
DECISION TREE

5a

1

2695 Introduction to Machine Learning
Masters Program in Economics, Finance and Management



Selecting informative features
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• Which of the attributes would be best to segment these people into groups, in a way that will distinguish those with 
label YES from those with label NO?

Examples in this section are from: Data Science for Business: What You Need to Know about Data Mining and Data-Analytic 
Thinking,  F. Provost, T. Fawcett  



Splitting into less impure groups
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•  Goal: after split, resulting groups as pure as possible
      homogeneous with respect to the target variable.

• Pure group: every member of a group has the same value for the target. 
• Impure group: there is at least one member of the group that has a different value for the target variable than the 

rest of the group.

• Objective: Based on customer features, partition the customers into subgroups that are less impure – with respect to 
the class.



Entropy
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• Entropy: measure of disorder

• Disorder: how mixed (impure) the segment is with respect to these properties of interest. 
     

• Each pi is the probability (the relative percentage) of property i within the set:
pi = 0 when no members of the set have property i
pi = 1 when all members of the set have property i

• Note: Log base 2



Entropy: example
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Entropy of a set containing 10 instances of two classes
• probability (the relative percentage) of a positive class : p+ 
• probability (the relative percentage) of a negative class  p- :=1 - p+

Minimal Entropy:
p-=10/10=1, p+=0/10=0
Entropy= - 1 log2 1-0 log2 0= 0
(convention: 0 log 0 = 0)

Highest Entropy:
p-=p+=5/10=0.5
Entropy= -0.5log2 0.5 -0.5 
log2 0.5= 0.5 + 0.5=1



Information gain
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• Information gain (IG): change in entropy due to any amount of new information being added.
      How much an attribute improves (decreases) entropy over the whole segmentation it creates.

• Feature we split on has K different values. 
• Parent set: original set 
• K Children sets: result of splitting on the attribute values  

parent set 

children set 1 children set 2



Calculating information gain
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Splitting the “loan write-off” sample into two segments, by 
splitting the Balance attribute (account balance) at 50K

Pbalance<50=13/30=0.43 Pbalance>50=17/30=0.57



Constructing  trees
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1. Select the most informative feature
• Create branch for each possible feature value

2. Split instances into child sets
• One for each branch extending from the node

3. Repeat recursively for each branch, using only 
instances that reach the branch

      When to stop?
• all instances have the same class  
• there are no more features for splitting
• other stopping criteria are met



Tree structure
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• Each leaf contains a subset of training data points.

• The class with the most occurrences in that leaf is assigned 
as the predicted class.



Classifying using trees

10John Doe classified as NOT loan write-off



Visualizing decision boundary
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The black dots correspond to instances of the class Write-off, the plus signs correspond to instances of class non-Write-off.

Each node of a classification tree tests a 
single feature  against a fixed value so the 
decision boundary corresponding to it will 
always be perpendicular to the axis 
representing this feature.



Gini index: another splitting criterion
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• Gini index or Gini impurity is a measure of how often a randomly chosen element from the set would be 
incorrectly labeled if it was randomly labeled.

where pi is the proportion of the samples that belong to a particular class i, and C is the number of classes.

Minimum impurity: 0

Maximum impurity: 0.5 
(binary classification)



Using Gini index for finding the best split
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• When a node is split into k children sets, the quality of the split is calculated as:

where ni is the number of instances at child node i, and n is the number of instances of the parent node.

• At each split, we choose a feature with the lowest Gini Index.



From classification trees to probability estimation trees

• Each leaf of a tree model: an estimate of the probability of membership to the 
different classes.

• 𝑛 positive instances 
• 𝑚 negative instances 
• probability of any new instance being positive: 𝑛/(𝑛+𝑚)

• Laplace correction:
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Regression tree
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• Instead of trying to split the training set in a way that minimizes impurity, it now tries to split the training set in 
a way that minimizes the mean square error (MSE).

