1 VAR Revision

Consider the three variables: PCR - Private Consumption; GCR - Government Consumption; and URX - Unemployment Rate and define $\mathbf{Y}_t = (l_P CR_t, l_G CR_t, URX_t)'$.

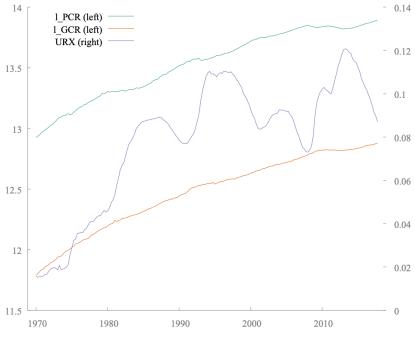


Figure 1

Series are trending, hence nonstationary, but it is important to know whether the nonstationarity is due to a unit root or not. Thus, we apply unit root tests to all three series.

1.1 Unit Root Testing

```
Augmented Dickey-Fuller test for l_PCR
testing down from 14 lags, criterion AIC
sample size 187
unit-root null hypothesis: a = 1
```

```
test with constant
including 4 lags of (1-L)1 PCR
model: (1-L)y = b0 + (a-1)*y(-1) + \ldots + e
estimated value of (a - 1): -0.00372724
test statistic: tau_c(1) = -2.34514
asymptotic p-value 0.1578
lst-order autocorrelation coeff. for e: -0.006
lagged differences: F(4, 181) = 7.178 [0.0000]
```

```
with constant and trend
including 4 lags of (1-L)1 PCR
model: (1-L)y = b0 + b1*t + (a-1)*y(-1) + \ldots + e
estimated value of (a - 1): -0.0106643
test statistic: tau_ct(1) = -1.61859
asymptotic p-value 0.786
lst-order autocorrelation coeff. for e: -0.008
lagged differences: F(4, 180) = 7.463 [0.0000]
```

Figure 2

```
Augmented Dickey-Fuller test for 1 GCR
testing down from 14 lags, criterion AIC
sample size 187
unit-root null hypothesis: a = 1
  test with constant
  including 4 lags of (1-L)1 GCR
 model: (1-L)y = b0 + (a-1)\overline{*}y(-1) + \dots + e
  estimated value of (a - 1): -0.00609162
 test statistic: tau c(1) = -3.71919
  asymptotic p-value \overline{0.003872}
  1st-order autocorrelation coeff. for e: -0.022
 lagged differences: F(4, 181) = 5.757 [0.0002]
  with constant and trend
 including 4 lags of (1-L)1 GCR
 model: (1-L)y = b0 + b1*t + (a-1)*y(-1) + ... + e
  estimated value of (a - 1): -0.01292
 test statistic: tau ct(1) = -2.25415
  asymptotic p-value \overline{0.4587}
  1st-order autocorrelation coeff. for e: -0.023
  lagged differences: F(4, 180) = 5.643 [0.0003]
```

```
Augmented Dickey-Fuller test for URX
testing down from 14 lags, criterion AIC
sample size 190
unit-root null hypothesis: a = 1
  test with constant
  including one lag of (1-L)URX
 model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
  estimated value of (a - 1): -0.00685106
  test statistic: tau c(1) = -2.39467
  asymptotic p-value \overline{0.1432}
  1st-order autocorrelation coeff. for e: -0.100
  with constant and trend
  including one lag of (1-L)URX
 model: (1-L)y = b0 + b1*t + (a-1)*y(-1) + ... + e
 estimated value of (a - 1): -0.00949524
  test statistic: tau_ct(1) = -1.93244
  asymptotic p-value 0.6373
  1st-order autocorrelation coeff. for e: -0.108
```

Figure 4

1.2 SVAR estimation

Consider the following SVAR model:

$$\Gamma_0 \boldsymbol{Y}_t = \boldsymbol{\mu} + \sum_{i=1}^p \Gamma_i \boldsymbol{Y}_{t-i} + \boldsymbol{\varepsilon}_t$$
(1)

