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Text is everywhere

• Internet contains vast amount of text:

 web pages, social media feeds, email, emails and chats, digitized libraries 

• Many applications still produce or record text:

 customer support tickets, surveys and feedback forms, online product reviews

Text Preprocessing: transforms raw, unstructured text into a format that is suitable for automated analysis algorithm

Text mining: discovers patterns, insights, and knowledge from unstructured text data

Natural Language Processing: focused on enabling computers to understand, interpret, and generate human language, both text and 
speech, in a meaningful way
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Text mining tasks
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Text Summarization: Generating concise and coherent 
summaries 

Sentiment Analysis: Determining the sentiment (positive, 
negative, neutral), opinions, expressed in text towards specific 
topics

Document classification: labeling documents using pre-
defined categories, depending on their content. 

Topic modeling: automatically extracting meaning from 
texts by identifying recurrent themes or topics



Why is text mining challenging?

• Unstructured data:
• Documents have varying number of words, words can have varying lengths.
• Sometimes word order matters, sometimes not. 

• As data, text is relatively dirty:
People write ungrammatically, they misspell words, they abbreviate and punctuate randomly. 

• Text may contain synonyms (multiple words with the same meaning) and homographs (one spelling shared among 
multiple words with different meanings). 

• Terminology and abbreviations in one domain might be meaningless in another domain. 

• Context is important
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Text mining basic terminology and basic pipeline

• Document: one piece of text, no matter how large or small, could be a single sentence or a 100-page 
report, or anything in between, such as a YouTube comment or a blog posting.  

• Tokens or terms: for example, a word, sentence

• Corpus: collection of documents
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Text preprocessing

Goal: to clean and transform raw, unstructured text data into a standardized, structured, and noise-free format. 
The exact steps and their order can vary based on the specific task and data:

• Lowercasing (case normalization)

• Cleaning the text & normalizing

• Tokenization

• Stop word removal

• Stemming or Lemmatization
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Text preprocessing: Lowercasing

• Lowercasing all text: one of the simplest and most effective form of text preprocessing. It is 
applicable to most text mining problems and significantly helps with consistency of expected 
output.

• Case variations are so common that case normalization is usually necessary: example iPhone, 
iphone, and IPHONE.

• Lowercasing not always helpful: sentiment analysis, Information extraction: distinguishing US and 
us, company Apple from fruit apple
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Text preprocessing: Cleaning the text & normalizing

• Removing HTML tags

• Converting accented characters to ASCII characters
“latté” and “café” can be converted and standardized to just “latte” and “cafe”

• Expanding contractions
don’t and can’t: expanding such words to “do not” and “can not”

• Standardizing different spelling & abbreviations

• Removing extra whitespaces

• Removing special characters and punctation (depending on the task)
(matching USA and U.S.A.)

• Converting number words to numeric form, removing numbers
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Text preprocessing: Tokenization

• Tokenization is a step which splits longer strings of text into smaller pieces, or tokens (sub word, word, phrase…)

• How are sentences identified within larger bodies of text? Using "sentence-ending punctuation," is ambiguous.

• Challenges for different languages: linguistic structures vary significantly across the globe

• LLMs typically use sub-word tokenization: break words down into frequently occurring smaller units based purely 
on the statistics of a large training corpus.
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Tokenization: N-grams

• Whitespace/ unigram tokenization: text is split into words by splitting them from whitespaces.
Word order is discarded.

• Include sequences of adjacent words as terms. 
• For example, we could include pairs of adjacent words so that if a document contained the sentence “Quick brown fox 

jumps.” it would be transformed into
• set of its constituent words {quick, brown, fox, jumps},
• tokens quick_brown, brown_fox, and fox_jumps.

• Adjacent pairs are commonly called bi-grams. 

• This general representation tactic is called n-grams. 

• N-grams: Easy to generate, and they require no linguistic knowledge or complex parsing algorithm but greatly 
increase the size of the feature set. (followed by feature selection)

• LLMs use different techniques to capture word order.
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Text preprocessing: Stemming

• Stemming: reducing inflected words to their base or root form: word stem.