• Recursive splits: Model begins with the entire data set and searches every distinct value of every input variable 
to find the variable and the value of split that partitions the data into regions.

• Value of the target variable is calculated as the mean of the target values of all the training instances 
associated with the leaf node. 



Summary: Decision tree
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Advantages

• Simple to understand and easy to interpret

• Require little data preparation

• Decision trees can handle both continuous and categorical variables

• Implicitly perform feature selection

• Top used classifiers for structured data are some versions of decision trees 

      (structured: tabular data, unstructured: image, sound, text)

Disadvantages

• Prone to over-fitting

• Sensitive to small variations in the training data, small variations can result in a completely different tree

• Greedy approach does not guarantee the best solution



ENSEMBLE LEARNING

5b
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Basics of ensemble learning

• Combines multiple models to improve performance

• Aggregates predictions from different models for more robust results

• Often outperforms individual models 

Common types of Ensemble Learning

• Voting/Averaging

• Boosting
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Voting and averaging-based ensemble methods

Voting is used for classification and averaging is 
used for regression.

• hard voting: predicts the class with the most 
votes

• soft voting: averages the predicted class 
probabilities
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Why averaging works: example

• Three binary classifiers, each independently correct with probability 0.80.

• With simple averaging, ensemble is correct if we have “at least 2 right”:

• P(all 3 right) = 0.83= 0.512.

• P(2 rights, 1 wrong) = 3*0.82 * (1-0.8) = 0.384.

• Therefore, ensemble is right with probability 0.896 (which is 0.512+0.384).

0.80.8 0.8

0.8 0.8 0.2

0.2 0.8 0.8

0.8 0.2 0.8
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Notes on why averaging works

• For averaging to work: 

• Classifiers need to be at least somewhat independent.

• Their probability of being right to be > 0.5, otherwise it will do much worse.

• Probabilities also shouldn’t be too different (otherwise, it might be better to take the most accurate).

• Classifiers that overfit (like deep decision trees):

• If they all overfit in exactly the same way, averaging brings no benefit.

• But if they make independent errors:

• Less attention to specific overfitting of each classifier.

• Probability that “average” is wrong can be lower than for each classifier.
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Bagging

Bagging (short for bootstrap aggregating): using bootstrap samples for ensemble learning.

• Generate several bootstrap samples of the examples.  

• Train a classifier on each bootstrap sample.

• Average the predictions.

Bagging:
• has little effect on bias
• reduces variance 
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Bootstrap Sampling: example

Slide credit: M. Schmidt
23



Bootstrap Sampling properties

• Same number of cards 52, but some cards will be missing, and some cards will be duplicated.

• Calculations on the bootstrap sample will give different results than on the original data.

• However, the bootstrap sample roughly maintains trends:

• Roughly 25% of the cards will be diamonds.

• There will be roughly four “10” cards.

• In general, bootstrapping gives a new dataset of n examples, with some instances duplicated and some missing.
• For large n, approximately 63% of original examples are included.
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Random Forest = Bagging + Decision trees

• Random forests averages a set of deep decision trees.

• Tend to be one of the best “out of the box” classifiers.

• Often close to the best performance of any method on the first run.

• And predictions are very fast.

• Do deep decision trees make independent errors?

• No: with the same training data you’ll get the same decision tree.

• Two key ingredients in random forests:

• Bootstrapping.

• Different trees.
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Random Forest: Generate different trees

Fit each random-forest tree to different bootstrap 
samples

Grow a decision tree, by recursively repeating: 
• Select m variables at random from the p variables

(m<p)
• Calculate the best split based on these m variables 

in the training set.

Each tree is grown to the largest extent possible
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Random Forest: Aggregate predictions

Use “majority votes” for classification, and “average” for regression problem.
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Random forest example: Decision boundaries
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Random Forest error rate

Random forest error rate depends on two things:

• The correlation between any two trees in the forest 

Increasing the correlation: higher forest error rate.