For estimation we use the reduced form of the SVAR, i.e.:

$$\Gamma_{0}\boldsymbol{Y}_{t} = \boldsymbol{\mu} + \sum_{i=1}^{p} \Gamma_{i}\boldsymbol{Y}_{t-i} + \boldsymbol{\varepsilon}_{t}$$

$$\boldsymbol{Y}_{t} = \Gamma_{0}^{-1}\boldsymbol{\mu} + \sum_{i=1}^{p} \Gamma_{0}^{-1}\Gamma_{i}\boldsymbol{Y}_{t-i} + \Gamma_{0}^{-1}\boldsymbol{\varepsilon}_{t}$$

$$\boldsymbol{Y}_{t} = A_{0} + \sum_{i=1}^{p} A_{i}\boldsymbol{Y}_{t-i} + B\boldsymbol{\varepsilon}_{t}$$

$$\boldsymbol{Y}_{t} = A_{0} + \sum_{i=1}^{p} A_{i}\boldsymbol{Y}_{t-i} + \mathbf{u}_{t}$$
(2)

where $A_0 = \Gamma_0^{-1} \mu$, $A_i = \Gamma_0^{-1} \Gamma_i$, i = 1, ..., p, and $B = \Gamma_0^{-1}$.

Hence, for identification of the SVAR we need to estimate reduced form VAR in (2). Estimation can be done by MLE or equation by equation using OLS. Given the nonstationarity of the data we are going to start with the estimation of a VAR in first differences.

1.2.1 Order identification

VAR system, maximum lag order 8 FIRST DIFFERENCES					
The asterisks below indicate the best (that is, minimized) values of the respective information criteria, AIC = Akaike criterion, BIC = Schwarz Bayesian criterion and HQC = Hannan-Quinn criterion.					
lags	loglik	p(LR)	AIC	BIC	HQC
1 2 3 4 5 6 7 8	2430.47176 2451.21621 2467.24463 2488.75468 2499.78354 2503.93303 2505.76632 2513.97846	0.00000 0.00019 0.00000 0.00870 0.50432 0.93196 0.05853	-26.431385 -26.559740 -26.636553 -26.773275 -26.742438 -26.64113 -26.655502	-26.220927* -26.191438 -26.089286 -25.953616 -25.742762 -25.506593 -25.340139	-26.346076 -26.410449 -26.423281 -26.454212 -26.337220 -26.194913 -26.122321

Figure 5

Considering the three Information Criteria AIC, BIC and HQC, we see that each points to a different order of the VAR(p). AIC suggests a VAR(5), BIC suggest a VAR(1) and HQC suggests a VAR(4).

1.2.2 VAR Estimation

VAR(1)

 $VAR \ system, lag \ order \ 1$ OLS estimates, observations 1970:3-2017:4 (T = 190) Log-likelihood = 2518.2801 Determinant of covariance matrix = 6.1688895e-16 AIC = -26.3819 BIC = -26.1768 HQC = -26.2988 Portmanteau test: LB(47) = 519.494, df = 414 [0.0003] \\

Equation 1: d_1_PCR Heteroskedasticity-robust standard errors, variant HC3

	Coefficient	Std. Er.	ror	t-ratio	p-value	
const	0.00342661	0.000573	3935	5.970	< 0.0001	***
d_1_PCR_1	0.168015	0.08563	345	1.962	0.0513	*
d_1_GCR_1	0.168872	0.09755	532	1.731	0.0851	*
d_URX_1	-0.596043	0.2093	72	-2.847	0.0049	***
Mean dependent var	0.0	05012	S.D. c	lependent var		0.005565
Sum squared resid	0.0	05071	S.E. o	f regression		0.005221
R-squared	0.1	33719	Adjus	ted R-squared		0.119747
F(3, 186)	12.	65541	P-valu	ue(F)		1.45e-07
rho	-0.0	85304	Durbi	n-Watson		2.165098
	F-tes	sts of zero r	estricti	ions:		
	All lags of d 1 PC	CR F(1,	186) =	3.8494 [0.0513]		
	All lags of d 1 GO	CR F(1,	186) =	2.9966 [0.0851]		
	All lags of d UR		186) =	8.1043 0.0049		
	All vars, lag 1	· · ·		12.655 [0.0000]		

