
TEXT PREPROCESSING
AND REPRESENTATION

9a

1

2695 Introduction to Machine Learning
Masters Program in Economics, Finance and Management

Text is everywhere

• Internet contains vast amount of text:

 web pages, social media feeds, email, emails and chats, digitized libraries

• Many applications still produce or record text:

 customer support tickets, surveys and feedback forms, online product reviews

Text Preprocessing: transforms raw, unstructured text into a format that is suitable for automated analysis algorithm

Text mining: discovers patterns, insights, and knowledge from unstructured text data

Natural Language Processing: focused on enabling computers to understand, interpret, and generate human language, both text and
speech, in a meaningful way

2

Text mining tasks

3

Text Summarization: Generating concise and coherent
summaries

Sentiment Analysis: Determining the sentiment (positive,
negative, neutral), opinions, expressed in text towards specific
topics

Document classification: labeling documents using pre-
defined categories, depending on their content.

Topic modeling: automatically extracting meaning from
texts by identifying recurrent themes or topics

Why is text mining challenging?

• Unstructured data:
• Documents have varying number of words, words can have varying lengths.
• Sometimes word order matters, sometimes not.

• As data, text is relatively dirty:
People write ungrammatically, they misspell words, they abbreviate and punctuate randomly.

• Text may contain synonyms (multiple words with the same meaning) and homographs (one spelling shared among
multiple words with different meanings).

• Terminology and abbreviations in one domain might be meaningless in another domain.

• Context is important

4

Text mining basic terminology and basic pipeline

• Document: one piece of text, no matter how large or small, could be a single sentence or a 100-page
report, or anything in between, such as a YouTube comment or a blog posting.

• Tokens or terms: for example, a word, sentence

• Corpus: collection of documents

5

Text preprocessing

Goal: to clean and transform raw, unstructured text data into a standardized, structured, and noise-free format.
The exact steps and their order can vary based on the specific task and data:

• Lowercasing (case normalization)

• Cleaning the text & normalizing

• Tokenization

• Stop word removal

• Stemming or Lemmatization

6

Text preprocessing: Lowercasing

• Lowercasing all text: one of the simplest and most effective form of text preprocessing. It is
applicable to most text mining problems and significantly helps with consistency of expected
output.

• Case variations are so common that case normalization is usually necessary: example iPhone,
iphone, and IPHONE.

• Lowercasing not always helpful: sentiment analysis, Information extraction: distinguishing US and
us, company Apple from fruit apple

7

Text preprocessing: Cleaning the text & normalizing

• Removing HTML tags

• Converting accented characters to ASCII characters
“latté” and “café” can be converted and standardized to just “latte” and “cafe”

• Expanding contractions
don’t and can’t: expanding such words to “do not” and “can not”

• Standardizing different spelling & abbreviations

• Removing extra whitespaces

• Removing special characters and punctation (depending on the task)
(matching USA and U.S.A.)

• Converting number words to numeric form, removing numbers

8

Text preprocessing: Tokenization

• Tokenization is a step which splits longer strings of text into smaller pieces, or tokens (sub word, word, phrase…)

• How are sentences identified within larger bodies of text? Using "sentence-ending punctuation," is ambiguous.

• Challenges for different languages: linguistic structures vary significantly across the globe

• LLMs typically use sub-word tokenization: break words down into frequently occurring smaller units based purely
on the statistics of a large training corpus.

9

Tokenization: N-grams

• Whitespace/ unigram tokenization: text is split into words by splitting them from whitespaces.
Word order is discarded.

• Include sequences of adjacent words as terms.
• For example, we could include pairs of adjacent words so that if a document contained the sentence “Quick brown fox

jumps.” it would be transformed into
• set of its constituent words {quick, brown, fox, jumps},
• tokens quick_brown, brown_fox, and fox_jumps.

• Adjacent pairs are commonly called bi-grams.

• This general representation tactic is called n-grams.

• N-grams: Easy to generate, and they require no linguistic knowledge or complex parsing algorithm but greatly
increase the size of the feature set. (followed by feature selection)

• LLMs use different techniques to capture word order.

10

Text preprocessing: Stemming

• Stemming: reducing inflected words to their base or root form: word stem.

Stems: The core meaning-bearing units (WALK)
Affixes: Parts that adhere to stems, often with grammatical functions (-ED)

The inflection -ed is often used to indicate the past tense, changing walk to walked and listen to listened.