• The strength of each individual tree in the forest

 Higher strength: lower forest error rate.

Number of variables used to build each tree (m):

• lower number: lower correlation and the strength.

• higher number: higher correlation and the strength. 

Somewhere in between is an "optimal" range of m:

• m = p/3 for regression problems (p total number of features)

• m = sqrt(p) for classification problems.

• hyperparameter to be tuned
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Out-of-Bag (OOB) error

• Each tree is constructed using a different bootstrap sample from the original data. 

• About one-third of the instances are left out of the bootstrap sample and are not used in the construction of the tree.

• We can use each instances left out in the construction of a particular tree evaluate that tree.

• Each instance ends up being a test set in about one-third of the trees. 

• We can predict the target of each instance using all the trees where this data instances was not used to build the tree, 
and this gives us the oob error estimate.
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Feature importance with out of bag samples

• The prediction accuracy on the out-of-bag sample is measured. 

• The values of one feature in the out-of-bag-sample are randomly shuffled, keeping all other features the same.

• The prediction accuracy is obtained using this changed dataset.

• Intuitively, if the accuracy does not decrease with the random shuffling, it means that the feature has no predictive 
power. 

• If a feature has very little predictive power, shuffling may even lead to a slight increase in accuracy due to random noise. 
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Boosting

• Widely used in practice

• Used by most winners of machine learning competitions (Kaggle, KDD cup,…)

Bagging reduces variance, boosting reduces bias.
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Bagging
Base models run in parallel.

Boosting
 Boosting trains models sequentially, where 
each new model focuses on correcting the 
errors made by the previous ones

Bagging
N new training data sets are produced by 
random sampling with replacement from 
the original set. 

Boosting
Incorrectly predicted observations are 
weighted more heavily and appear in the 
new datasets more often.

Bagging
The result is obtained by averaging the 
responses of the N learners (or majority vote).

Boosting
The final boosting ensemble uses a weighted
average, more weight to those with better
performance on training data.



Gradient Boosting
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Regression

• Start with a simple model (weak learner: high bias and low complexity)

• Calculate the residuals (difference between actual values and predicted values)

•  Train a new model to correct the errors 
• train a new decision tree to predict the residuals 

• Update the predictions
• add the new model’s predictions to the original model’s predictions
• use a  learning rate to control how much of the correction is applied

• Repeat the process
• keep adding more small trees, each trained on the remaining errors
• get a strong model that makes very accurate predictions after many iterations

Prediction: sum the initial prediction and all the tree corrections, scaled by the learning rate

Classification
• uses regression trees, but to the predict class probabilities



XGBoost: Extreme Gradient Boosting

• Optimized and advanced version of Gradient Boosting. 

• Adds regularization (L1 & L2), which helps in preventing overfitting. 

• Implements Stochastic GBM with column (features) and row (instances) sampling for better generalization.

• Parallelizes finding the best split for each tree to speed up training.

• Implements early stopping: automatically stopping training when performance on a validation set stops 
improving, helps XGBoost automatically select the optimal number of trees
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LightGBM

• Faster and more memory-efficient, optimized for massive datasets

• Implements  Leaf-Wise Growth: expands the leaf node that reduces loss the most instead of evenly 
expanding all nodes

• Handles categorical features natively, eliminating the need for encoding.
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Catboost

• Best support for categorical features

• Symmetric Tree Growth: both left and right child nodes are split simultaneously at each depth: Faster 
inference speed, as all trees have the same structure. 

• Performs well even on small datasets 

• Less need for extensive hyperparameter tuning
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Hyperparameters of gradient boosting algorithms
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• Tree Structure and Model Complexity
• maximum tree depth  
• number of leaves per tree  

• Learning Process
• number of boosting rounds
• percentage of rows sampled per tree
• fraction of features used per tree
• learning rate

• Regularization
• L1 regularization
• L2 regularization
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