Stems: The core meaning-bearing units (WALK)
Affixes: Parts that adhere to stems, often with grammatical functions (-ED)

The inflection -ed is often used to indicate the past tense, changing walk to walked and listen to listened.

• Stemming: process of eliminating affixes (suffixes, prefixes, infixes, circumfixes) from a word in order to obtain 
a word stem. 

• Porter’s algorithm: the most common English stemmer

• It is language dependent. In some languages, it is more useful than in others
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Text preprocessing: Lemmatization

• Lemmatization is the process of converting a word to its base form (correct dictionary base form).

• The output of lemmatization is a root word called a lemma. For example: 

• am, are, is will be converted to be

• running, runs, ran will be replaced by run

• Stemming and Lemmatization: generate the foundation of the inflected words with the difference being 
that stem may not be an actual word whereas, lemma is an actual language word.

• Stemming: algorithm with steps to perform on the words which makes it faster.

• Lemmatization, corpus to supply lemma, slower than stemming
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Text preprocessing: Stopwords removal

• Stopwords are very common words. 

• Intuition: 

• They have little semantic content: words like a, the, we 
probably do not help in many text mining tasks.

• There are a lot of them.

• Remove the stopwords to save computing time and efforts in 
processing large volumes of text.

• Stop word lists can come from pre-established sets, or we can 
create a custom one for our domain.

• But sometimes, we should not remove them:

• Relational queries: flights to London vs flights from London

• Not is a stopword, but very important for sentiment analysis.
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Feature generation

Creating numerical features from cleaned and tokenized text.

Text representation:
- Bag of Words
- Term Frequency - Inverse Document Frequency
- Word Embeddings
- Contextual Embeddings
- Sentence Embeddings
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Bag of words (BoW)

• Treats every document as just a collection of individual words. 

• Ignores grammar, word order, sentence structure, and (typically) punctuation.  

• Representation is straightforward and inexpensive to generate.

• Starting point for many tasks.

• Encodes each document as a vector based on some dictionary.

Example: binary vector (presence / absence of each word) or discrete (word counts).
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Document vectors: binary vectors

Example of three documents:

•Review 1: This movie is very scary and long

•Review 2: This movie is not scary and is slow

•Review 3: This movie is spooky and good

Vocabulary (11 unique words):
• this
• movie
• is
• very
• scary
• and
• long
• not
• slow
• spooky
• good

this movie is very scary and long not slow spooky good Total 
words

Document 1 1 1 1 1 1 1 1 0 0 0 0 7

Document 2 1 1 1 0 1 1 0 1 1 0 0 8

Document 3 1 1 1 0 0 1 0 0 0 1 1 6

Binary vector: 1 denotes the presence of a word, 0 absence
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Number of features in the dataset= number of unique words (size of vocabulary)

Document feature vector: binary vector of word presence/absence for the document, based 
on the corpus vocabulary



Term frequency TF

• Instead of just representing presence or absence of a word, count words in the document (word frequency).
In some applications, the importance of a term in a document should increase with the number of times that term occurs. 

this movie is very scary and long not slow spooky good Total 
words

Document 1 1 1 1 1 1 1 1 0 0 0 0 7

Document 2 1 1 2 0 1 1 0 1 1 0 0 8

Document 3 1 1 1 0 0 1 0 0 0 1 1 6

Term count: each entry is a count how many times a word occurs in a document

this movie is very scary and long not slow spooky good Total 
words

Document 1 1/7 1/7 1/7 1/7 1/7 1/7 1/7 0 0 0 0 7

Document 2 1/8 1/8 2/8 0 1/8 1/8 0 1/8 1/8 0 0 8

Document 3 1/6 1/6 1/6 1/6 0 1/6 0 0 0 1/6 1/6 6

Term frequency: each entry is a frequency of a word occurs in a document

𝑡𝑓𝑡,𝑑 =
𝑛𝑡,𝑑

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑎 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡
nt,d number of times a term t is 
present in a document d

17Document feature vector: vector of word counts/frequencies for the document, based on the corpus vocabulary



Inverse Document Frequency IDF

• Term frequency measures how prevalent a term is in a single document. But how common it is in the entire corpus 
we’re mining?

