
INTRODUCTION TO
NEURAL NETWORKS

8a

2695 Introduction to Machine Learning
Masters Program in Economics, Finance and Management

Modeling a simple decision

Should I go for a run? (binary variable y: yes/no)

1. Is the weather good? x1

2. Do I have energy? x2

3. Do I have time? x3

Binary variables xi : 0 is for answer ‘no’ and 1 for answer ‘yes’.

Feature weights wi: how important each feature is to the decision

2
Material from: http://euler.stat.yale.edu/~tba3/stat665/

Perceptron

Dot product between the vector of all binary inputs (x), a vector
of weights (w), and change the threshold to the negative bias (b):

3
Material from: http://euler.stat.yale.edu/~tba3/stat665/

From binary to continuous output

4

• Perceptron: small change in the input values can cause a large change in the output because each node only
has two possible states: 0 or 1.

• Introduce non-linearity, example, sigmoid function

• The choice of what function to use to go from x w + b to an output is called the activation function.

• There are many different activation functions used.

Structure of artificial neuron

5

Weighted sum of input, plus the bias
term, is passed through an activation
function

Artificial neuron

• The artificial neuron receives one
or more inputs and sums them to
produce an output.

• Each input has some weight
associated with it.

Biological neuron

Feedforward Neural Network

6

• Artificial neural network: network of artificial neurons (nodes).

• Feedforward neural network: artificial neural network where connections between the nodes do not form a cycle.

• Fully connected network: all the neurons, in one layer are connected to the neurons in the next layer.

• The network is trained by iteratively modifying the weights so that given inputs map to the correct response.

Input Layer

• Takes the features
from the dataset

• Each node in this layer
represents one feature
from the input data

Output Layer

• Produces the final
prediction

Why are neural networks so popular?

7

• Universality theorem: a neural network with a single hidden layer is capable of approximating any continuous function.

• Note: just because we know a neural network exists that can solve a very complex problem, that does not mean we
have good techniques for constructing such a network.

http://neuralnetworksanddeeplearning.com/chap4.html

No matter what the function f(x) is, there
is guaranteed to be a neural network such
that for every possible input, x, outputs
the value f(x) (or some close
approximation).

Why deep neural networks and not shallow wide networks?

8

• Deep network means it has many hidden layers.

• easier to train

• needs fewer parameters

• generalizes better

Training neural networks

9

• Cost function (loss function): measures how well the network predicts outputs given input.

• The goal is to then find a set of weights and biases that minimizes the cost.

• There are many different types of cost functions, example squared error loss:

• Gradient descent

η is the learning rate.

Stochastic gradient descent

10

• Total cost is a sum of costs associated for each data point i.

 𝐶𝑖(𝑤, 𝑏) =
1

2
 (𝑦𝑖 − ො𝑦𝑖)2

• Weight update: 𝑤𝑘+1 = 𝑤𝑘 −
𝜂

𝑛
σ𝑖=1

𝑛 ∇𝐶𝑖 (𝑤𝑘) (Computationally expensive)

• Partition the input data into disjoint groups of m data points: M1; M2,…, Mn/m.

• More efficient: Weight updates, by estimating the gradient using only a small subset of the entire training set:

Each set Mj is called a mini-batch.

Going through the entire dataset as above is
called an epoch.

Backpropagation and weight update

11

• Weights are updates as follows:

Step 1: Take a mini-batch of training data and perform forward propagation to compute the cost (C).

Step 2: Backpropagate the cost to get the gradient with respect to each weight.

Step 3: Use the gradients to update the weights of the network.

Neural network architecture

12

Even for a basic Neural Network, there are many design decisions to make:

• Number of hidden layers (depth)

• Number of neurons per hidden layer (width)

• Type of activation function

• Choice of cost function

• Hyperparameters: learning rate, batch size, number of epochs, regularization methods...

• …

Activation functions

13

• Function to use to go from the weighted sum of the inputs to an output.