	neteroskeuasticity	-robust stand	laid eriors, varia	ant nC3	
	Coefficient	Std. Erre	or t-rati	io p-value	
const	0.00378492	0.0005419	6.98	3 <0.0001	***
d_l_PCR_1	0.298846	0.080362	3.71	9 0.0003	***
d_1_GCR_1	0.0345613	0.10463	0 0.330	0.7415	
d_URX_1	0.377100	0.16156	6 2.33	4 0.0207	**
Mean dependent var	0.0	05644	S.D. dependent	var	0.004974
Sum squared resid	0.0	04161	S.E. of regressio	n	0.004730
R-squared	0.1	10144	Adjusted R-squa	ured	0.095791
F(3, 186)	8.1	27342	P-value(F)		0.000041
rho	-0.1	05421	Durbin-Watson		2.199715
F-tests of zero restrictions:					
	All lags of d_l_PO	· · ·	86) = 13.829 [0	-	
	All lags of d_1_GG		86) = 0.10911 [
	All lags of d_UR	X F(1, 1	86) = 5.4477 [0	0.0207]	
	All vars, lag 1	F(3, 186	(5) = 8.1273 [0.0]	[0000]	

Equation 2: d_1_GCR Heteroskedasticity-robust standard errors, variant HC3

Figure 7

Heteroskedasticity-robust standard errors, variant HC3					
	Coefficient	Std. Error	t-ratio	p-value	
const	3.23554e-05	0.000141970	0.2279	0.8200	
d_1_PCR_1	-0.0362565	0.0187080	-1.938	0.0541	*
d_1_GCR_1	0.0403979	0.0181995	2.220	0.0276	**
d_URX_1	0.767855	0.0639828	12.00	< 0.0001	***
Mean dependent var	0.0	00379 S.D.	. dependent var	(0.001931
Sum squared resid	0.0	00241 S.E.	of regression	(0.001138
R-squared	0.6	58530 Adji	usted R-squared	(0.653022
F(3, 186)	53.:	58349 P-va	lue(F)		5.22e-25
rho	-0.1	19410 Dur	bin-Watson	2	2.229797
	F-tests of zero restrictions:				
	All lags of d_l_PC	· · · ·	= 3.7559 [0.0541]		
	All lags of d_1_G	() /	= 4.9272 [0.0276]		
	All lags of d_URX	K F(1, 186)	= 144.02 [0.0000]		
	All vars, lag 1	F(3, 186) =	53.583 [0.0000]		

Equation 3: d_URX Heteroskedasticity-robust standard errors, variant HC3

Figure 8

Test for autocorrelation of order up to $\ensuremath{4}$

	Rao F	Approx dist.	p-value
lag 1	5.435	F(9, 440)	0.0000
lag 2	3.932	F(18, 503)	0.0000
lag 3	3.677	F(27, 511)	0.0000
lag 4	3.517	F(36, 508)	0.0000

Test for ARCH of order up to 4

	LM	df	p-value
lag 1	84.274	36	0.0000
lag 2	121.762	72	0.0002
lag 3	171.126	108	0.0001
lag 4	214.000	144	0.0001

VAR(4)

VAR system, lag order 4 OLS estimates, observations 1971:2-2017:4 (T = 187) Log-likelihood = 2542.0388Determinant of covariance matrix = 3.127236e-16AIC = -26.7705BIC = -26.0966HQC = -26.4974Portmanteau test: LB(46) = 391.292, df = 378 [0.3078]