• A term should not be too rare. 

• A term should not be too common. 

• The fewer documents in which a term occurs, the more significant it is likely to be to the documents is does occur in. 

•  Inverse document frequency (IDF):

Note: There are variations for the IDF expression, often “1+” term is omitted, and IDF equals only the log, 
or 1+ appears within the log.
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Inverse Document Frequency example

•Review 1: This movie is very scary and long

•Review 2: This movie is not scary and is slow

•Review 3: This movie is spooky and good

•  The words like is, this, and, 
etc., are reduced to 1 and 
have little importance.

• The words like scary, long, 
good, etc. are words with 
more importance and thus 
have a higher IDF value.

this movie is very scary and long not slow spooky good

IDF 1 1 1 1.48 1.18 1 1.48 1.48 1.48 1.48 1.48

Note: here we use log base 10, though other bases are sometimes used. 19



Term Frequency Inverse Document Frequency TF-IDF

• We can combine them as:

• TF depends on the specific document, IDF depends on the entire corpus, TF-IDF value is specific to a single 
document. 

• Document feature vector: vector of TF-IDF for the document. Same as in BOW, each feature corresponds to a 
unique term from the corpus vocabulary. These vectors can then be used in a data mining algorithm for 
classification, clustering, or retrieval.
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TEXT CLASSIFICATION
SENTIMENT ANALYSIS
TOPIC MODELING

9b
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Text Classification: definition

Input:
• Document d
• A fixed set of classes C={C1, C2, …, CN}
• Training set: documents with class labels

Output: 
• Trained classifier that maps a document to a class

Text Representation:
• BoW
• TF-IDF

Classifier:
• Logistic Regression
• Naïve Bayes
• Neural Networks
• …
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Bayes rule for classification

Fruit features:
• color =red
• shape =round
• size =10cm

• 𝑝 (𝐶 = apple) is the „prior“ probability of the class: 
probability of a fruit being apple before even knowing its features, depends how common is this type of fruit 

• 𝑝 (𝐸|𝐶 = 𝑐) is the likelihood of seeing the evidence 𝐸 given a class
Likelihood seeing these feature values in an apple

• 𝑝 (𝐸) is the likelihood of the evidence
Likelihood seeing these feature values in any fruit

• 𝑝 (𝐶 = 𝑐|𝐸)  as an estimate of class probability
Probability of a fruit being apple if it is red, round and 10 cm in size
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Conditional Independence  

• 𝑝 (𝐸|𝐶 = 𝑐)=  p(e1 e2 ⋯ ek|c).
P(color =red, shape =round, size=10 | class=apple)

• E feature vector: [e1, e2, …, ek], where each ei is a feature, and k is large.

• We may never see a specific example in the training data that exactly matches a given E in our testing data.

• Simplifying assumption: conditional independence - assume that the features are conditionally independent, given 
the class. 

• In p(e1 e2⋯ek|c), each ei is independent of every other ej given the class c. 
P(color =red, shape =round, size=10 | apple) = P(color =red| apple) P(shape =round | apple)  P(size=10 | apple)
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𝑝 𝐸 𝑐 = 𝑝(𝑒1|𝑐)𝑝(𝑒2|𝑐)… 𝑝(𝑒𝑘|𝑐)



Naïve Bayes

• Choose the class with the highest probability given feature values 𝑝 (𝐶 = 𝑐|𝐸):

𝑝 (𝐶 = 𝑐|𝐸) =
𝑝 𝑒1 𝑐 = 𝑐𝑙𝑎𝑠𝑠 …𝑝 𝑒𝑘 𝑐 = 𝑐𝑙𝑎𝑠𝑠 𝑝(𝑐=𝑐𝑙𝑎𝑠𝑠)