• Performs a non-linear transformation to the input making it capable to learn and perform more complex tasks.

Sigmoid and tanh activation function

14

Range: 0 to 1

Historically popular, recently not used as much:

• sigmoid outputs are not zero-centered

• exponential is a bit expensive to compute

• vanishing gradients problem

Range between -1 and 1:

• Outputs are zero centered

• Vanishing gradient problem

Vanishing gradient problem

15

• The derivatives of each layer are multiplied down the network, from the final layer to the initial, to compute the
derivatives of the initial layers.

• When n hidden layers use an activation like the sigmoid function, n small derivatives are multiplied together.

• The gradient decreases as we propagate down to the initial layers and the weights.

• A small gradient means that the weights and biases of the initial layers will not be updated effectively with each
iteration.

Rectified Linear Unit (ReLU) and Leaky Rectified Linear Unit

16

• Very computationally efficient

• Converges much faster than sigmoid/tanh in practice

• But: Not zero-centered output

• When x<0, the node “dies”

• Computationally efficient

• Converges much faster than sigmoid/tanh in practice

• For x<0, the node will not die

• Not zero-centered output

SoftMax activation function

17

• Squashes the outputs between 0 and 1, just like a Logistic/Sigmoid function.

• Used in the output layer for multi-class classification

• Converts a vector of raw prediction scores into probabilities that sum up to 1, the class with the highest probability is
selected

Image from: https://towardsdatascience.com/softmax-activation-function-how-it-actually-works-d292d335bd78

Neural Network example: MNIST classification

18

• The MNIST database (Modified National Institute of Standards and Technology database): large dataset of handwritten digits.

• Each image is 28 pixels by 28 pixels which has been flattened into 1-D array of size 784.

• The network would have:

• 784 input neurons: one for each pixel

• 10 output units, one for each digit 0 to 9: input an image of a number 8, the output unit corresponding to the digit 8
would be activated.

Handwritten digits

Famous MNIST dataset for handwritten digits recognition

collection of 784-
dimensional vectors.

Neural Network for digit classification

19

x
y = which digit?

Choosing number of layers and number of neurons

20

Number of layers

• start with one or two hidden layers

• for more complex problems: gradually increase the number of layers until we start overfitting the training dataset
(check performance on the validation dataset)

• very complex problems: 10s or 100s of hidden layers, but network not trained from scratch, use pretrained one

Number of neurons

• the number of neurons in the input and output layers is determined by the type of input and output a given task
requires

• previously common: use fewer and fewer nodes at each layer

• nowadays used: same number of neurons at each layer

• gradually increase the number of neurons until the network starts overfitting

• generally increasing the number of layers tends to be more useful than increasing the number of neurons per layer

• start with more layers and neurons and use early stopping: interrupt training when it measures no progress on the
validation set for a predefined number of epochs

Choosing activation function

21

Hidden Layer

• By Default, use ReLu function

• In case that ReLu doesn’t provide good results, then try
other activations like Leaky Relu

• Do not use Sigmoid and Tanh function for deep networks
due to the vanishing gradient problem.

Output Layer

• Use Logistic or SoftMax function for classification problem

• Use Linear or ReLu function for regression problem, if
specific range sigmoid or tanh

• How fast the network learns
• How well the network generalizes

Common cost functions

22

Measures how far off the model’s predictions are from the true labels and It provides a single number that the
model tries to minimize during training

Regression:
• Same cost as Linear Regression: Mean squared error
• Many outliers: Mean absolute error

Classification:
• Same cost as Logistic Regression: Cross-entropy (log loss)

• cost high: estimated probability close to 0 for a positive instance or close to 1 for a negative one
• cost close to 0: estimated probability is close to 0 for a negative instance or close to 1 for a positive one

Typical architecture

23

REGRESSION

CLASSIFICATION

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition, Aurélien Géron

Learning rate

24

• Hyperparameter that directly affects how fast or slow the model learns

• Learning rate annealing: start with a relatively high learning rate and then gradually lower the learning rate during
training.