Equation 1: d_1_PCR Heteroskedasticity-robust standard errors, variant HC3

	Coefficient	Std. Error	t-ratio	p-value	
const	0.000749869	0.00063104	0 1.188	0.2363	
d_1_PCR_1	-0.00428587	0.0931728	-0.04600	0.9634	
d_1_PCR_2	0.161027	0.0805779	1.998	0.0472	**
d_1_PCR_3	0.159473	0.105859	1.506	0.1338	
d_1_PCR_4	0.175406	0.0944164	1.858	0.0649	*
d 1 GCR 1	-0.0151193	0.0876023	-0.1726	0.8632	
d_1_GCR_2	0.126740	0.0809851	1.565	0.1194	
d_1_GCR_3	0.108946	0.0994260	1.096	0.2747	
d_1_GCR_4	0.0781078	0.0964088	0.8102	0.4189	
d_URX_1	-0.978974	0.370183	-2.645	0.0089	***
d URX 2	0.718968	0.434678	1.654	0.0999	*
d_URX_3	-0.324072	0.381310	-0.8499	0.3966	
d_URX_4	0.459169	0.270849	1.695	0.0918	*
Mean dependent var			D. dependent var		0.005486
Sum squared resid			E. of regression		0.004704
R-squared			djusted R-squared		0.264622
F(12, 174)	6.72	25895 P-	value(F)		7.13e-10
rho	-0.02	25594 D	urbin-Watson		2.048922
	F-tes	ts of zero rest	rictions:		
	All lags of d_1_PC		4) = 2.9405 [0.0220]		
	All lags of d_1_GC		(4) = 0.88121 [0.4764]		
	All lags of d_UR		/		
	All vars, lag 4	F(3, 174)	= 2.2197 [0.0876]		

	Coefficient	Std. Error	t-ratio	p-value	
const	0.00141752	0.000594055	2.386	0.0181	**
d_1_PCR_1	0.134657	0.0788851	1.707	0.0896	*
d_1_PCR_2	0.131622	0.0804896	1.635	0.1038	
d_1_PCR_3	0.0539787	0.0904664	0.5967	0.5515	
d_1_PCR_4	0.139304	0.0817755	1.703	0.0903	*
d_1_GCR_1	-0.188359	0.102392	-1.840	0.0675	*
d_1_GCR_2	0.0277204	0.0689274	0.4022	0.6881	
d_1_GCR_3	0.189429	0.0922384	2.054	0.0415	**
d_1_GCR_4	0.273713	0.0885348	3.092	0.0023	***
d_URX_1	0.395743	0.331347	1.194	0.2340	
d_URX_2	0.340396	0.396611	0.8583	0.3919	
d_URX_3	-0.101672	0.409616	-0.2482	0.8043	
d_URX_4	-0.403153	0.291988	-1.381	0.1691	
Mean dependent var			ependent var		0.004907
Sum squared resid			f regression		0.004055
R-squared		5	ted R-squared		0.317023
F(12, 174)		92947 P-valu			1.91e-10
rho			n-Watson		2.143635
		sts of zero restricti			
	All lags of d_1_PC		1.7654 [0.1379]		
	All lags of d_1_G		4.451 [0.0019]		
	All lags of d_UR2 All vars, lag 4		1.6519 [0.1634] 5.6828 [0.0010]		
	All vals, lag 4	r(3, 1/4) = 1	5.0626 [0.0010]		

Equation 2: d_1_GCR Heteroskedasticity-robust standard errors, variant HC3

Figure 12

Equation 3: d_URX Heteroskedasticity-robust standard errors, variant HC3

	Coefficient	Std. Error	t-ratio	p-value	
const	-9.57098e-05	0.00020239	3 -0.4729	0.6369	
d_1_PCR_1	-0.0552403	0.0218004	-2.534	0.0122	**
d_1_PCR_2	-0.0530721	0.0194635	-2.727	0.0071	***
d_1_PCR_3	-0.0122085	0.0212036	-0.5758	0.5655	
d_1_PCR_4	-0.0128539	0.0201750	-0.6371	0.5249	
d_1_GCR_1	0.0359075	0.0206060	1.743	0.0832	*
d_1_GCR_2	0.0111331	0.0235886	0.4720	0.6375	
d_1_GCR_3	0.0644515	0.0226136	2.850	0.0049	***
d_1_GCR_4	0.0453393	0.0191269	2.370	0.0189	**
d_URX_1	0.586874	0.124945	4.697	< 0.0001	***
d_URX_2	0.106125	0.126641	0.8380	0.4032	
d_URX_3	0.0199550	0.0996021	0.2003	0.8414	
d_URX_4	-0.0729299	0.0794322	-0.9181	0.3598	
Mean dependent var			D. dependent var		0.001946
Sum squared resid			E. of regression		0.001096
R-squared			ljusted R-squared		0.682901
F(12, 174)	21.1	10824 P-	value(F)		4.24e-28
rho	-0.00	01656 Du	ırbin-Watson		1.998503
		ts of zero rest	rictions:		
	All lags of d_1_PC		= 2.9716 [0.0209]		
	All lags of d_1_GC	· · ·	4) = 3.0702 [0.0178]		
	All lags of d_URX		= 21.581 [0.0000]		
	All vars, lag 4	F(3, 174)	= 2.2982 [0.0792]		