𝑝(𝑒1… 𝑒𝑘)

𝑝 𝑒1 𝑐 = 𝑐𝑙𝑎𝑠𝑠 … 𝑝 𝑒𝑘 𝑐 = 𝑐𝑙𝑎𝑠𝑠 𝑝(𝑐 = 𝑐𝑙𝑎𝑠𝑠)Select class that gives the highest value:

Denominator p(E) does not 
depend on the class
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Naïve Bayes for Text Classification

• Bag of Words: Assume word order does not matter, features 
are words, vectors of size k (number of unique words):

• Binary vector 

• TF vector

• 𝑝 ek 𝑐𝑙𝑎𝑠𝑠 = 𝑐 

Probability that a particular word occurs in a document of class c:

• 𝑝 ek 𝑐𝑙𝑎𝑠𝑠 = 𝑐 =
𝑛𝑘𝑐

𝑛𝑐

• 𝑝 ek 𝑐𝑙𝑎𝑠𝑠 = 𝑐 =
𝑛𝑘𝑐+1

𝑛𝑐+2

number of documents in the 
training dataset that contain this 
word and belong to this class c

number of documents in the 
training dataset that belong to 
this class c

Image from: https://developers.google.com/machine-learning/guides/text-classification
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Example: Using Naïve Bayes for Text Classification

• We have two classes={SPAM, NOT SPAM}

• For each class we need to learn the probabilities p(wordi | class) and p(class)

• p(spam)=number of spam emails in the training set/number of all emails in the training set
• p(not spam)=number of not spam emails in the training set/number of all emails in the training set

• p(word=congratulations| spam): the fraction of emails in the training set of class spam with the word congratulations 
• p(word=congratulations| not spam): the fraction of emails in the training set of class not spam with the word congratulations

• P(spam|E) ~ p(word=congratulations|spam) * p(word=you|spam) * p(word=won|spam) * … * p(spam)= 0.5
• P(not spam| E ) ~ p(word=congratulations|not spam) * p(word=you|not spam) * p(word=won|not spam) * … * p(not spam)= 0.02

Choose class c that gives the highest value: 𝒑 𝒆𝟏 𝒄 = 𝒄𝒍𝒂𝒔𝒔 … 𝒑 𝒆𝒌 𝒄 = 𝒄𝒍𝒂𝒔𝒔 𝒑(𝒄 = 𝒄𝒍𝒂𝒔𝒔)
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Sentiment Analysis

• Business applications

• Social Media Monitoring

• Customer Service

• Market Research

• Tasks:
• Simplest

Is the attitude of this text positive or negative? (polarity detection)
• More complex

Rank the attitude of this text 1 to 5.
• Advanced

Detect the source (holder), aspect (target), or the actual emotion
The food was great, but the service was awful
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Sentiment Analysis challenges

• Context

What did you like about the event?/ What did you DISlike about the event?

• Absolutely nothing!

• Irony and sarcasm

• Did you enjoy your shopping experience with us?
Yeah, sure. So smooth!

• “Correct” labels for training data
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Sentiment Lexicons

• A sentiment lexicon is a dictionary where words annotated with their sentiment orientation: positive or negative.

• Positive sentiment words: wonderful, beautiful and amazing. 

• Negative sentiment words: awful, poor and bad.

• The overall sentiment of the text can be calculated by aggregating the scores of the words present, potentially 
considering intensifiers ("very") or negations ("not").

• Use lexicons in Naïve Bayes by adding features:

• ‘this word occurs in the positive lexicon’

• ‘this word occurs in the negative lexicon’

• Can be domain specific and customized for a certain task. Sentiment of a word may change over time.
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Traditional ML for Sentiment Analysis

• Preprocess the data

• Extract features

• Which words to use, for example only adjectives or all the words?

• Word occurrence matters more than its frequency

• Important to handle negation: I liked the movie vs I didn’t like the movie

• Apply a classifier (positive, negative) or regressor (level of attitude)

• Naïve Bayes as a baseline

• More advanced approaches (neural networks)
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Topic Modeling

• Collection of documents (corpus): identify topics.

