Churn Case Stud \ AR
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Business problem: what is exactly the problem we should solve

Define churn clearly: some options- subscription cancellation, inactivity for 30+ days, no purchase in 90 days.
Decide on actionability: how much in advance do we want to predict
What are we going to do with the results

Frequency of predictions: model should be run daily, weekly, monthly?



oooooooooooo
SSSSSSSSSSSSSSSSSS

ML problem formulation

Type of learning

Target variable

Prediction window & feature lookback window

What is needed as a result: labels or scores or ranking

Population to which is applied (maybe: customers who have been with the company at least x time)

Which errors are more costly: false positives or false negatives
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Data understanding

* Historical data availability ?

* Possible features:
* Customer Features (static)
* Demographics: age, region, income bracket
* Account Info: signup date, subscription type, channel of acquisition
* Usage Features (dynamic/behavioral)
* Frequency: Number of logins, purchases, sessions in last x days
* Recency: when was the service last used
* Monetary: Total spend in recent periods
* Product Interaction
* Changes in plan/tier
* Complaints or refunds
* Presence of a competitor in the area
* Dealing with imbalance: subsample non churners? include churners from longer time period?



Feature engineering

What makes a good feature?

Will the feature be available at prediction time (data leakage)

Instead of absolute values of usage or spending, aggregations: weekly, monthly?
* averages:
e deltain usage:
* rate of change

 ratios (refunds to purchase)

Instead of timestamps:

e recency values: days since last complaint, last usage?

Competitor presence

* just a flag (yes/no), more granular (offers better or same service)
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* Verifications of data quality
* do values/distributions “make sense”

* missing values (random, data entry errors?)

» Categorical values:

* high cardinality: aggregation (service levels into higher bundles, less frequent categories into “other”, cities
into regions or lat/long coordinates)
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Modeling

Train validation test split: time sensitive
Imbalanced data treatment
Typical steps:

* missing value

* categorical feature encoding

e scaling

* data balancing

 model fitting
Use different models and tune parameters, think of the optimization metric, joint optimization (optimize over all
pipeline steps at the same time, not sequentially): number of combinations to test vs computation time

If different approaches are executed in different pipelines, are they evaluated on the same data, so performance is
comparable: validation dataset
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Modeling in practice

* Incremental approach:
* try a smaller time period for feature engineering, do model selection and tuning, evaluate on validation
e add longer data from time period, do model selection and tuning, evaluate on validation

* try usage metrics, and then usage + demographics, and compare
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Interpretability

 What are the features important to the model (do they align with business intuition? Not necessary, sometimes
new patterns can be learnt)

 What is the impact of these features
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Evaluation

Baseline for comparison: consider those clients “who decreased their usage x%” as future churners?
Evaluate all metrics on a test set not used for anything else before
What type of errors is model making? Over or underestimating churners?

Are errors more present in one service/age group...
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Deployment

* Once the model is put in production, how do we know is it any good? (A/B testing)

 How often should we retrain? (data drift, score distribution)
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