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What is interpretability and why is it important?

• The degree to which a human can understand the cause of a decision.

• Sometimes it is used interchangeably with explainability, sometimes a distinction is made

• Interpretable Machine Learning focuses on designing models that are inherently interpretable.

• Explainable Machine Learning tries to provide post hoc explanations for existing models.

• Why is it important

• Social acceptance 
• Safety 
• Ethics 
• Scientific understanding
• Regulation 

2https://christophm.github.io/interpretable-ml-book/



Taxonomy of interpretability methods

• Model-specific 

Limited to specific model classes.  

• Model-agnostic

• Used on any machine learning model and are applied after the model has been trained (post hoc).

• Local 

Interpretation method explains an individual prediction.

• Global 

Interpretation method explains the entire model behavior.
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Result of the interpretation method

• Feature summary statistic

• Feature summary visualization

• Model internals  

• Data point

• Intrinsically interpretable model 

4



Interpretable models

Interpretable models have transparent decision-making processes that allow users to trace how 
predictions are made

• Decision tree

• Linear regression

• Logistic regression
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Interpreting linear regression

• Interpretation of weight for numerical feature: An increase of feature xi by one unit increases the 
prediction for y by Θi units when all other feature values remain fixed.

• Weight sign: 
• positive: as feature value increases, target value increases

• negative: as feature value increases, target value decreases

• The importance of a feature increases with increasing absolute weight. 
• Features must be scaled for weights to be comparable.

• If features correlated: individual feature weights do not give the complete picture.

• Logistic regression: The coefficients show how each feature influences the probability of an outcome.
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Model agnostic methods

• Partial Dependence Plot (PDP)

• Individual Conditional Expectation (ICE)

• Permutation Feature Importance

• Local Surrogate (LIME)

• SHAP (SHapley Additive exPlanations)
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Partial dependence plot (PDP)

• It shows the marginal effect one or two features have on the predicted outcome of a machine learning model.

• It is a global method, considers all instances and shows the global relationship of a feature with the target.
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http://rstudio-pubs-static.s3.amazonaws.com/283647_c3ab1ccee95a403ebe3d276599a85ab8.html

x-axis: feature value

Depending on the implementation, 
y-axis can be:
• actual predicted value
• actual predicted probability
• change in the prediction metric 

relative to a baseline value
• custom metric



1. Select feature (A)

2. Define grid of values (A1, A2, A3)

3. For each value of the grid:

• Replace feature with grid value

• Average predictions

4. Plot curve

How to calculate PDPs
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• Dataset with 3 features and 
3 datapoints

• Feature A has three unique 
values: A1, A2, A3

http://ethen8181.github.io/machine-learning/model_selection/partial_dependence/partial_dependence.html



Advantages and disadvantages of PDP

• Advantages:

• Intuitive: The partial dependence function at a particular feature value represents the average prediction if we force 
all data points to assume that feature value. 

• If the feature for which we computed the PDP is not correlated with the other features, then the PDPs perfectly 
represent how the feature influences the prediction on average. 

• Easy to implement.

• Disadvantages:

• Limited to two features. 

• The assumption of independence: assumes features for which the partial dependence is computed are not correlated 
with other features. 

• Heterogeneous effects might be hidden because PDP only show the average marginal effects. 
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Individual Conditional Expectation (ICE)

• The equivalent to a PDP for individual data instances is ICE plot.

• Individual Conditional Expectation (ICE) plots display one line per instance that shows how the instance's prediction 
changes when a feature changes.

• A PDP is the average of the lines of an ICE plot. 

• The values for a line: computed by keeping all other features the same, creating variants of this instance by replacing 
the feature's value with values from a grid and making predictions with the black box model for these newly created 
instances.

• ICE curves suffer from the same problem as PDPs: If the feature of interest is correlated with the other features, 
then some points in the lines might be invalid data points according to the joint feature distribution.
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Permutation Feature Importance

• Permutation feature importance measures the increase in the prediction error of the model after we permuted the 
feature's values. 

• A feature is important if shuffling its values increases the model error- the model relied on the feature for the prediction.

• A feature is unimportant if shuffling its values leaves the model error unchanged- the model ignored the feature for the 
prediction.

• It could be applied on the training as well as the test set:

• Training data: how much the model relies on each feature for making predictions. 

• Test data: how much the feature contributes to the performance of the model on unseen data.

• Different from Decision tree-based feature importance

 Gini index importance: for each feature go through all the splits for which 
the feature was used and measure how much it has reduced the Gini index
compared to the parent node. 
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Advantages and Disadvantages of Permutation Feature Importance

Advantages

• Has nice interpretation: Feature importance is the increase in model error when the feature's information is destroyed.