• Stemming: process of eliminating affixes (suffixes, prefixes, infixes, circumfixes) from a word in order to obtain
a word stem.

• Porter’s algorithm: the most common English stemmer

• It is language dependent. In some languages, it is more useful than in others

11

Text preprocessing: Lemmatization

• Lemmatization is the process of converting a word to its base form (correct dictionary base form).

• The output of lemmatization is a root word called a lemma. For example:

• am, are, is will be converted to be

• running, runs, ran will be replaced by run

• Stemming and Lemmatization: generate the foundation of the inflected words with the difference being
that stem may not be an actual word whereas, lemma is an actual language word.

• Stemming: algorithm with steps to perform on the words which makes it faster.

• Lemmatization, corpus to supply lemma, slower than stemming

12

Text preprocessing: Stopwords removal

• Stopwords are very common words.

• Intuition:

• They have little semantic content: words like a, the, we
probably do not help in many text mining tasks.

• There are a lot of them.

• Remove the stopwords to save computing time and efforts in
processing large volumes of text.

• Stop word lists can come from pre-established sets, or we can
create a custom one for our domain.

• But sometimes, we should not remove them:

• Relational queries: flights to London vs flights from London

• Not is a stopword, but very important for sentiment analysis.

13

Feature generation

Creating numerical features from cleaned and tokenized text.

Text representation:
- Bag of Words
- Term Frequency - Inverse Document Frequency
- Word Embeddings
- Contextual Embeddings
- Sentence Embeddings

14

Bag of words (BoW)

• Treats every document as just a collection of individual words.

• Ignores grammar, word order, sentence structure, and (typically) punctuation.

• Representation is straightforward and inexpensive to generate.

• Starting point for many tasks.

• Encodes each document as a vector based on some dictionary.

Example: binary vector (presence / absence of each word) or discrete (word counts).

15

Document vectors: binary vectors

Example of three documents:

•Review 1: This movie is very scary and long

•Review 2: This movie is not scary and is slow

•Review 3: This movie is spooky and good

Vocabulary (11 unique words):
• this
• movie
• is
• very
• scary
• and
• long
• not
• slow
• spooky
• good

this movie is very scary and long not slow spooky good Total
words

Document 1 1 1 1 1 1 1 1 0 0 0 0 7

Document 2 1 1 1 0 1 1 0 1 1 0 0 8

Document 3 1 1 1 0 0 1 0 0 0 1 1 6

Binary vector: 1 denotes the presence of a word, 0 absence

16

Number of features in the dataset= number of unique words (size of vocabulary)

Document feature vector: binary vector of word presence/absence for the document, based
on the corpus vocabulary

Term frequency TF

• Instead of just representing presence or absence of a word, count words in the document (word frequency).
In some applications, the importance of a term in a document should increase with the number of times that term occurs.

this movie is very scary and long not slow spooky good Total
words

Document 1 1 1 1 1 1 1 1 0 0 0 0 7

Document 2 1 1 2 0 1 1 0 1 1 0 0 8

Document 3 1 1 1 0 0 1 0 0 0 1 1 6

Term count: each entry is a count how many times a word occurs in a document

this movie is very scary and long not slow spooky good Total
words

Document 1 1/7 1/7 1/7 1/7 1/7 1/7 1/7 0 0 0 0 7

Document 2 1/8 1/8 2/8 0 1/8 1/8 0 1/8 1/8 0 0 8

Document 3 1/6 1/6 1/6 1/6 0 1/6 0 0 0 1/6 1/6 6

Term frequency: each entry is a frequency of a word occurs in a document

𝑡𝑓𝑡,𝑑 =
𝑛𝑡,𝑑

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑎 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡
nt,d number of times a term t is
present in a document d

17Document feature vector: vector of word counts/frequencies for the document, based on the corpus vocabulary

Inverse Document Frequency IDF

• Term frequency measures how prevalent a term is in a single document. But how common it is in the entire corpus
we’re mining?

• A term should not be too rare.

• A term should not be too common.

• The fewer documents in which a term occurs, the more significant it is likely to be to the documents is does occur in.

• Inverse document frequency (IDF):

Note: There are variations for the IDF expression, often “1+” term is omitted, and IDF equals only the log,
or 1+ appears within the log.

18

Inverse Document Frequency example

•Review 1: This movie is very scary and long

•Review 2: This movie is not scary and is slow

•Review 3: This movie is spooky and good

• The words like is, this, and,
etc., are reduced to 1 and
have little importance.