• Step decay: learning rate is reduced by some percentage after a set number of training epochs.

• Given computational budget: err on the side of slower decay and train for a longer time.

• Adaptive leaning rate: Adaptive Moment estimation (Adam), adapts learning rate per parameter

https://www.jeremyjordan.me/nn-learning-rate/

Weight initialization

25

Random initialization: Gaussian with zero mean and standard deviation 1
• Works for small networks, but causes problems for deeper networks:

• Almost all neurons completely saturated, either -1 and 1.

• Gradients will be all zero.

• Xavier initialization: Weights from a Gaussian distribution with:
• zero mean
• variance of 1/N (N specifies the number of nodes from the previous layer that are incoming to this

given node)
• Not the best choice for ReLU

• He initialization: Weights from a Gaussian distribution with:
• zero mean
• variance of 2/N
• Works well for ReLU

Regularization

26

• As the size of neural networks grow, the number of weights and biases can quickly become quite large.

• Neural networks often have millions of weights to learn (Large Language models have billions).

• Regularization:

• Early stopping

• Add a penalty term to the cost function.

 Common choices are the L2-norm:

 and the L1-norm:

 where C0 is the unregularized cost.

Dropout

27

• The output of a randomly chosen subset of the neurons is temporarily set to zero during the training of a given
mini-batch.

• Impact: neurons cannot overly adapt to the output from prior layers as these are not always present.

• Wide-spread adoption massive empirical evidence to its usefulness.

• Significantly improves training speed.

• Hyperparameter: probability of dropping

• Only active during training, not during inference

Transfer Learning

28

• Training a deep learning model requires a lot of data and a lot of time.

• Transfer learning: use some already trained neural network that accomplishes a similar task to the one we are trying to
tackle and then just reuse the lower layers of this network.

• Take advantage of pre-trained weights on huge datasets that took days/weeks to train and leverage it towards our use
case.

• It will speed up training considerably and it will also require much less training data.

CONVOLUTIONAL NEURAL
NETWORKS

8b

29

2695 Introduction to Machine Learning
Masters Program in Economics, Finance and Management

Traditional neural network for image classification

30

Although a regular deep neural network could work on small images using today’s computing power, it doesn’t work
well for large images because of the huge number of parameters it requires.

Image is
1000 ✕ 1000 pixels with
3 color channels (RGB),
then, this results in a large
number of parameters.

Architecture of Convolutional Neural Networks

31

• There are three main types of layers to build CNN architectures:

• Convolutional Layer

• Pooling Layer

• Fully-Connected Layer (FC, exactly as used in regular Neural Networks)

• CNN model a combination of two components: feature learning part and classification part.

• After learning features in many layers, the architecture of a CNN shifts to classification.

• The final layer of the CNN architecture uses a classification layer such as SoftMax to provide the classification output.

Convolutional layer

32

• Neurons in the first convolutional layer are not connected to every single pixel in the input image, but only to
pixels located within a small rectangle (receptive field).

• Each neuron in the second convolutional layer is connected only to neurons located within a small rectangle in
the previous layer.

• A neuron’s set of weights is filter (kernel). Filter size: design choice, the values of weights learnt in training

• The convolution operation is performed by sliding the convolution filter over the input image: performing dot
products between the filters (weights) and local regions of the input. The resulting output is called feature map
or activation map.

33

Slide the 3 x 3 filter over the input image, element-wise multiply, and sum the result.

1 x 1 + 1 x 0 + 1 x 1 + 0 x 0 + 1 x 1 + 1 x 0 + 0 x 1 + 0 x 0 + 1 x 1 = 4

How convolution works

• Convolution performs a dot product between two matrices: filter and the receptive field in the input image
(small region to which a neuron is connected to)

• Stride: How many pixels does the convolutional filter move each time

Parameter sharing

34

• Convolution compresses an image or a previous layer into a feature map and one layer can have multiple filters,
each outputs a feature map

• The weight and biases for a given neuron are only non-zero over a small, local region

• All neurons in a feature map share the same parameters: parameter sharing

• dramatically reduces the number of parameters to learn

• the same filter applied everywhere

• Feature maps are typically followed elementwise through an activation function such as ReLU.