Test for	autocori	celation of orde	r up to 4
	Rao F	Approx dist.	p-value
lag 1	1.696	F(9, 411)	0.0878
lag 2	1.695	F(18, 470)	0.0369
lag 3	1.269	F(27, 476)	0.1675
lag 4	1.189	F(36, 473)	0.2131

Figure 14

Test for ARCH of order up to 4

	LM	df	p-value
lag 1	57.322	36	0.0134
lag 2	99.287	72	0.0183
lag 3	153.813	108	0.0025
lag 4	182.671	144	0.0162

1.3 IRFs

Short-run restrictions used for identification

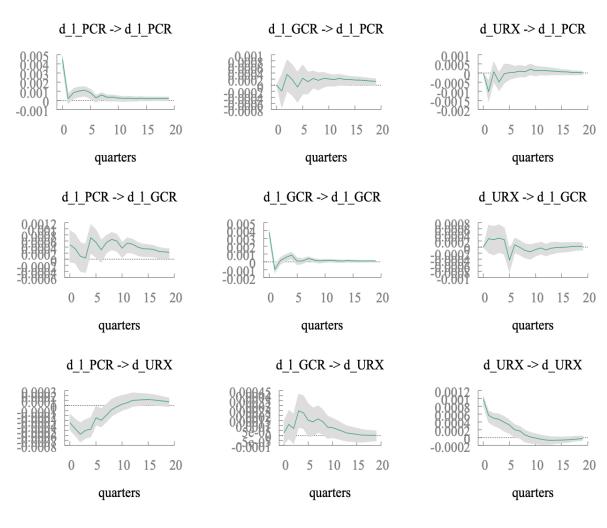


Figure 16

1.4 Forecast Variance Decomposition

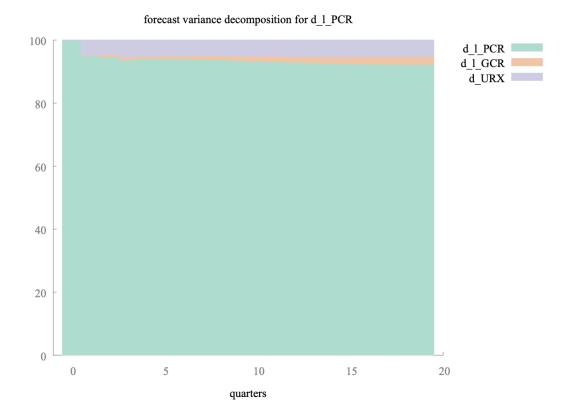


Figure 17

2 Analysis in Levels

2.1 Johansen Test

```
Johansen test:
Number of equations = 3
Lag order = 2
Estimation period: 1970:3 - 2017:4 (T = 190)
Case 3: Unrestricted constant
Log-likelihood = 3113.75 (including constant term: 2574.56)
Rank Eigenvalue Trace test p-value Lmax test p-value
0 0.38829 112.55 [0.0000] 93.384 [0.0000]
1 0.086186 19.167 [0.0120] 17.124 [0.0153]
     2
          0.010694
                               2.0427 [0.1529]
                                                              2.0427 [0.1529]
Corrected for sample size (df = 183)
Rank Trace test p-value
    0 112.55 [0.0000]
     1
              19.167 [0.0125]
            2.0427 [0.1556]
     2
                                          0.086186
                      0.38829
                                                             0.010694
eigenvalue
beta (cointegrating vectors)
1_PCR 5.3570 -6.5243
                                                                55.936
1 GCR
                        -8.2943
                                          -0.24743
                                                                -56.577
                       -11.260
                                                                75.100
URX
                                             62.667
alpha (adjustment vectors)

        I_PCR
        0.0022307
        0.0010626
        9.0883e-05

        I_GCR
        0.0024042
        -0.00062420
        0.00016335

        URX
        0.00017414
        -0.00012074
        -0.00010442

renormalized beta

        1
        PCR
        1.0000
        26.369

        1
        GCR
        -1.5483
        1.0000

        URX
        -2.1020
        -253.28

                                                               0.74483
                                                               -0.75336
                                                                1.0000
renormalized alpha

        1_PCR
        0.011950
        -0.00026291
        0.0068253

        1_GCR
        0.012879
        0.00015444
        0.012268

        URX
        0.00093288
        2.9875e-05
        -0.0078417

long-run matrix (alpha * beta')

1_PCR 1_GCR
                                                                      URX
                                                            0.048297
1 PCR
                      0.010101
                                         -0.023906
1 GCR
                    0.026089
                                       -0.029028 -0.053921
URX
                   -0.0041200
                                         0.0044931
                                                             -0.017369
```

