2695 Introduction to Machine Learning Masters Program in Economics, Finance and Management

PYTHON SETUP

Python is becoming the most popular programming language for ML

Source: TechVidvan

Python libraries

Write your first python program interactively

- IPython is a powerful interactive shell for Python programming.
- In 2014, Jupyter project (<u>http://jupyter.org/</u>) was created as a spin-off project from IPython. It is language-agnostic.
 - JUlia + PYthon + R
- Jupyter Notebook is an open-source web application that allows you to create and share documents that contain live code, equations, visualizations.
- Jupyter notebook system allows you to author content in Markdown to create a rich documentation with code and text.

https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet

• We will be using **JupyterLab**, the next generation of the Jupyter Notebook.

So, how do we get started with python?

- A **software distribution** is a pre-built and pre-configured collection of packages that can be installed and used on a system.
- A **package manager** is a tool that automates the process of installing, updating, and removing packages.
- Anaconda is a Python and R distribution platform, contains a package manager Conda.
- Many data science packages come preinstalled with Anaconda.
- You can download a free Anaconda Distribution at: https://www.anaconda.com/products/distribution

What does OANACONDANterface look like?

Anaconda comes with a suite of graphical tools called Anaconda Navigator

- JupyterLab is an interactive programming environment (execute-explore vs. edit-compilerun): experiment and evaluation
- **Spyder** is an integrated development environment (IDE): *module development*

Conda seems ok, but I am used to pip. Is there a difference?

- **Pip** (Pip Installs Packages) is Python's officially-sanctioned package manager.
- Pip vs Conda:
 - Pip is a general-purpose manager for Python packages; conda is a language-agnostic cross-platform environment manager
 - Pip installs python packages within any environment; conda installs any package within conda environments.
 - For *our* use, pip and conda are mostly interchangeable.

Nice explanations of anaconda details: https://jakevdp.github.io/blog/2016/08/25/conda-myths-and-misconceptions/

Virtual environments

- Python has different versions, packages have different versions. What if for two projects you need different versions of the same package?
- Virtual environment is an isolated environment that allows us to keep these dependencies in separate "sandboxes".
- We can have many different environments, as they take up little space, each with separate package versions.

Let's get started

STEP 1: Install Anaconda

• Install Anaconda environment on your laptop

- Download open-source Individual Edition Anaconda distribution for Python according to your OS (<u>https://www.anaconda.com/download/</u>)
- It is free for solo practitioners, students, and researchers
- Follow the installation instruction (https://docs.anaconda.com/anaconda/install/)
- If your computer is short in storage, you may also consider Miniconda (no packages pre-installed)
- To verify everything is working, open Anaconda prompt and write:

python --version

conda -- version

• Confirm that you have the latest version of conda:

conda update conda

(Update any package, if necessary, by typing y to proceed)

Step 2: Create conda virtual environment for this class

• To create a virtual environment named ml2025, type from Anaconda Prompt

conda create -n ml2025 python=3.12

when conda asks you to proceed, type y

• Activate your environment:

conda activate ml2025

the active environment---the one you are currently using---is shown in parentheses () or brackets [] at the beginning of your command prompt:

• List all packages in environment

Environment active:conda listEnvironment not activeconda list -n ml2025

• Check if a specific package is installed:

Environment active: conda list <package name>

Environment not active conda list -n ml2025 <package name>

-n, --name

Step 2: Create conda virtual environment for this class

• Deactivate your environment

conda deactivate

• Delete an environment (no need to do now)