• The words like scary, long,
good, etc. are words with
more importance and thus
have a higher IDF value.

this movie is very scary and long not slow spooky good

IDF 1 1 1 1.48 1.18 1 1.48 1.48 1.48 1.48 1.48

Note: here we use log base 10, though other bases are sometimes used. 19

Term Frequency Inverse Document Frequency TF-IDF

• We can combine them as:

• TF depends on the specific document, IDF depends on the entire corpus, TF-IDF value is specific to a single
document.

• Document feature vector: vector of TF-IDF for the document. Same as in BOW, each feature corresponds to a
unique term from the corpus vocabulary. These vectors can then be used in a data mining algorithm for
classification, clustering, or retrieval.

20

TEXT CLASSIFICATION
SENTIMENT ANALYSIS
TOPIC MODELING

9b

21

2695 Introduction to Machine Learning
Masters Program in Economics, Finance and Management

Text Classification: definition

Input:
• Document d
• A fixed set of classes C={C1, C2, …, CN}
• Training set: documents with class labels

Output:
• Trained classifier that maps a document to a class

Text Representation:
• BoW
• TF-IDF

Classifier:
• Logistic Regression
• Naïve Bayes
• Neural Networks
• …

22

Bayes rule for classification

Fruit features:
• color =red
• shape =round
• size =10cm

• 𝑝 (𝐶 = apple) is the „prior“ probability of the class:
probability of a fruit being apple before even knowing its features, depends how common is this type of fruit

• 𝑝 (𝐸|𝐶 = 𝑐) is the likelihood of seeing the evidence 𝐸 given a class
Likelihood seeing these feature values in an apple

• 𝑝 (𝐸) is the likelihood of the evidence
Likelihood seeing these feature values in any fruit

• 𝑝 (𝐶 = 𝑐|𝐸) as an estimate of class probability
Probability of a fruit being apple if it is red, round and 10 cm in size

23

Conditional Independence

• 𝑝 (𝐸|𝐶 = 𝑐)= p(e1 e2 ⋯ ek|c).
P(color =red, shape =round, size=10 | class=apple)

• E feature vector: [e1, e2, …, ek], where each ei is a feature, and k is large.

• We may never see a specific example in the training data that exactly matches a given E in our testing data.

• Simplifying assumption: conditional independence - assume that the features are conditionally independent, given
the class.

• In p(e1 e2⋯ek|c), each ei is independent of every other ej given the class c.
P(color =red, shape =round, size=10 | apple) = P(color =red| apple) P(shape =round | apple) P(size=10 | apple)

24

𝑝 𝐸 𝑐 = 𝑝(𝑒1|𝑐)𝑝(𝑒2|𝑐)… 𝑝(𝑒𝑘|𝑐)

Naïve Bayes

• Choose the class with the highest probability given feature values 𝑝 (𝐶 = 𝑐|𝐸):

𝑝 (𝐶 = 𝑐|𝐸) =
𝑝 𝑒1 𝑐 = 𝑐𝑙𝑎𝑠𝑠 …𝑝 𝑒𝑘 𝑐 = 𝑐𝑙𝑎𝑠𝑠 𝑝(𝑐=𝑐𝑙𝑎𝑠𝑠)

𝑝(𝑒1… 𝑒𝑘)

𝑝 𝑒1 𝑐 = 𝑐𝑙𝑎𝑠𝑠 … 𝑝 𝑒𝑘 𝑐 = 𝑐𝑙𝑎𝑠𝑠 𝑝(𝑐 = 𝑐𝑙𝑎𝑠𝑠)Select class that gives the highest value:

Denominator p(E) does not
depend on the class

25

Naïve Bayes for Text Classification

• Bag of Words: Assume word order does not matter, features
are words, vectors of size k (number of unique words):

• Binary vector

• TF vector

• 𝑝 ek 𝑐𝑙𝑎𝑠𝑠 = 𝑐

Probability that a particular word occurs in a document of class c:

• 𝑝 ek 𝑐𝑙𝑎𝑠𝑠 = 𝑐 =
𝑛𝑘𝑐

𝑛𝑐

• 𝑝 ek 𝑐𝑙𝑎𝑠𝑠 = 𝑐 =
𝑛𝑘𝑐+1

𝑛𝑐+2

number of documents in the
training dataset that contain this
word and belong to this class c

number of documents in the
training dataset that belong to
this class c

Image from: https://developers.google.com/machine-learning/guides/text-classification
26

