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Different types of ML algorithms
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Predict: numeric continuous value

Predict: categorical value

Supervised learning: Classification vs Regression
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Goal of Linear regression

Goal: Given input x we would like to compute outputy

Example: Predict house price

Living Area ( Feet2) Price (§) x: living area
1180 221,900 .
2570 538,000 y: prlce
770 180,000
1960 604,000 How much for this house ?
5420 1,225,000
1715 257,500
1060 201,850 Data set
1780 229 500
1890 323,000
3560 662,500
1160 468,000
1430 310,000
1370 400,000
1810 530,000
iving area = 4876 feef?
x y




Linear model

Goal: Given an input x we would like to compute an outputy

Living Area ( Feet2)
1180
2570

770
1960
1680
5420
1715
1060
1780
1890
3560
1160
1430
1370
1810

Price (§)
221,900
538,000
180,000
604,000
510,000
1,225,000
257,500
291,850
229,500
323,000
662,500
468,000
310,000
400,000
530,000

Data set

Example: Predict house’s price

x: living area

y: price

How much for this house ?

iving area = 4876 feet?
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In linear regression we assume
that y and x are related with the
following equation:

y=0x+ ¢
L
what we are what we
trying to predict observe

e 0O:parameter
e &: measurement or other noise

y=0x
/

our estimate



The best possible line
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Our goal is to estimate 6 from a training data of <x',y'> pairs in order to find the “best possible line”.

Living Area ( Feet2)

Price (§)

15t data point <x!,y>

180
2570

770
1960
1680
5420
1715
1060
1780
1890
3560
1160
1430
1370
1810

538,000
wow > 3™ data point <x3,y3>
604,000
510,000

1,225,000 ith data point <x‘,y‘>

257,500
201,850 Data set
929 500
323,000
662,500
468,000
310,000
400,000
530,000

_{
>

dependent Variable

Line of
regression

independent Variables X
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What is the line with the best fit

“Best” line depends on the objective (loss, cost) function: Objective function should reflect our goal.

Cost function determines how much penalty should be assigned to an instance based on the error in the model’s
predicted value

There exist many different cost functions, since there are many ways to compute the error between an estimated
value and an actual value.
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Mean squared error

 “Best” line depends on the objective (loss, cost) function: Objective function should reflect our goal.

e Cost function determines how much penalty should be assigned to an instance based on the error in the model’s
predicted value

* There exist many different cost functions, since there are many ways to compute the error between an estimated
value and an actual value.

* %Zi()’i — Hxi)z

m: number of training data points

» Error
'l Errors are also called as the Residuals
(the deviations from the fifted line to the
observed values)

Y (House's Price)

error = actual value — predicted value =y -y

X (Size of House)
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Objective functions

 “Best” line depends on the objective (loss, cost) function: Objective function should reflect our goal.

* Cost function determines how much penalty should be assigned to an instance based on the error in the model’s
predicted value

* There exist many different cost functions, since there are many ways to compute the error between an estimated
value and an actual value.

m: number of training data points
* Why this objective function:

* minimizes squared distance between measurements and predicted line: strongly penalizes very large errors

* easy to compute

10
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Finding the optimal value of the parameter

Our goal is to estimate 6 from a training data of <x,y"> pairs to find the “best possible line” y =60x + ¢

We can find the optimal value for the parameters by minimizing our cost function:
1 . N2
— L —Ox!
D —ox)
l

* For any other values of 6, the cost function would be higher for our training data.

Optimal value means:

Optimal value does not mean:
* that our model is generally a good model for the data

e that our model will perform well on new instances.
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Introducing the bias (intercept term) 7

So far, we assumed that the line passes through the origin.
* What if the line does not?

* No problem, simply change the model to:
y=0y+0;x+ ¢

Y-axis

* vyintercept: value at which the fitted line crosses the y-axis

X-axis
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Training vs Inference

* Training: We learn the values of parameters 8, and 6, using pairs <x'y'>.

* Inference (Prediction): Using the model, we can predict the value of y, for a new x.

y

= 9,000,000 y :'f X - f.;'-'ﬁ'
How much for this house ? 3 = 0.49;
8,000,000

7,000,000

8,000,000 y = 260.62 x — 4‘3581

5,000,000

.o W€
4,000,000 - egess“’“

Price ($)

SRR $1,324722
2,000,000 > R Rs

iving area = 4876 feef? 1,000,000

) ' X
0 2,000 4,000 4876 6,000 8,000 10,000 12,000 14,000 16,000

Size of Iving area

* What is the price of a house with this area?
13
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From simple to multiple linear regression

* Generally, one dependent variable (y) depends on multiple factors (x;, x,,...).
* For example, the price of a house depends on many factors like the size of the house, number of rooms,
attached facilities, distance of nearest station from it, distance of nearest shopping area from it...

