
DECISION TREE

5a

1

2695 Introduction to Machine Learning
Masters Program in Economics, Finance and Management

Selecting informative features

2

• Which of the attributes would be best to segment these people into groups, in a way that will distinguish those with
label YES from those with label NO?

Examples in this section are from: Data Science for Business: What You Need to Know about Data Mining and Data-Analytic
Thinking, F. Provost, T. Fawcett

Splitting into less impure groups

3

• Goal: after split, resulting groups as pure as possible
 homogeneous with respect to the target variable.

• Pure group: every member of a group has the same value for the target.
• Impure group: there is at least one member of the group that has a different value for the target variable than the

rest of the group.

• Objective: Based on customer features, partition the customers into subgroups that are less impure – with respect to
the class.

Entropy

4

• Entropy: measure of disorder

• Disorder: how mixed (impure) the segment is with respect to these properties of interest.

• Each pi is the probability (the relative percentage) of property i within the set:
pi = 0 when no members of the set have property i
pi = 1 when all members of the set have property i

• Note: Log base 2

Entropy: example

5

Entropy of a set containing 10 instances of two classes
• probability (the relative percentage) of a positive class : p+
• probability (the relative percentage) of a negative class p- :=1 - p+

Minimal Entropy:
p-=10/10=1, p+=0/10=0
Entropy= - 1 log2 1-0 log2 0= 0
(convention: 0 log 0 = 0)

Highest Entropy:
p-=p+=5/10=0.5
Entropy= -0.5log2 0.5 -0.5
log2 0.5= 0.5 + 0.5=1

Information gain

6

• Information gain (IG): change in entropy due to any amount of new information being added.
 How much an attribute improves (decreases) entropy over the whole segmentation it creates.

• Feature we split on has K different values.
• Parent set: original set
• K Children sets: result of splitting on the attribute values

parent set

children set 1 children set 2

Calculating information gain

7
Splitting the “loan write-off” sample into two segments, by
splitting the Balance attribute (account balance) at 50K

Pbalance<50=13/30=0.43 Pbalance>50=17/30=0.57

Constructing trees

8

1. Select the most informative feature
• Create branch for each possible feature value

2. Split instances into child sets
• One for each branch extending from the node

3. Repeat recursively for each branch, using only
instances that reach the branch

 When to stop?
• all instances have the same class
• there are no more features for splitting
• other stopping criteria are met

Tree structure

9

• Each leaf contains a subset of training data points.

• The class with the most occurrences in that leaf is assigned
as the predicted class.

Classifying using trees

10John Doe classified as NOT loan write-off

Visualizing decision boundary

11
The black dots correspond to instances of the class Write-off, the plus signs correspond to instances of class non-Write-off.

Each node of a classification tree tests a
single feature against a fixed value so the
decision boundary corresponding to it will
always be perpendicular to the axis
representing this feature.

Gini index: another splitting criterion

12

• Gini index or Gini impurity is a measure of how often a randomly chosen element from the set would be
incorrectly labeled if it was randomly labeled.

where pi is the proportion of the samples that belong to a particular class i, and C is the number of classes.

Minimum impurity: 0

Maximum impurity: 0.5
(binary classification)

Using Gini index for finding the best split

13

• When a node is split into k children sets, the quality of the split is calculated as:

where ni is the number of instances at child node i, and n is the number of instances of the parent node.

• At each split, we choose a feature with the lowest Gini Index.

From classification trees to probability estimation trees

• Each leaf of a tree model: an estimate of the probability of membership to the
different classes.

• 𝑛 positive instances
• 𝑚 negative instances
• probability of any new instance being positive: 𝑛/(𝑛+𝑚)

• Laplace correction:

14

Regression tree

15

• Instead of trying to split the training set in a way that minimizes impurity, it now tries to split the training set in
a way that minimizes the mean square error (MSE).

• Recursive splits: Model begins with the entire data set and searches every distinct value of every input variable
to find the variable and the value of split that partitions the data into regions.

• Value of the target variable is calculated as the mean of the target values of all the training instances
associated with the leaf node.