Example: Using Naïve Bayes for Text Classification

• We have two classes={SPAM, NOT SPAM}

• For each class we need to learn the probabilities p(wordi | class) and p(class)

• p(spam)=number of spam emails in the training set/number of all emails in the training set
• p(not spam)=number of not spam emails in the training set/number of all emails in the training set

• p(word=congratulations| spam): the fraction of emails in the training set of class spam with the word congratulations
• p(word=congratulations| not spam): the fraction of emails in the training set of class not spam with the word congratulations

• P(spam|E) ~ p(word=congratulations|spam) * p(word=you|spam) * p(word=won|spam) * … * p(spam)= 0.5
• P(not spam| E) ~ p(word=congratulations|not spam) * p(word=you|not spam) * p(word=won|not spam) * … * p(not spam)= 0.02

Choose class c that gives the highest value: 𝒑 𝒆𝟏 𝒄 = 𝒄𝒍𝒂𝒔𝒔 … 𝒑 𝒆𝒌 𝒄 = 𝒄𝒍𝒂𝒔𝒔 𝒑(𝒄 = 𝒄𝒍𝒂𝒔𝒔)

27

Sentiment Analysis

• Business applications

• Social Media Monitoring

• Customer Service

• Market Research

• Tasks:
• Simplest

Is the attitude of this text positive or negative? (polarity detection)
• More complex

Rank the attitude of this text 1 to 5.
• Advanced

Detect the source (holder), aspect (target), or the actual emotion
The food was great, but the service was awful

28

Sentiment Analysis challenges

• Context

What did you like about the event?/ What did you DISlike about the event?

• Absolutely nothing!

• Irony and sarcasm

• Did you enjoy your shopping experience with us?
Yeah, sure. So smooth!

• “Correct” labels for training data

29

Sentiment Lexicons

• A sentiment lexicon is a dictionary where words annotated with their sentiment orientation: positive or negative.

• Positive sentiment words: wonderful, beautiful and amazing.

• Negative sentiment words: awful, poor and bad.

• The overall sentiment of the text can be calculated by aggregating the scores of the words present, potentially
considering intensifiers ("very") or negations ("not").

• Use lexicons in Naïve Bayes by adding features:

• ‘this word occurs in the positive lexicon’

• ‘this word occurs in the negative lexicon’

• Can be domain specific and customized for a certain task. Sentiment of a word may change over time.

30

Traditional ML for Sentiment Analysis

• Preprocess the data

• Extract features

• Which words to use, for example only adjectives or all the words?

• Word occurrence matters more than its frequency

• Important to handle negation: I liked the movie vs I didn’t like the movie

• Apply a classifier (positive, negative) or regressor (level of attitude)

• Naïve Bayes as a baseline

• More advanced approaches (neural networks)

31

Topic Modeling

• Collection of documents (corpus): identify topics.

• A topic consists of a cluster of words that frequently occur together.

• We do not want to do supervised topic classification.

• Approach which automatically discovers the topics.
• clustering problem –both words and documents being clustered.

• There are many techniques that are used to obtain topic models.
• Latent Dirichlet Allocation (LDA)

32

Latent Dirichlet Allocation (LDA) key assumptions

• Key assumptions:

• words that appear together frequently are likely to be close in meaning

• each topic is a mixture of different words

• each document is a mixture of different topics (but typically not many, and typically one is dominant)

• number of topics is known in advance

https://towardsdatascience.com/latent-dirichlet-allocation-intuition-math-implementation-and-visualisation-63ccb616e094

A single document can contain multiple topics
(as color-coded on the left).

33

Latent Dirichlet Allocation (LDA) hyperparameters

• Dirichlet prior of the topics:

represents how sparse or how mixed up the topics are

• Dirichlet prior of the terms:

represents how the topics are distributed amongst the terms.

https://towardsdatascience.com/latent-dirichlet-allocation-intuition-math-implementation-and-visualisation-63ccb616e094
34

Latent Dirichlet Allocation (LDA): intuition

Assume:

• We have a fixed number of topics.

• Each document is a probability
distribution over these k topics.

