
FINAL EXAM - FINANCIAL ECONOMETRICS - 18 March 2022

Paulo M. M. Rodrigues and Sónia Félix **Time for completion: 1h 45 min**

Unless otherwise stated use 5% for significance level.

Question 1: Consider the price indexes for S&P500 and ORACLE presented in Figure 1, and the corresponding autocorrelations and partial autocorrelations functions.

Figure 1: S&P500 and ORACLE prices indexes and corresponding autocorrelations and partial autocorrelations functions

a) [1.0] Based on the plots in Figure 1 what can you say about the stationarity of the S&P and ORACLE time series and their persistence? Justify.

Both series display trending behaviour which suggests time varying means and therefore both series, according to the notion of weak stationarity, are nonstationary. In addition given

the slow decay of the autocorrelation function of both series, this clearly indicates strong persistent behaviour of both series (note that the 1st autocorrelation is very close to 1 in both cases).

<pre>TABLE 1: Augmented Dickey-Fuller Results for S&P (Regression with constant only) Critical Values: -3.46 (1%), -2.88 (5%), -2.57 (10%) Null Hypothesis: The process contains a unit root. Alternative Hypothesis: The process is weakly stationary.</pre>							
Dep. Variable: Model: Method: Date: Time: No. Observation Df Residuals: Df Model: Covariance Type	s :		OLS ares 2022 5:55 193 191 191	Adj. F-sta Prob	uared: R-squared: atistic: (F-statistic) Likelihood:):	0.009 0.004 1.817 0.179 -1037.5 2079. 2086.
	coef	std err		t	P> t	[0.025	0.975]
Level.L1 const -					0.179 0.530		
Omnibus: Prob(Omnibus): Skew: Kurtosis:		0 -0					1.878 18.844 8.09e-05 5.07e+03

TABLE 2: Augmented Dickey-Fuller Results for S&P (Regression with constant and time trend) Critical Values: -4.01 (1%), -3.43 (5%), -3.14 (10%) Null Hypothesis: The process contains a unit root. Alternative Hypothesis: The process is weakly stationary. OLS Regression Results

Dep. Variable: y R-squared: 0.065 Model: OLS Adj. R-squared: 0.012 Method: Least Squares F-statistic: 1.216 Date: Wed, 16 Mar 2022 Prob (F-statistic): 0.284 Time: 22:35:55 Log-Likelihood: -986.59 No. Observations: 185 AIC: 1995. Df Residuals: 174 BIC: 2031. Df Model: 10 Covariance Type: nonrobust Level.L1 -0.0165 0.017 -0.992 0.323 -0.049 0.016 Diff.L1 0.0605 0.077 0.785 0.434 -0.092 0.213				:			
Method: Least Squares F-statistic: 1.216 Date: Wed, 16 Mar 2022 Prob (F-statistic): 0.284 Time: 22:35:55 Log-Likelihood: -986.59 No. Observations: 185 AIC: 1995. Df Residuals: 174 BIC: 2031. Df Model: 10 2031. Of Model: 0.017	Dep. Variable:	:		y R-squ	lared:		0.065
Date: Wed, 16 Mar 2022 Prob (F-statistic): 0.284 Time: 22:35:55 Log-Likelihood: -986.59 No. Observations: 185 AIC: 1995. Df Residuals: 174 BIC: 2031. Df Model: 10 2031. Covariance Type: nonrobust Level.L1 -0.0165 0.017 -0.992 0.323 -0.049 0.016 Diff.L1 0.0605 0.077 0.785 0.434 -0.092 0.213	Model:		l	OLS Adj.	R-squared:		0.012
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Method:		Least Squa	res F-sta	atistic:		1.216
No. Observations: 185 AIC: 1995. Df Residuals: 174 BIC: 2031. Df Model: 10 Covariance Type: nonrobust coef std err t P> t [0.025 0.975] Level.L1 -0.0165 0.017 -0.992 0.323 -0.049 0.016 Diff.L1 0.0605 0.077 0.785 0.434 -0.092 0.213	Date:	We	d, 16 Mar 20	022 Prob	(F-statistic):	0.284
Df Residuals: 174 BIC: 2031. Df Model: 10 Covariance Type: nonrobust	Time:		22:35	:55 Log-1	Likelihood:		-986.59
Df Model: 10 Covariance Type: nonrobust	No. Observatio	ons:		185 AIC:			1995.
Covariance Type: nonrobust	Df Residuals:			174 BIC:			2031.
coef std err t P> t [0.025 0.975] Level.L1 -0.0165 0.017 -0.992 0.323 -0.049 0.016 Diff.L1 0.0605 0.077 0.785 0.434 -0.092 0.213	Df Model:			10			
Level.L1-0.01650.017-0.9920.323-0.0490.016Diff.L10.06050.0770.7850.434-0.0920.213	Covariance Typ	pe:	nonrob	ust			
Diff.L1 0.0605 0.077 0.785 0.434 -0.092 0.213		coef	std err	t	P> t	[0.025	0.975]
	Level.L1	-0.0165	0.017	-0.992	0.323	-0.049	0.016
	Diff.L1	0.0605	0.077	0.785	0.434	-0.092	0.213
D111.L2 -0.0477 0.078 -0.011 0.542 -0.202 0.100	Diff.L2	-0.0477	0.078	-0.611	0.542	-0.202	0.106
Diff.L3 0.0592 0.077 0.769 0.443 -0.093 0.211	Diff.L3	0.0592	0.077	0.769	0.443	-0.093	0.211
Diff.L4 0.0697 0.076 0.912 0.363 -0.081 0.221	Diff.L4	0.0697	0.076	0.912	0.363	-0.081	0.221
Diff.L5 0.0900 0.077 1.175 0.242 -0.061 0.241	Diff.L5	0.0900	0.077	1.175	0.242	-0.061	0.241
Diff.L6 -0.0678 0.077 -0.886 0.377 -0.219 0.083	Diff.L6	-0.0678	0.077	-0.886	0.377	-0.219	0.083
Diff.L7 -0.0372 0.077 -0.485 0.628 -0.189 0.114	Diff.L7	-0.0372	0.077	-0.485	0.628	-0.189	0.114
Diff.L8 0.1438 0.077 1.877 0.062 -0.007 0.295	Diff.L8	0.1438	0.077	1.877	0.062	-0.007	0.295
const 15.4527 15.664 0.986 0.325 -15.464 46.369	const	15.4527	15.664	0.986	0.325	-15.464	46.369
trend 0.1837 0.134 1.375 0.171 -0.080 0.447	trend	0.1837	0.134	1.375	0.171	-0.080	0.447
Omnibus: 12.602 Durbin-Watson: 1.897	Omnibus:		12.0	602 Durb:	in-Watson:		1.897
Prob(Omnibus): 0.002 Jarque-Bera (JB): 13.973	Prob(Omnibus):	:	0.0	002 Jarqı	ue-Bera (JB):		13.973
Skew: -0.540 Prob(JB): 0.000924	Skew:		-0.	540 Prob	(JB):		0.000924
Kurtosis: 3.803 Cond. No. 6.42e+03	Kurtosis:		3.3	803 Cond	. No.		6.42e+03