Figure 18

2.2 VECM

VECM system, lag order 5 Maximum likelihood estimates, observations 1971:2-2017:4 (T = 187) Cointegration rank = 2 Case 3: Unrestricted constant beta (cointegrating vectors, standard errors in parentheses)

1_PCR 1.0000	0.0000
(0.0000)	(0.0000)
1_GCR 0.0000	1.0000
(0.0000)	(0.0000)
URX -15.374	-8.7439
(3.8044)	(2.3238)

alpha (adjustment vectors)

1_PCF	R 0.0027316	-0.013316
1_GC	R 0.011415	-0.015245
URX	0.0021127	-0.0030092

Log-likelihood = 2563.0306 Determinant of covariance matrix = 2.4983701e-16 AIC = -26.8987 BIC = -26.0693 HQC = -26.5627

Figure 19

Equation 1: d_1_PCR

	Coefficient	Std. Erro	r t-ratio	p-value	
const	0.125679	0.036118	9 3.480	0.0006	***
d_1_PCR_1	-0.0928441	0.081298	4 -1.142	0.2550	
d_1_PCR_2	0.0608322	0.084126	7 0.7231	0.4706	
d_1_PCR_3	0.0591554	0.085739	3 0.6899	0.4912	
d 1 PCR 4	0.0946777	0.083540	7 1.133	0.2587	
d_1_GCR_1	-0.00186873	0.085553	8 -0.02184	0.9826	
d_1_GCR_2	0.147581	0.088776	3 1.662	0.0983	*
d_1_GCR_3	0.136120	0.088199	9 1.543	0.1246	
d_1_GCR_4	0.105675	0.086077	5 1.228	0.2212	
d_URX_1	-1.18812	0.338536	5 -3.510	0.0006	***
d_URX_2	0.531721	0.381086	5 1.395	0.1647	
d URX 3	-0.434389	0.375009	9 -1.158	0.2483	
d_URX_4	0.245654	0.310672	0.7907	0.4302	
EC1	0.00273161	0.0032582	0.8384	0.4030	
EC2	-0.0133159	0.005232	15 -2.545	0.0118	**
Mean dependent var	r 0.004	4889 S	D. dependent van	. 0.0	05486
Sum squared resid	0.00	3597 S	E. of regression	0.0	04573
R-squared	0.35	7409 A	djusted R-square	d 0.3	05105
rho	-0.01	3521 D	urbin-Watson	2.0	25727

	Coefficient	Std. Et	rror	t-ratio	p-value	
const	0.0446296	0.0307		1.452	0.1483	
d 1 PCR 1	0.0815759	0.0691		1.179	0.2400	
d 1 PCR 2	0.0550923	0.0001		0.7695	0.4426	
d_1_PCR_3	-0.0409216	0.0713				
				-0.5608	0.5756	
d_1_PCR_4	0.0523274	0.0710	954	0.7360	0.4627	
d 1 GCR 1	-0.283768	0.0728	8086	-3.897	0.0001	***
d_1_GCR_2	-0.0893289	0.0755	510	-1.182	0.2387	
d_1_GCR_3	0.0678537	0.0750	605	0.9040	0.3673	
d_1_GCR_4	0.182048	0.0732	2543	2.485	0.0139	**
d_URX_1	0.143326	0.288	104	0.4975	0.6195	
d_URX_2	0.198116	0.324	314	0.6109	0.5421	
d_URX_3	-0.103686	0.319	143	-0.3249	0.7457	
d_URX_4	-0.483662	0.264	391	-1.829	0.0691	*
EC1	0.0114147	0.0027	7285	4.117	< 0.0001	***
EC2	-0.0152445	0.0044	5270	-3.424	0.0008	***
Mean dependent var	. 0.00	5552	S.D. d	ependent var	0.0	04907
Sum squared resid		2605		f regression	0.0	03892
R-squared		8398		ted R-squared		71058
1						
rho	-0.04	0893	Durbi	n-Watson	2.0	79184