Summary: Decision tree

16

Advantages

• Simple to understand and easy to interpret

• Require little data preparation

• Decision trees can handle both continuous and categorical variables

• Implicitly perform feature selection

• Top used classifiers for structured data are some versions of decision trees

 (structured: tabular data, unstructured: image, sound, text)

Disadvantages

• Prone to over-fitting

• Sensitive to small variations in the training data, small variations can result in a completely different tree

• Greedy approach does not guarantee the best solution

ENSEMBLE LEARNING

5b

17

2695 Introduction to Machine Learning
Masters Program in Economics, Finance and Management

Basics of ensemble learning

• Combines multiple models to improve performance

• Aggregates predictions from different models for more robust results

• Often outperforms individual models

Common types of Ensemble Learning

• Voting/Averaging

• Boosting

18

Voting and averaging-based ensemble methods

Voting is used for classification and averaging is
used for regression.

• hard voting: predicts the class with the most
votes

• soft voting: averages the predicted class
probabilities

19

Why averaging works: example

• Three binary classifiers, each independently correct with probability 0.80.

• With simple averaging, ensemble is correct if we have “at least 2 right”:

• P(all 3 right) = 0.83= 0.512.

• P(2 rights, 1 wrong) = 3*0.82 * (1-0.8) = 0.384.

• Therefore, ensemble is right with probability 0.896 (which is 0.512+0.384).

0.80.8 0.8

0.8 0.8 0.2

0.2 0.8 0.8

0.8 0.2 0.8

20

Notes on why averaging works

• For averaging to work:

• Classifiers need to be at least somewhat independent.

• Their probability of being right to be > 0.5, otherwise it will do much worse.

• Probabilities also shouldn’t be too different (otherwise, it might be better to take the most accurate).

• Classifiers that overfit (like deep decision trees):

• If they all overfit in exactly the same way, averaging brings no benefit.

• But if they make independent errors:

• Less attention to specific overfitting of each classifier.

• Probability that “average” is wrong can be lower than for each classifier.

21

Bagging

Bagging (short for bootstrap aggregating): using bootstrap samples for ensemble learning.

• Generate several bootstrap samples of the examples.

• Train a classifier on each bootstrap sample.

• Average the predictions.

Bagging:
• has little effect on bias
• reduces variance

22

Bootstrap Sampling: example

Slide credit: M. Schmidt
23

Bootstrap Sampling properties

• Same number of cards 52, but some cards will be missing, and some cards will be duplicated.

• Calculations on the bootstrap sample will give different results than on the original data.

• However, the bootstrap sample roughly maintains trends:

• Roughly 25% of the cards will be diamonds.

• There will be roughly four “10” cards.

• In general, bootstrapping gives a new dataset of n examples, with some instances duplicated and some missing.
• For large n, approximately 63% of original examples are included.

24

Random Forest = Bagging + Decision trees

• Random forests averages a set of deep decision trees.

• Tend to be one of the best “out of the box” classifiers.

• Often close to the best performance of any method on the first run.

• And predictions are very fast.

• Do deep decision trees make independent errors?

• No: with the same training data you’ll get the same decision tree.

• Two key ingredients in random forests:

• Bootstrapping.

• Different trees.

25

Random Forest: Generate different trees

Fit each random-forest tree to different bootstrap
samples

Grow a decision tree, by recursively repeating:
• Select m variables at random from the p variables

(m<p)
• Calculate the best split based on these m variables

in the training set.

Each tree is grown to the largest extent possible

26

Random Forest: Aggregate predictions

Use “majority votes” for classification, and “average” for regression problem.

27

Random forest example: Decision boundaries

28

Random Forest error rate

Random forest error rate depends on two things:

• The correlation between any two trees in the forest

Increasing the correlation: higher forest error rate.

• The strength of each individual tree in the forest

 Higher strength: lower forest error rate.

Number of variables used to build each tree (m):

• lower number: lower correlation and the strength.

• higher number: higher correlation and the strength.

Somewhere in between is an "optimal" range of m:

• m = p/3 for regression problems (p total number of features)

• m = sqrt(p) for classification problems.

• hyperparameter to be tuned

29

Out-of-Bag (OOB) error

• Each tree is constructed using a different bootstrap sample from the original data.

• About one-third of the instances are left out of the bootstrap sample and are not used in the construction of the tree.

• We can use each instances left out in the construction of a particular tree evaluate that tree.

• Each instance ends up being a test set in about one-third of the trees.

• We can predict the target of each instance using all the trees where this data instances was not used to build the tree,
and this gives us the oob error estimate.

30

Feature importance with out of bag samples

• The prediction accuracy on the out-of-bag sample is measured.

• The values of one feature in the out-of-bag-sample are randomly shuffled, keeping all other features the same.