Feature MapFilter

Neuron

Example:
• Image of the size 32x32x3

• Filter size 5x5

• Each neuron will have non-zero weights to 5x5x3 region

• Total non-zero weights per neuron: 5*5*3=75 (+bias)

• Each feature map highlights where certain features are present in the input.

• The network learns during training what filters (features) are useful for the task

• We can visualize some filters and feature maps, but we cannot always exactly what every feature represents
especially deeper in the network

Feature maps

35

FILTERS

FEATURE MAPS

https://medium.com/dataseries/visualizing-the-feature-maps-and-filters-by-convolutional-neural-networks-e1462340518e

Pooling layer

36

• Added between the convolutional layers.

• Reduce the dimensionality, the number of parameters and computation in the network, control overfitting.

• Increases robustness: Small changes in the input image do not change the pooled output much

• The most common type of pooling is max pooling which just takes the max value in the pooling window.

Max Pooling example

37

• Max pooling with 2 x 2 window.

• In this example Max Pooling will halve the input in both dimensions.

• By halving the height and the width, we reduced the number of weights to 1/4 of the input: millions of
weights in CNN architectures, this reduction is significant.

• Improved statistical efficiency and reduced memory requirements for storing the parameters.

CNN architecture for MNIST digit classification

38

https://medium.com/@yash.4198/cnn-for-mnist-handwritten-dataset-cc94d61f6c94

CNN common architecture choices

39

• Convolutional layers, followed by ReLu, pooling layer, Convolutional with ReLu, Pooling…Fully Connected Layers

• Input layer: some typical values 32, 64, 96, 224, 384, 512 (divisible by 2)

• Convolutional layer:

• Filter size: small, 3x3 or 5x5. Larger values 7x7 only in on the first convolutional layer that is looking at the input image

• Number of filters (depth): depends, common practice to double after each pool layer

• Filters not defined manually: learn during training (weights)

• Stride small

• Pooling layer: max pooling 2x2

• Fully connected layer

• Flatten

• 1-2 dense layers

• Dropout

• CNNs no longer state of the art for computer vision

	Slide 1
	Slide 2: Modeling a simple decision
	Slide 3: Perceptron
	Slide 4: From binary to continuous output
	Slide 5: Structure of artificial neuron
	Slide 6: Feedforward Neural Network
	Slide 7: Why are neural networks so popular?
	Slide 8: Why deep neural networks and not shallow wide networks?
	Slide 9: Training neural networks
	Slide 10: Stochastic gradient descent
	Slide 11: Backpropagation and weight update
	Slide 12: Neural network architecture
	Slide 13: Activation functions
	Slide 14: Sigmoid and tanh activation function
	Slide 15: Vanishing gradient problem
	Slide 16: Rectified Linear Unit (ReLU) and Leaky Rectified Linear Unit
	Slide 17: SoftMax activation function
	Slide 18: Neural Network example: MNIST classification
	Slide 19: Neural Network for digit classification
	Slide 20: Choosing number of layers and number of neurons
	Slide 21: Choosing activation function
	Slide 22: Common cost functions
	Slide 23: Typical architecture
	Slide 24: Learning rate
	Slide 25: Weight initialization
	Slide 26: Regularization
	Slide 27: Dropout
	Slide 28: Transfer Learning
	Slide 29
	Slide 30: Traditional neural network for image classification
	Slide 31: Architecture of Convolutional Neural Networks
	Slide 32: Convolutional layer
	Slide 33: How convolution works
	Slide 34: Parameter sharing
	Slide 35: Feature maps
	Slide 36: Pooling layer
	Slide 37: Max Pooling example
	Slide 38: CNN architecture for MNIST digit classification
	Slide 39: CNN common architecture choices