• A  topic consists of a cluster of words that frequently occur together.

• We do not want to do supervised topic classification.

• Approach which automatically discovers the topics.
• clustering problem –both words and documents being clustered.

• There are many techniques that are used to obtain topic models.
• Latent Dirichlet Allocation (LDA)
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Latent Dirichlet Allocation (LDA) key assumptions

• Key assumptions:

• words that appear together frequently are likely to be close in meaning

• each topic is a mixture of different words  

• each document is a mixture of different topics (but typically not many, and typically one is dominant)

• number of topics is known in advance

https://towardsdatascience.com/latent-dirichlet-allocation-intuition-math-implementation-and-visualisation-63ccb616e094

A single document can contain multiple topics 
(as color-coded on the left). 
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Latent Dirichlet Allocation (LDA) hyperparameters

• Dirichlet prior of the topics: 

represents how sparse or how mixed up the topics are

• Dirichlet prior of the terms: 

represents how the topics are distributed amongst the terms. 

https://towardsdatascience.com/latent-dirichlet-allocation-intuition-math-implementation-and-visualisation-63ccb616e094
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Latent Dirichlet Allocation (LDA): intuition

Assume:

• We have a fixed number of topics.

• Each document is a probability 
distribution over these k topics.

• Each topic is a probability distribution 
over all the different terms.

https://towardsdatascience.com/latent-dirichlet-allocation-intuition-math-implementation-and-visualisation-63ccb616e094
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Choosing the number of topics and interpreting them

Choosing the number topics:

• Run the algorithm with different values of the number of topics and select the best according to some metric: 

• perplexity: measures how probable some new unseen data is given the model that was learned

• coherence: measures the degree of similarity between high scoring words in the topic

Topic interpretability: 

• examine the ranked list of the most probable terms in that topic

• analyze word relevance
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WORD EMBEDDINGS

9c
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Simple word representation

38

• Feature vector can be large (size of the corpus vocabulary).
• Word order is lost.



Co-occurrence matrix

39

• Co-occurrence matrix: look at the window of fixed size of words (typically size 5 to 10) and count how 
many time words show up in the same window.

• Very high dimensional: requires a lot of storage.

• How to reduce dimensionality?

Example of three documents and the 
corresponding co-occurrence matrix 
for a window of size 1.



Word2Vec: Low dimensional word representation

• Neural networks used to directly learn low-dimensional word vectors.

• Goal: map a word as a vector in a lower-dimensional space, representation in this space often has a 
semantic meaning.

• Word2Vec (Google): Instead of capturing co-occurrence counts directly, predict surrounding words of 
every word in a window.

• Different flavors:

• Continuous Bag of Words (CBOW): use context words in a window to predict the middle word.

• Skip-gram: use the middle word to predict surrounding ones in a window.
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Creating labels for CBoW
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Continuous Bag of Words (CBOW): use context words in a window to predict middle word.

• Example of a window of size 1 word around 
the word of interest, in both directions.

• Use ‘I’ and ‘natural’ to predict ‘like’
• Use ‘like’ and ‘language’ to predict ‘natural’
• …



CBoW architecture
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Continuous Bag of Words (CBOW): use context words in a window to predict middle word.

Document:
the cat sat on …



Word embeddings
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• We are not really interested in the prediction output, prediction is a “fake task”.

• We will not use the network for prediction. We will only use the learnt weights.

• Row j of the weight matrix  is a word embedding for our word j.



Properties of word embeddings

• Word embeddings capture meaning and relationship between words.

• They encode word similarity and can capture complex patterns: discover words with similar context, word analogies.

• The resulting word embedding can be used as features in many natural language processing and machine learning applications. 

• Learning embeddings this way is applicable to other sequential data, not only words (for example: genes).

44

Visualization of word embeddings
vector('king') - vector('man') + 
vector('woman') is close to vector('queen')

http://suriyadeepan.github.io/
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