• Provides a global insight into the model's behavior.

• Considers all interactions with other features. By permuting the feature, the interaction effects with other features are 
canceled. 

Disadvantages

• Depends on shuffling the feature, which adds randomness to the measurement. When the permutation is repeated, 
the results might vary greatly. 

• Decreases the importance of the correlated features by splitting the importance between both features. 
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Local Interpretable Model-Agnostic Explanations (LIME)

• Surrogate models: trained to approximate the predictions of the underlying black box model. 

• Basic idea:

• LIME tests what happens to the predictions when we give variations of the data into the machine learning model. 

• LIME generates a new dataset consisting of perturbed samples and the corresponding predictions of the black 
box model. 

• LIME then trains an interpretable model on this new dataset, which is weighted by the proximity of the sampled 
instances to the instance of interest. 

• Local fidelity: The learned model should be a good approximation of the machine learning model predictions locally, 
but it does not have to be a good global approximation. 

• Interpretable model used: Ridge Regression, Lasso, Decision trees

• Regression: linear model will predict the output of the black box model directly.

• Classification: the linear model will predict the probability of the chosen class.
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How LIME works for tabular data?
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Advantages and disadvantages  of LIME

Advantages

• When using Lasso or short trees, the resulting explanations are user friendly.

• LIME is one of the few methods that works for tabular data, text and images.

• LIME is very easy to use.

Disadvantages

• Choosing the correct neighborhood of a data instance depends on the parameters that should be 
tuned.

• Data points are sampled from a Gaussian distribution, ignoring the correlation between features. 
This can lead to unlikely data points which can then be used to learn local explanation models.

• The complexity of the explanation model must be defined in advance, it’s a trade-off between 
fidelity and sparsity.

• Instability of the explanations: repeating the sampling process, might lead to different explanations.
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Shapley values: illustrative example

• We have trained a machine learning model to predict apartment prices. 

• Predicts €300,000: apartment has an area of 50 m2, is located on the 2nd floor, has a park nearby and cats are banned 
features: area-50, 2ndfloor, park-nearby, cat-banned

• The average prediction for all apartments is €310,000. 

• Goal is to explain the difference between the actual prediction (€300,000) and the average prediction (€310,000).
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Shapley values: illustrative example
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our data instance

One sample repetition to estimate the contribution 
of cat-banned to the prediction when added to the 
coalition of park-nearby and area-50.



Shapley values: illustrative example
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Coalitions needed for computing the exact Shapley value of the cat-banned feature value:

• No feature values
• park-nearby
• area-50
• floor-2nd
• park-nearby + area-50
• park-nearby + floor-2nd
• area-50 + floor-2nd
• park-nearby + area-50 + floor-2nd

• We replace the feature values of features that are not in a coalition with random feature values from the apartment 
dataset to get a prediction from the machine learning model.

• For each of these coalitions we compute the predicted apartment price with and without the feature value cat-banned 
and take the difference to get the marginal contribution. 

• The Shapley value is the (weighted) average of marginal contributions. 



SHAP (SHapley Additive exPlanations)

Advantages

• The SHAP explanation method computes Shapley values. 

• Global and Local interpretability

• With SHAP, global interpretations are consistent with the local explanations.

• Legally compliant method, because it is based on a solid theory and distributes the effects fairly.  

• It has a fast implementation for tree-based models. 

Disadvantages

• To calculate the Shapley value: access to data is needed.

• Model-agnostic implementation KernalSHAP is slow. This makes KernelSHAP impractical to use when we 
want to compute Shapley values for many instances, unlike LIME.

• KernelSHAP ignores feature dependence.
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SHAP Explaining a single prediction: Iris dataset
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SHAP Global feature importance: Iris dataset
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Correlation does not imply causation

• The target we are interested in cannot be directly observed through any single feature. Predicting most events, such as the 
likelihood a user will buy a given product, relies on different features, none of which directly measure the target.

• We should not assume that the patterns captured in models are causative, rather that they are correlations.

• Special analysis/tools/experiments should be used to confirm causation.

23
1 https://www.tylervigen.com/spurious-correlations

Spurious correlations 1: mathematical relationship in which two or more events or variables are associated but not 
causally related, due to either coincidence or the presence of a certain third, unseen confounding factor.



FAIRNESS AND BIAS IN 
MACHINE LEARNING
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Bias in ML

Systematic and repeatable errors in the model’s predictions that create unfair outcomes, such as privileging 
one arbitrary group over others.