The house’s price depends on multiple features (variables)

Number of Number of Age of home

ESREHESL) bedrooms floors (years) e (EALE)
2104 5 1 45 460
1416 3 2 40 232
1534 3 2 30 315

852 2 1 36 178

14



Multiple (multivariate) linear regression
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This is quite like the simple linear regression model, but with multiple independent variables contributing to the

dependent variable.

Each training sample has n attributes (x,,x,,...,X,,) and a corresponding single value of y.

Size (feet?)

X4

example

2104

1416

1534

852

Number of
bedrooms

X
5
3

3

Number of
floors

X3
]
2
2

Age of home
(years)

X4
45
40
30

36

Price ($1000)

y
460
232
315

178

Number of bedrooms  Age of Home
® [ ]

In this example,

?= 60 +91x1 +62X2+63x3 +64X4

® ® °
Price size Number of floors

15
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General linear regression

* What if your data is actually more complex than a simple straight line?
* Instead of the input variables (x) use some function of these values.

e Calculate functions of x, the regression model remains linear with respect to the coefficients.

Linear regression: General linear regression:

j;' = BD + 5‘1):1 + 52)(2 +F anﬂ j;’= BD + Hiiﬁl[.){) + Bzif)z[.}() by T o E-'nqbn[x}

¥=0 x y =6 x°



Polynomial regression

* Add powers of each feature as new features, then train a linear model on this extended set of features.

For lower degrees, the relationship has a specific name like quadratic.

* n=1, afirst degree polynomial is simply a straight line.

* n=2, asecond degree polynomial is called a quadratic.

« n=3,itiscubic. >y = 0,+0,x+ 0,x* + 0,x3

* n=4, it’s called quartic.

Y= 0,+0,x+0,x2+60,x3++6 x

where n is called the degree of the polynomial

"‘)y’\ = 90+91x

=Y = 0,+ 0;x+ 6,x2

=y = 0,4+ 0,x+ 0,x% + 60;3x3 40 ,x*

The polynomial models can be used to approximate a complex nonlinear relationship

[l
Yo}

40
|

Miles per gallon
30

20
|

Linear
Degree 2

== Degree 5

50

100

150

200
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Linear Regression properties

Supervised algorithm

Training data point: one or more input values and a single
output value

Training: learning the line with the best fit
Prediction: using the learnt line to predict the output value
Simple to interpret, easy to train

Used as a baseline for evaluating other, more complex models

cccccccccccc
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ESTIMATING PARAMETERS
OF LINEAR REGRESSION



y=0,+0x +0x,+-+0x

y is the predicted value.
n is the number of features.

x, is the i feature value.

n
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Equation for calculating the parameters

Y1
Y2

Vm

ith data point with n features

0; is the j™ model parameter (including the bias term 6, and the feature weights

6, 0,,--,0,).

Normal Equation (Closed Form)
Solve 6 analytically: a mathematical equation that gives the result directly

é‘:(xT'x)"l-xT-y

. (5 is the value of 8 that minimizes the cost function.

« yis the vector of target values containing y* to y™.

It’s suitable for small feature set (e.g. < 1000 features)
20
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Gradient Descent

One of the most popular optimization methods in Machine Learning (*)

How to get to the lowest place?

Mount Errorest

(*) used in training of neural networks
21



J(8)

cost function

How does Gradient descent work

Initial parameter . Gradient V J(8)

Slope)

-# Global minimum

»

@ (parameter)

J (8)=— IR0y — 7)°

cccccccccccc
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Gradient descent algorithm

The parameter are iteratively updated in the following
equation:

H . - ~ T - _ _
| earning rate (Step size)

EHEIW - HDH' a ' FEJ{E]

d
¢ Gradient F,J(8) = Fflﬁ';
s

1. Pick a value for the learning rate a

2. Start by filling 8,4 with random values (random
initialization)

3. Calculate the gradient at the point 6 4. Update new
parameter 6_,, by following the opposite direction

4. Repeat until cost converges to the minimum .
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Learning rate

Learning rate is a hyperparameter

If the learning rate is too small If the learning rate is too large

Cost Cost

Start Start

23



Gradient Descent Pitfalls
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Gradient Descent for convex function & non-convex function

If the cost function is convex

Cost

Learning step

Minimum

I
I
I
I
I
I
I
I
I
I
1

: £
Random 8

initial value A

The gradient descent is guaranteed to converge arbitrarily close to the
global minimum when cost function is convex

If the cost function is not convex
Cost

Plateau

> 0

1
. Global

Local minimum .
minimum

If the random initialization starts the algorithm on the left, then it will converge
to a local minimum, which is not as good as the global minimum.

24
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Accurate

Are we making correct
predictions?

Criteria for a good model

Interpretable Fast
How easy is it to explain How long does it take to
how the predictions are build a model and how
made? long does the model take

to make predictions?

uuuuuuuuuuuu
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Scalable

How much longer do we
have to wait if we
build/predict using a lot of
data?