• Each topic is a probability distribution
over all the different terms.

https://towardsdatascience.com/latent-dirichlet-allocation-intuition-math-implementation-and-visualisation-63ccb616e094
35

Choosing the number of topics and interpreting them

Choosing the number topics:

• Run the algorithm with different values of the number of topics and select the best according to some metric:

• perplexity: measures how probable some new unseen data is given the model that was learned

• coherence: measures the degree of similarity between high scoring words in the topic

Topic interpretability:

• examine the ranked list of the most probable terms in that topic

• analyze word relevance

36

WORD EMBEDDINGS

9c

37

2695 Introduction to Machine Learning
Masters Program in Economics, Finance and Management

Simple word representation

38

• Feature vector can be large (size of the corpus vocabulary).
• Word order is lost.

Co-occurrence matrix

39

• Co-occurrence matrix: look at the window of fixed size of words (typically size 5 to 10) and count how
many time words show up in the same window.

• Very high dimensional: requires a lot of storage.

• How to reduce dimensionality?

Example of three documents and the
corresponding co-occurrence matrix
for a window of size 1.

Word2Vec: Low dimensional word representation

• Neural networks used to directly learn low-dimensional word vectors.

• Goal: map a word as a vector in a lower-dimensional space, representation in this space often has a
semantic meaning.

• Word2Vec (Google): Instead of capturing co-occurrence counts directly, predict surrounding words of
every word in a window.

• Different flavors:

• Continuous Bag of Words (CBOW): use context words in a window to predict the middle word.

• Skip-gram: use the middle word to predict surrounding ones in a window.

40

Creating labels for CBoW

41

Continuous Bag of Words (CBOW): use context words in a window to predict middle word.

• Example of a window of size 1 word around
the word of interest, in both directions.

• Use ‘I’ and ‘natural’ to predict ‘like’
• Use ‘like’ and ‘language’ to predict ‘natural’
• …

CBoW architecture

42

Continuous Bag of Words (CBOW): use context words in a window to predict middle word.

Document:
the cat sat on …

Word embeddings

43

• We are not really interested in the prediction output, prediction is a “fake task”.

• We will not use the network for prediction. We will only use the learnt weights.

• Row j of the weight matrix is a word embedding for our word j.

Properties of word embeddings

• Word embeddings capture meaning and relationship between words.

• They encode word similarity and can capture complex patterns: discover words with similar context, word analogies.

• The resulting word embedding can be used as features in many natural language processing and machine learning applications.

• Learning embeddings this way is applicable to other sequential data, not only words (for example: genes).

44

Visualization of word embeddings
vector('king') - vector('man') +
vector('woman') is close to vector('queen')

http://suriyadeepan.github.io/

	Slide 1
	Slide 2: Text is everywhere
	Slide 3: Text mining tasks
	Slide 4: Why is text mining challenging?
	Slide 5: Text mining basic terminology and basic pipeline
	Slide 6: Text preprocessing
	Slide 7: Text preprocessing: Lowercasing
	Slide 8: Text preprocessing: Cleaning the text & normalizing
	Slide 9: Text preprocessing: Tokenization
	Slide 10: Tokenization: N-grams
	Slide 11: Text preprocessing: Stemming
	Slide 12: Text preprocessing: Lemmatization
	Slide 13: Text preprocessing: Stopwords removal
	Slide 14: Feature generation
	Slide 15: Bag of words (BoW)
	Slide 16: Document vectors: binary vectors
	Slide 17: Term frequency TF
	Slide 18: Inverse Document Frequency IDF
	Slide 19: Inverse Document Frequency example
	Slide 20: Term Frequency Inverse Document Frequency TF-IDF
	Slide 21
	Slide 22: Text Classification: definition
	Slide 23: Bayes rule for classification
	Slide 24: Conditional Independence
	Slide 25: Naïve Bayes
	Slide 26: Naïve Bayes for Text Classification
	Slide 27: Example: Using Naïve Bayes for Text Classification
	Slide 28: Sentiment Analysis
	Slide 29: Sentiment Analysis challenges
	Slide 30: Sentiment Lexicons
	Slide 31: Traditional ML for Sentiment Analysis
	Slide 32: Topic Modeling
	Slide 33: Latent Dirichlet Allocation (LDA) key assumptions
	Slide 34: Latent Dirichlet Allocation (LDA) hyperparameters
	Slide 35: Latent Dirichlet Allocation (LDA): intuition
	Slide 36: Choosing the number of topics and interpreting them
	Slide 37
	Slide 38: Simple word representation
	Slide 39: Co-occurrence matrix
	Slide 40: Word2Vec: Low dimensional word representation
	Slide 41: Creating labels for CBoW
	Slide 42: CBoW architecture
	Slide 43: Word embeddings
	Slide 44: Properties of word embeddings