Different types of bias:

• Data bias

• Label bias

• Omitted variable bias

• Response bias

• Confirmation bias

• Survivorship bias

• …
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Data bias

• Occurs when the training data does not accurately represent the real-world population, leading to systematic 
errors 

• In a ML project: we need to check does that the training population match the population to which the model 
will be applied to.
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Omitted variable bias

• Occurs when one or more important variables are left out of the model.

• Predicting customer churn

• Omitted variable: appearance of a competitor

• Model used to predict the probability of death for patients with pneumonia so that high-risk patients could be 
admitted to the hospital while low-risk patients are treated as outpatients.

• Model learned: pneumonia patients who were asthmatic had lower risk of dying from pneumonia 
compared to patients who were not asthmatic.

• Omitted variable: patients with a history of asthma who exhibited symptoms of pneumonia usually were 
admitted not only to the hospital but directly to the Intensive Care Unit, more effective care.

• Researchers discovered this by analyzing interpretable model
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Response (activity) bias

This bias refers to the disproportionate oversampling from an unrepresentative subpopulation:

• online reviews are biased toward extremes

• social media trends reflect the loudest voices

• E-commerce data favoring frequent shoppers

• health & fitness apps only reflect motivated users

28



Historical bias

• Bias of the world: models inherit and reinforce past inequalities, stereotypes, or discriminatory patterns 

• Data has unwanted properties that are regarded as biased given a perfect sampling and feature selection.

• Replicates decisions made in the world that were biased.

• Amazon:

• Launched a system for automatically screening job applicants.

• Trained on 10 years worth of job applications and their outcomes.

• Historical data: most employees at Amazon were male particularly in technical roles.

• Algorithm learned that men were more suitable candidates. 
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Fairness

• No universal definition of fairness exists, seems to depend on different preferences and outlooks, and 
varies by culture and context.

• Fairness is the absence of any prejudice or favoritism toward an individual or group based on their inherent 
or acquired characteristics.

• Fairness is lack of bias.

• A given algorithm is said to be fair, or to have fairness if its results are independent of some features, we 
consider to be sensitive (ethnicity, age, family status,…). 
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A protected attribute is a feature along which bias can occur.   

A protected group is a vulnerable population that has a specific value of the protected attribute(s).   



Bias audit

• Dataset audit

• Pre-processing audit

• Post-processing audit

• Naïve approach: 

• Apply methods for interpretability to understand which features are most important to the model. 

• Limitations:

• Bias may actually exist in features correlated with the protected feature (example: zip code).

• Just because a protected feature is important, does not mean the model is biased.

• Even if the protected features are not important, bias still might be present.
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Confusion matrix: loan default

32

False Negative
Model indicates a person will pay 
back the loan, but that person will 

not pay back the loan
 

False Positive
The model indicates a person will 
not pay back the loan, and that 
person will pay back the loan

True Label

1    0

Predicted Label

1

0

True Positive
Model indicates a person will not 

pay back the loan, and that person 
will not pay back the loan

 

True Negative
Model indicates a person will pay 

back the loan, and that person will 
pay back the loan



Additional metrics

Calculate across different groups:

• low-income vs high income neighborhoods

• young vs old



http://www.datasciencepublicpolicy.org/projects/aequitas/ 34

Fairness Tree

http://www.datasciencepublicpolicy.org/projects/aequitas/


Parity measures

• Demographic parity: equal proportion of positive predictions in each group:

• (Loan rejection) Same proportion of loans rejected in each group

• (University admissions) Same admission rate among each group

• Equal opportunity: equal True Positive Rate (Recall) across all groups.

• Equality of Odds: equal True Positive Rate (Recall) and False Positive Rate (FPR) across all groups.

• … 
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Accounting for bias

Preprocessing methods

Focused on transforming the dataset.

• Use oversampling and 
undersampling to decrease 
sampling bias in the dataset.

• Have group of people with diverse 
demographics labelling the dataset.

• Ensure that protected attributes do 
not influence the output of a 
machine learning model (naïve 
approach remove them).
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In-processing methods

Focused on adjusting the 
machine learning algorithm.

• Include fairness constraints.

• Include evaluation metrics 
other than accuracy (FPR, FNR, 
FDR, FOR across different 
groups).

Postprocessing methods

Focused on altering the model's 
internals and predictions after the 
model has been trained.

• Tune thresholds to decrease false 
positives or false negatives.

• Calibrate probabilities of class 
membership so that the 
probabilities are closer to the true 
likelihood.

• Ensure that the model’s outputs 
can be explained and understood.



Fairness and bias

• Fairness is context dependent.

• All datasets are biased, and all models are unfair.

• Accounting for bias will create tradeoffs: impossible to satisfy all existing fairness criteria at the same time
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