conda env remove -n ml2025

• List all environments

conda env list

Ö Anaconda Navigator

File Help

🥡 Update Now

ANACONDA.NAVIGATOR

A Home	Search Environments Q		Installed	Channels Update index	ch Packages Q
The Environments	base (root)		Name 🗸	T Description	Version
🗳 Learning	Anaconda3		_anaconda_depends	O Simplifies package management and deployment of anaconda	2024.10
•• •	ml2023		 aext-assistant 	O Anaconda extensions assistant library	4.1.0
Community	m 2025		aext-assistant-server	O Anaconda extensions assistant server	4.1.0
	1112023		aext-core	O Anaconda extensions core library	4.1.0
Your Voice Matters! Take a survey to join a live Q&A with our CAIO/Co-founder, Peter Wang Take Survey	prophet		aext-core-server	O Anaconda toolbox backend lib core server component	4.1.0
	python39		aext-panels	0	4.1.0
			aext-panels-server	0	4.1.0
		<	 aext-project- filebrowser-server 	0	4.1.0
			aext-share-notebook	0	4.1.0
			 aext-share-notebook- server 	0	4.1.0
			aext-shared	O Anaconda extensions shared library	4.1.0
			aext-toolbox	e	4.1.0
			 aiobotocore 	O Async client for aws services using botocore and aiohttp	2.12.3
Documentation			aiohappyeyeballs	0	↗ 2.4.0
Anaconda Blog			aiohttp	O Async http client/server framework (asyncio)	↗ 3.10.5
	n		aioitertools	O Asyncio version of the standard multiprocessing module	0.7.1
	Create Clone Import Backup Remove		532 packages available		

Step 3: Install the packages we will use during this course

Install a package

 Environment active:
 conda install <package_name>

 Environment not active
 conda install -n ml2025 <package name>

• Install mutiple packages

conda install pandas numpy

• Upgrade a package

conda update <package name>

• Install a package with a specific version

conda install <package name> = <version number>

• Remove a package

conda remove <package name>

Some of the packages we will use during this course

- pandas data manipulation and analysis
- **numpy** mathematical functions
- scikit-learn machine learning (conda install conda-forge::scikit-learn)
 Referred to as *sklearn* when importing, example: from *sklearn*.metrics import mean_squared_error
- xgboost, lightgbm, catboost gradient boosting

Xgboost Installed as: conda install -c conda-forge py-xgboost lightgbm installed as: conda install -c conda-forge lightgbm catboost installed as: as conda install -c conda-forge catboost

- pytorch and torchvision neural networks (conda install pytorch torchvision cpuonly -c pytorch)
- **shap** interpreting ML models

Installed as: conda install -c conda-forge shap

- matplotlib, seaborn data visualization
- spacy, nltk text analysis

conda install -c conda-forge spacy conda install nltk

- **imbalanced learn** classification with imbalanced classes conda install -c conda-forge imbalanced-learn
- **aequitas** Bias and Fairness Audit Toolkit Installed as: pip install aequitas

Important note

- As each student may have their own hardware and software configuration, we cannot guarantee that it will be possible to install all the packages on all the configurations.
- If a problem is encountered:
 - Follow the recommended steps in the notebook or lecture notes
 - Google for similar errors (sometimes a package should be upgraded or downgraded to work within a specific setting)
 - Consider making a new environment to test installation of a new package before you start downgrading or upgrading already installed packages in a working environment
 - Ask TA or instructor for help
 - Use Google colab notebook, it will be accepted for homework and project submissions.

Step 4: Use the conda environment in your jupyter notebook

• Install ipykernel in *ml2025* environment (allows Jupyter to recognize the environment as a kernel)

conda install ipykernel

• Add the *ml2025* environment as a kernel for Jupyter

python -m ipykernel install --user --name=ml2025

• Deactivate the environment

conda deactivate

To list existing kernels

jupyter kernelspec list

Note: A notebook **kernel** is a "computational engine" that executes the code contained in a Notebook document

Step 4: Use the conda environment in your jupyter notebook

 From Anaconda Navigator Launch JupyterLab (not Jupyter Notebook!)

O ANACONDA.NAVIGATOR

Select Kernel

Select kernel for: "Untitled.ipynb"

• Select from list of kernels the kernel *ml2025*

Scikit-learn: Machine Learning in python

Good reference on coding how-to's

https://jakevdp.github.io/PythonDataScienceHandbook/

Python Data Science Handbook

Jake VanderPlas

Jupyter

3. Data Manipulation with Pandas

- Introducing Pandas Objects
- Data Indexing and Selection
- Operating on Data in Pandas
- Handling Missing Data
- Hierarchical Indexing
- <u>Combining Datasets: Concat and Append</u>
- <u>Combining Datasets: Merge and Join</u>
- <u>Aggregation and Grouping</u>
- <u>Pivot Tables</u>
- <u>Vectorized String Operations</u>
- <u>Working with Time Series</u>
- High-Performance Pandas: eval() and query().
- <u>Further Resources</u>