Mean Squared Error

MSE is the mean of the squared value of the errors

¥ (House Price)

45

40

35

15

Predicting the house price

* MSE: mean of the squares of the difference
between the actual value and the predicted
values for all data points.

e A smaller score is better.

y =1.595x + 0.2321
R®=049322

10 15 20 25 30
X (Room Size)

27
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¥ (House Price)

45

40

35

30

25

20

15

10

Predicting the house price

10 15
X (Room Size)

20
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Root Mean Squared Error

* The most popular evaluation metrics used in
regression problems. It has same unit with “Y”.

e A smaller score is better.

y =1.595x + 0.2321
R®*=0.8322

25 30

28



Y (House Price)

45

40

33

30

25

20

15

10
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Mean Absolute Error

Predicting the house price

* MAE: Mean of the absolute difference between
the actual value and the predicted values for all
data points.

e A smaller score is better.

Tt
1
MAE = — 'y, 9
i=1

y =1.595x + 0.2321
R==048322

10 15 20 25 30
X (Room Size)

29



¥ (House Price)

45

40

35

30

25

20

15

10
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Mean Absolute Percent Error

Predicting the house price

e MAPE: measures the size of the error in
percentage terms.

* One of the most popular measures for forecasting
time series error.

e A smaller score is better.

10 15 20 25 30
X (Room Size)

30
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RZ - coefficient of determination

R? Score is based on comparing our model to the simplest possible model (mean of y)

R*=0.7705

Calculate the sum of squares for All data points

'\l * % (y hat) is the predicted value

For one data point .
P The error sum of squares * y; Is the actual valueftarget value)

error; =Vy,;_¥,

* yis the mean value

SS5crvor = Z(}"- _fr)E -

L
The regression sum of squares » The total sum of squares

SSI'E,Q - ZG‘-’( - }_;)2 — SSta[ﬂ] = SS['E"H + SSL'I'I'UI'
10 12 14
RZ —_ SS'I'E:.’I — l _ SSE?"I"E'J"
Ssm tal SS total

31
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AdjustedR2 T

Adjusted R? penalizes the model for the inclusion of variables:
* more useless variables to a model, adjusted R? decreases
- * more useful variables, adjusted R? increases

Adjusted R? is always less than or equal to R?

* 0: model has no predictive power

* 1: model that perfectly predicts

* Inthe real world, adjusted R? lies between these values

5 (1-R*)(n-1) n is the sample size (i.e., number of points in your data sample)
Hﬂdj =1- [ k is s the total number of explanatory variables in the model

n—-k-—1 : _
(not including the constant term)
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What do we want to achieve with our ML model?

Plots of polynomials having various orders n
The plot shows the real function that we want to approximate, which is a part of the cosine function

Degree 1
MSE = 4.08e-01(+/- 4.25e-01)

—— Model
— True function
e Samples

Degree 4
MSE = 4.32e-02(+/- 7.08e-02)

—— Model
— True function
e Samples

Degree 15
MSE = 1.82e+08(+/- 5.45e+08)

https://scikit-learn.org/stable/auto examples/model selection/plot underfitting overfitting.html#

—— Model
— True function
e Samples

NQOVA

NOVA oL OF
BUSINESS & ECONOMICS

34


https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html

uuuuuuuuuuuu
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Very important concepts: Generalization, underfitting and overfitting

* Generalization: model performs well on new, unseen data
* Underfitting: model is too simple to capture the patterns in the data

e Overfitting: model learns noise from the training data, leading to poor performance on new data



OOOOOOOOOOOO
SSSSSSSSSSSSSSSSSS

Ensuring good generalization by evaluating on unseen data

Train model on the training set and then test it on the test set

Data set

simply randomly hold out part of the data for validation

I

Test data

Usually 70-80% 20-30%

36
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Use of regularization to prevent overfitting

Regularization: introducing a preference for simpler models

New cost function = original cost function + penalty

L, regularization L, regularization

Penalizes sum of the squares of the

Penalizes absolute values of the . .
coefficients .

coefficients (not the bias term).
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L1 (Lasso) regularization

* L, reduces the impact of less important features, shrinks their coefficients all the way to 0.

* Performs feature selection, produces a sparse model (i.e., with few nonzero feature coefficients)

New cost function = MSE(@)+ a 376 | Penallzes.a.bsolute values of
the coefficients

The optimal
parameters are those
that minimize the new
cost function.

hyperparameter: regularization strength
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L2 (Ridge) regularization

* Does not eliminate features completely (coefficients can be very very small, but they are not zero).

* Reduces the magnitude of all coefficients

Penalizes sum of the squares of

. _ npn2
New cost function = MSE(0)+ a Y7 6; the coefficients.

The optimal
parameters are those
that minimize the new
cost function.

hyperparameter: regularization strength
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