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Log odds
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• Odds of an event :   𝑂𝑑𝑑𝑠 =
Probability of the event happening

Probability of the event not happening =
𝑝

1−𝑝

• Logarithm of the odds is called log-odds and takes values in the range from – ∞  to + ∞: 

    log-odds= log(
𝑝

1−𝑝
)

• We can model log-odds with the same linear function that we have seen before: 

  log-odds=θ0+θ1 x1 +… + θn xn    

                   This model is called logistic regression.



Ranking Instances and Probability Class Estimation
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• Class membership probability 

▪ Which clients are most likely to respond to this offer? 

▪ Which clients are most likely to leave when their contracts expire?

• In other cases, we do not need probabilities, only a score that will rank cases by the likelihood of belonging to 
one class or the other

▪  For targeted marketing we may have a limited budget for targeting prospective customers. We would like 
to have a list of consumers ranked by their predicted likelihood of responding positively to our offer.



Logistic Regression is not a regression algorithm
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• For logistic regression, the model produces a numeric estimate. 

• However, the values of the target variable in the data are categorical. 

• Linear model is capturing the log-odds of class membership.

• It is a class probability estimation model and not a regression model.



• p is the probability that the instance with feature vector x belongs to class 1 
     (1-p: probability that the instance with feature vector x belongs to class 0 )

•  log odds:  log
𝑝

1−𝑝
= 𝜃0 + 𝜃1 𝑥1 + ⋯ + 𝜃𝑛 𝑥𝑛 = 𝜽𝑇𝑥

Solving for probability:

• 𝑝 =
1

1+𝑒− 𝜃0+𝜃1 𝑥1+⋯+𝜃𝑛 𝑥𝑛
 = 

1

1+𝑒−𝜽𝑇𝑥

Calculating probabilities
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vectorsscalars (numbers)

product is 
a scalar 
(number)



Sigmoid function
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“Sigmoid” or “logistic” function – it is an S-shaped function 
that “squashes” the value of 𝜃𝑇𝑥 into the range [0,1].

Sigmoid function is also used in neural networks.

𝑝 =
1

1+𝑒−𝜽𝑇𝑥



How to find the value of 𝜃 for fitting the model?
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• Logistic regression does not use MSE loss function.

• Our goal is to search for a value of θ so that the model estimates high probability of belonging to class 1 for 
instances of Class 1 (y = 1) and low for instances of Class 0 (y = 0).

• Log-loss Cost function (cross-entropy):

−
1

𝑚
෍

𝑖

𝑚

𝑦𝑖 log
1

1 + 𝑒−𝜽𝑇𝑥
+ 1 − 𝑦𝑖 log 1 −

1

1 + 𝑒−𝜽𝑇𝑥

m: number of training data points



Using the logistic regression model for class prediction
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Once the Logistic Regression model has estimated the probability Ƹ𝑝 that an instance x belongs to the positive 
class, it can make its prediction ŷ easily. The simplest (but not always the best) approach:

0

1

0.5
Predict y=1:
Estimated probability > 0.5
θTx≥0

θTx

Predict y=0:
Estimated probability < 0.5
θTx<0

Estimated probability of 
belonging to Class 1



• Let’s say during training we found that the values of our 
parameter vector is  θ=[-3,1,1].

• Then our θTx is as follows:

• Then our hypothesis function is as follows:

Logistic regression example
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• Let’s say during training we found that the values of our 
parameter vector is  θ=[-3,1,1].

• Then our θTx is as follows:

• Then our hypothesis function is as follows:

• We know that: Predict y=1:
  θTx≥0

•  In our case we get that we should predict 1 when:

Decision boundary
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• Let’s say during training we found that the values of our 
parameter vector is  θ=[-3,1,1].

• Then our θTx is as follows:

• Then our hypothesis function is as follows:

• We know that: Predict y=1:
     θTx≥0

•  In our case we get that we should predict 1 when:

What is a decision boundary?
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Decision boundary

Predict y=1

Predict y=0



Non-linear decision boundaries
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• Just like in the case of linear regression, instad of using only the observed values x, we can use functions of x.



Non-linear decision boundaries
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• Just like in the case of linear regression, instad of using only the observed values x, we can use functions of x.