<u>5. Machine Learning</u>

- What Is Machine Learning?
- Introducing Scikit-Learn
- Hyperparameters and Model Validation
- Feature Engineering
- In Depth: Naive Bayes Classification
- In Depth: Linear Regression
- In-Depth: Support Vector Machines
- In-Depth: Decision Trees and Random Forests
- In Depth: Principal Component Analysis
- In-Depth: Manifold Learning
- In Depth: k-Means Clustering
- In Depth: Gaussian Mixture Models
- In-Depth: Kernel Density Estimation
- <u>Application: A Face Detection Pipeline</u>
- Further Machine Learning Resources

Jake VanderPlas

Good reference on coding how-to's

https://vedraiyani.github.io/notes-1/ipynb/index.html

Preprocessing Structured Data

- Convert Pandas Categorical Data For Scikit-Learn
- Delete Observations With Missing Values
- Deleting Missing Values
- Detecting Outliers
- Discretize Features
- Encoding Ordinal Categorical Features
- Handling Imbalanced Classes With Downsampling
- Handling Imbalanced Classes With Upsampling
- Handling Outliers
- Impute Missing Values With Means
- Trees And Forests
- Outlier Detection With Isolation Forests
- Adaboost Classifier
- Decision Tree Classifier .
- Decision Tree Regression
- Feature Importance
- Feature Selection Using Random Forest
- Handle Imbalanced Classes In Random Forest

Nearest Neighbors

- Identifying Best Value Of k
- K-Nearest Neighbors Classification

- Imputing Missing Class Labels
- Imputing Missing Class Labels Using k-Nearest Neighbors
- Normalizing Observations
- One-Hot Encode Features With Multiple Labels
- One-Hot Encode Nominal Categorical Features
- Preprocessing Categorical Features
- Preprocessing Iris Data
- Rescale A Feature
- Standardize A Feature

- Random Forest Classifier
- Random Forest Classifier Example
- Random Forest Regression
- Select Important Features In Random Forest
- Titanic Competition With Random Forest

Radius-Based Nearest Neighbor Classifier

Visualize A Decision Tree

- Feature Engineering
- Dimensionality Reduction On Sparse Feature Matrix
- Dimensionality Reduction With Kernel PCA
- Dimensionality Reduction With PCA
- Feature Extraction With PCA
- Group Observations Using K-Means Clustering

Feature Selection

- ANOVA F-value For Feature Selection
- Chi-Squared For Feature Selection
- Drop Highly Correlated Features

Model Evaluation

- Accuracy
- Create Baseline Classification Model
- Create Baseline Regression Model
- Cross Validation Pipeline
- Cross Validation With Parameter Tuning Using Grid Search
- Cross-Validation
- Custom Performance Metric
- F1 Score

Model Selection

- Find Best Preprocessing Steps During Model Selection
- Hyperparameter Tuning Using Grid Search
- Hyperparameter Tuning Using Random Search
- Model Selection Using Grid Search
- Pipelines With Parameter Optimization

Linear Pearossian

O'REILLY

Se

TS Us

Di

Re

Vo

Vo

Ge

Ne

Plo

Plo

Recall

Split Data Into Training And Test Sets

ython Machine Learning Cookbook PRACTICAL SOLUTIONS FROM PREPROCESSING TO DEEP LEARNING Chris Albon Plot The Validation Curve Precision

Welcome To Colaboratory

File Edit View Insert Runtime Tools

≔	Table of contents	×					
Q	Getting started						
	Data science						
<>	Machine learning						
$\{x\}$	More Resources						
	Featured examples						
	Section						
Change	runtime type						
Runtime typ	ie						
Pytho	on 3 👻						
Hardware a	ccelerator ?						
0	XPU 💿 T4 GPU 🔿 A100 GPU 🔿 V100 GPU						
ΟΙ	"PU						

Using colab

- Google Colab (<u>https://colab.research.google.com/</u>) is an extension of Jupyter notebook that runs on the Google Cloud. This platform provides various different computing resources, such as CPUs, **GPUs** free of charge.
 - Colab allows you to use and share Jupyter notebooks with others without having to download, install, or run anything.
 - Google Colab has a 'maximum lifetime' limit of running notebooks that is 12 hours with the browser open, and the 'Idle' notebook instance is interrupted after 90 minutes.
 - Colab notebooks can be shared with other users and opened by multiple users at a time. If one person makes a change, the others will be able to see the change after a short delay. However, if two people edit the document at the same time, one person's changes must be discarded upon refreshing.
 - https://research.google.com/colaboratory/faq.html