• The prediction accuracy is obtained using this changed dataset.

• Intuitively, if the accuracy does not decrease with the random shuffling, it means that the feature has no predictive
power.

• If a feature has very little predictive power, shuffling may even lead to a slight increase in accuracy due to random noise.

31

Boosting

• Widely used in practice

• Used by most winners of machine learning competitions (Kaggle, KDD cup,…)

Bagging reduces variance, boosting reduces bias.

32

Bagging
Base models run in parallel.

Boosting
 Boosting trains models sequentially, where
each new model focuses on correcting the
errors made by the previous ones

Bagging
N new training data sets are produced by
random sampling with replacement from
the original set.

Boosting
Incorrectly predicted observations are
weighted more heavily and appear in the
new datasets more often.

Bagging
The result is obtained by averaging the
responses of the N learners (or majority vote).

Boosting
The final boosting ensemble uses a weighted
average, more weight to those with better
performance on training data.

Gradient Boosting

33

Regression

• Start with a simple model (weak learner: high bias and low complexity)

• Calculate the residuals (difference between actual values and predicted values)

• Train a new model to correct the errors
• train a new decision tree to predict the residuals

• Update the predictions
• add the new model’s predictions to the original model’s predictions
• use a learning rate to control how much of the correction is applied

• Repeat the process
• keep adding more small trees, each trained on the remaining errors
• get a strong model that makes very accurate predictions after many iterations

Prediction: sum the initial prediction and all the tree corrections, scaled by the learning rate

Classification
• uses regression trees, but to the predict class probabilities

XGBoost: Extreme Gradient Boosting

• Optimized and advanced version of Gradient Boosting.

• Adds regularization (L1 & L2), which helps in preventing overfitting.

• Implements Stochastic GBM with column (features) and row (instances) sampling for better generalization.

• Parallelizes finding the best split for each tree to speed up training.

• Implements early stopping: automatically stopping training when performance on a validation set stops
improving, helps XGBoost automatically select the optimal number of trees

34

LightGBM

• Faster and more memory-efficient, optimized for massive datasets

• Implements Leaf-Wise Growth: expands the leaf node that reduces loss the most instead of evenly
expanding all nodes

• Handles categorical features natively, eliminating the need for encoding.

35

Catboost

• Best support for categorical features

• Symmetric Tree Growth: both left and right child nodes are split simultaneously at each depth: Faster
inference speed, as all trees have the same structure.

• Performs well even on small datasets

• Less need for extensive hyperparameter tuning

36

Hyperparameters of gradient boosting algorithms

37

• Tree Structure and Model Complexity
• maximum tree depth
• number of leaves per tree

• Learning Process
• number of boosting rounds
• percentage of rows sampled per tree
• fraction of features used per tree
• learning rate

• Regularization
• L1 regularization
• L2 regularization

	Slide 1
	Slide 2: Selecting informative features
	Slide 3: Splitting into less impure groups
	Slide 4: Entropy
	Slide 5: Entropy: example
	Slide 6: Information gain
	Slide 7: Calculating information gain
	Slide 8: Constructing trees
	Slide 9: Tree structure
	Slide 10: Classifying using trees
	Slide 11: Visualizing decision boundary
	Slide 12: Gini index: another splitting criterion
	Slide 13: Using Gini index for finding the best split
	Slide 14: From classification trees to probability estimation trees
	Slide 15: Regression tree
	Slide 16: Summary: Decision tree
	Slide 17
	Slide 18: Basics of ensemble learning
	Slide 19: Voting and averaging-based ensemble methods
	Slide 20: Why averaging works: example
	Slide 21: Notes on why averaging works
	Slide 22: Bagging
	Slide 23: Bootstrap Sampling: example
	Slide 24: Bootstrap Sampling properties
	Slide 25: Random Forest = Bagging + Decision trees
	Slide 26: Random Forest: Generate different trees
	Slide 27: Random Forest: Aggregate predictions
	Slide 28: Random forest example: Decision boundaries
	Slide 29: Random Forest error rate
	Slide 30: Out-of-Bag (OOB) error
	Slide 31: Feature importance with out of bag samples
	Slide 32: Boosting
	Slide 33: Gradient Boosting
	Slide 34: XGBoost: Extreme Gradient Boosting
	Slide 35: LightGBM
	Slide 36: Catboost
	Slide 37: Hyperparameters of gradient boosting algorithms