Decision boundary

Predict y=1



Regularization in Logistic Regression
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• Again, L1 or L2 regularization
• Penalty term added to the cost function
• Importance of penalty: hyperparameter
• Sklearn by default uses L2 regularization
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EVALUATION METRICS 
BINARY CLASSIFICATION
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• Two classes
o positive 
o negative

• Percentage of two classes typically uneven: imbalanced classification

• Model evaluation 
• measures how will our model generalize to predict the target on new and future data
• performed on test data (holdout) data by comparing the predicted values with hidden true values
    How do we quantify the performance?

Binary classification basics
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• Simple metric, easy to compute

• Accuracy=1 – error rate

Accuracy
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Accuracy in imbalanced classification
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• Dataset: positive class only a tiny portion of the observed data. 
• Only 1% of bank transactions are fraudulent.  

• Model: for every instance predicts negative class: no fraud

• Accuracy

• 99% of data is negative, accuracy is 0.99!



Confusion matrix
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The cost of prediction error
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Disease 1, Not disease 0
Type II error more costly

Spam 1, Not spam 0
Type I error more costly



Accuracy, Precision, Recall
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Recall: True positive rate (TPR), Sensitivity



Receiver Operating Characteristics (ROC) plot

• X axis: false positive rate  

• Y axis: true positive rate on the y axis. 
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ROC plot: Example

Plot shows the performance of 5 discrete classifiers that 
output only a class label (as opposed to a ranking). 
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Ranking classifier

Sort instances by decreasing scores:

• choose a threshold (represented by a horizontal line) 

• classify all instances above the threshold as positive and those below it as negative.

• calculate the confusion matrix

• repeat
24



A ranking classifier produces a set of points in (ROC) space

Each threshold value produces a different point in ROC space.
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Constructing ROC curve



Comparing ROC curves of different classifiers
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The closer this curve is to the upper left corner; the better the classifier’s performance is.

Main advantage of ROC

• ROC curves are insensitive to class distribution/
unbalanced datasets

In this example
• Classifier A is better than B
• Classifier B is better than random guessing



AUC ROC (area under the ROC curve)
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AUC is (arguably) the best way to summarize model’s performance in a single number

• Compare multiple models by a single 
number

• Useful for model selection

• Higher AUC will be better
 



Choosing a threshold  
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• Depending on the cost of different errors

• Point on the curve that has high true positive rate for 
low false positive rate



Combining Precision and Recall
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Cumulative response curves

31

• Y axis: true positive rate

• X axis: percentage of the population that is targeted 

• Diagonal line x=y : random performance

• Test data should have the same class distribution as the 
true population (unlike ROC) .



Lift curves
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• Value of the cumulative response curve at a given x 
point divided by the diagonal line (y=x) value at that 
point. 

• y=1: random guessing

Again, test data should have class 
distribution representative of the true 
population (unlike ROC) .



Lift curve: example
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Churn detection

• churn: positive class

• no churn: negative class

• 100 customers, 20% churners

•   If we scan down the list and stop at 20% 
population: 

o Random guessing: lift =0.2/0.2 = 1

o Perfect classifier: lift = 1/0.2 = 5

1

5
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EVALUATION METRICS 
MULTICLASS CLASSIFICATION 
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Confusion matrix for Multiclass Classification
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Combine with:
• Micro average
• Macro average
• Weighted average



Micro Average
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1. Aggregate outcomes across all classes
2. Compute metric with aggregated outcomes

Class Precision

1, 2, 3 (103 + 59 + 5) / 370 = 0.451

Micro Precision
precision=TP/(TP+FP)
precision=(103 + 59 + 5) / 370= 167 / 370=0.451

For multiclass classification, micro average 
precision equals micro average recall and 
equals accuracy.



Macro Average
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1. Compute metric for each class
2. Average resulting metrics across classes

Class Precision

1 103/115=0.896

2 59/78=0.756

3 5/177=0.028

Macro-average precision:
(0.896 + 0.756 + 0.028) / 3 = 0.56

Precision of class 1

precision=TP / (TP+FP)
precision=103 / (103+3+9) = 0.896



Weighted Average
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1. Compute metric for each class
2. Average resulting metrics across classes 

weighted by the presence of instances

Class Precision

1 103 / 115 = 0.896

2 59 / 78 = 0.756

3 5 / 177 = 0.028

Precision of class 1

precision=TP / (TP+FP)
precision=103 / (103+3+9) = 0.896

Weighted-average precision:
(0.896 * 220 + 0.756 * 124 + 0.028 * 26) / 370 = 0.788
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