spurious correlations in the training data that

don't generalize to unseen data. The model might memorize the training set instead of learning underlying patterns.

• Encoding Strategies:
• grouping: Combine infrequent categories into an "Other" category.
• target encoding: (Use with extreme caution within CV to prevent leakage).
• domain knowledge: Can you derive a more meaningful, lower-cardinality feature?

When it is ok and not ok to remove a feature

17

• When it is ok to remove a feature

• if we have features like user_id, customer_id, transaction_id, or serial numbers that are unique to each row. These
usually offer no generalizable patterns for a model to learn

• if a feature has almost the same value for nearly all data points, it provides no information to distinguish between
samples

• if we have very strong domain expertise that tells us a feature cannot logically influence the outcome we're trying
to predict, it might be a candidate. However, careful with assumptions – sometimes data reveals unexpected
relationships.

• if a feature contains information that would not be available at the time of prediction in a real-world scenario

• If we have two features that are perfectly or very highly correlated (e.g., “amount in euros" and “amount in
dollars"), they are providing largely the same information

• When it is NOT ok to remove a feature

• we think a feature is not that interesting (without strong domain knowledge), just by looking at the plots

• a feature has some missing values

Train validation test split

18

• Train set: data from which the model learns

• Validation set: data on which to tune your model and make decisions about hyperparameters and model selection
without "contaminating" the final test set.

• Test set: provides the final, unbiased evaluation of the fully trained and tuned model's performance. It simulates how the
model would perform on new, unseen real-world data.

• Cross validation offers multiple validation sets: instead of a single train/validation split, data is divided in k folds, and the
model is trained in iteration 1 on folds 1,2,34 and validated on fold 2, on iteration 1: trained on folds 1,2,3,5 and
validated on fold 4 ...and so on, until each fold has served as the validation set once.

• If all you training and decision making (model selection, hyperparameter selection) is done within cross-validation, no
need for additional validation set

Hyperparameter tuning

19

• Do not assume all default values are optimal for each dataset

• Understand what do parameters do and what range of parameter values make sense to explore (should you really waste
computational resource testing random forest with trees of depth 1 or 2?)

• Do not define a large search space (high number of parameter combinations) and then do grid search --- takes too long,
or use randomized search, but test only a couple of combinations (n_iter parameter)

• Do not do data leakage with CV: if your hyperparameter tuning involves a pipeline with preprocessing (e.g., scaling,
imputation), ensure these steps are fitted within each fold of the cross-validation, not on the whole dataset

• Define a clear optimization metric based on the business problem

• Check the results of the top scoring models in cross validation (cv_results_), you can pass multiple metrics in the scoring
parameter: examine the results, a model with a slightly lower score might be significantly simpler

	Slide 1
	Slide 2: Using ChatGPT
	Slide 3: On using LLMs
	Slide 4: Tool Internet search
	Slide 5: Different LLMs use different tools behind the scene
	Slide 6: Take care when using LLMs
	Slide 7: Techniques for maximizing LLM performance
	Slide 8: Retrieval Augmented Generation (RAG)
	Slide 9: Sentence embedding
	Slide 10: Cosine similarity
	Slide 11: Retrieval Augmented Generation (RAG)
	Slide 12: Step 1: Indexing
	Slide 13: Steps 2: Retrieval
	Slide 14
	Slide 15: Missing Values & Outliers
	Slide 16: Encoding high cardinality features
	Slide 17: When it is ok and not ok to remove a feature
	Slide 18: Train validation test split
	Slide 19: Hyperparameter tuning