Equation 2: d_1_GCR

Figure 21

Equation 3: d_URX

	Coefficient	Std. Error	t-ratio	p-value	
const	0.0101258	0.00852045	1.188	0.2363	
d_1_PCR_1	-0.0665368	0.0191783	-3.469	0.0007	***
d 1 PCR 2	-0.0688257	0.0198455	-3.468	0.0007	***
d I PCR 3	-0.0312793	0.0202259	-1.546	0.1238	
d_1_PCR_4	-0.0301147	0.0197073	-1.528	0.1283	
d_1_GCR_1	0.0189485	0.0201822	0.9389	0.3491	
d 1 GCR 2	-0.00958349	0.0209423	-0.4576	0.6478	
d_1_GCR_3	0.0430410	0.0208064	2.069	0.0401	**
d 1 GCR 4	0.0293337	0.0203057	1.445	0.1504	
d_URX_1	0.537268	0.0798608	6.728	< 0.0001	***
d URX 2	0.0768178	0.0898982	0.8545	0.3940	
d_URX_3	0.0174510	0.0884647	0.1973	0.8439	
d_URX_4	-0.0916004	0.0732877	-1.250	0.2130	
EC1	0.00211273	0.000768618	2.749	0.0066	***
EC2	-0.00300918	0.00123426	-2.438	0.0158	**

Mean dependent var	0.000381	S.D. dependent var		0.001946
Sum squared resid	0.000200	S.E. of regression		0.001079
R-squared	0.715936	Adjusted R-squared		0.692814
rho	0.008314	Durbin-Wat	son	1.979176
	Cross-equation co	ovariance matri	ix:	
	1_H	PCR 1_GCR UI	RX	
1 PCR	1.9233e-05	2.1048e-06	-1.5326e-06	
1 GCR	2.1048e-06	1.3930e-05	-1.6839e-07	
ŪRX	-1.5326e-06	-1.6839e-07	1.0703e-06	

determinant = 2.49837e-16

Test for autocorrelation of order up to 4

	Rao F	Approx dist.	p-value
lag 1	1.313	F(9, 411)	0.2276
lag 2	1.159	F(18, 470)	0.2915
lag 3	1.012	F(27, 476)	0.4495
lag 4	1.105	F(36, 473)	0.3147

Figure 23

Test for ARCH of order up to $4\,$

		LM	df	p-value
lag 1	L	65.711	36	0.0018
lag 2	2	98.656	72	0.0203
lag 3	3	138.767	108	0.0246
lag 4	1	168.039	144	0.0833

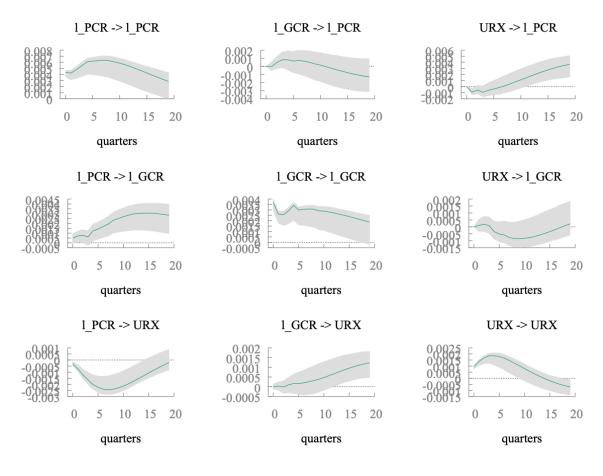


Figure 25