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	<pre>TABLE 3: Augmented Dickey-Fuller Results for ORACLE (Regression with constant only) Critical Values: -3.47 (1%), -2.88 (5%), -2.57 (10%) Null Hypothesis: The process contains a unit root. Alternative Hypothesis: The process is weakly stationary.</pre>							
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Dep. Variabl	 e:			R-sai	 lared:		0.027
Method: Least Squares F-statistic: 1.757 Date: Wed, 16 Mar 2022 Prob (F-statistic): 0.157 Time: 22:34:52 Log-Likelihood: -369.36 No. Observations: 191 AIC: 746.7 Df Residuals: 187 BIC: 759.7 Df Model: 3 3 3 Covariance Type: nonrobust 759.7 Level.L1 0.0021 0.010 0.202 0.840 -0.018 0.023 Diff.L1 -0.0942 0.072 -1.305 0.194 -0.237 0.048 Diff.L2 -0.1448 0.073 -1.984 0.049 -0.289 -0.001 const 0.1836 0.295 0.623 0.534 -0.398 0.765	-	•••		•	-			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Method:				-	=		1.757
No. Observations: 191 AIC: 746.7 Df Residuals: 187 BIC: 759.7 Df Model: 3 3 Covariance Type: nonrobust $restarted restarted restarte$	Date:	We	-):	0.157
Df Residuals: 187 BIC: 759.7 Df Model: 3 Covariance Type: nonrobust	Time:		22:34	:52	Log-l	Likelihood:		-369.36
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	No. Observat	ions:		191	AIC:			746.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $:			BIC:			759.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
Level.L1 0.0021 0.010 0.202 0.840 -0.018 0.023 Diff.L1 -0.0942 0.072 -1.305 0.194 -0.237 0.048 Diff.L2 -0.1448 0.073 -1.984 0.049 -0.289 -0.001 const 0.1836 0.295 0.623 0.534 -0.398 0.765 Omnibus: 1.709 Durbin-Watson: 2.011 Prob(Omnibus): 0.425 Jarque-Bera (JB): 1.434 Skew: -0.035 Prob(JB): 0.488	Covariance T	ype:	nonrob	ust				
Diff.L1 -0.0942 0.072 -1.305 0.194 -0.237 0.048 Diff.L2 -0.1448 0.073 -1.984 0.049 -0.289 -0.001 const 0.1836 0.295 0.623 0.534 -0.398 0.765		coef	std err		t	P> t	[0.025	0.975]
Diff.L2 -0.1448 0.073 -1.984 0.049 -0.289 -0.001 const 0.1836 0.295 0.623 0.534 -0.398 0.765	Level.L1	0.0021	0.010	0	.202	0.840	-0.018	0.023
const 0.1836 0.295 0.623 0.534 -0.398 0.765 Omnibus: 1.709 Durbin-Watson: 2.011 Prob(Omnibus): 0.425 Jarque-Bera (JB): 1.434 Skew: -0.035 Prob(JB): 0.488	Diff.L1	-0.0942	0.072	-1	.305	0.194	-0.237	0.048
Omnibus: 1.709 Durbin-Watson: 2.011 Prob(Omnibus): 0.425 Jarque-Bera (JB): 1.434 Skew: -0.035 Prob(JB): 0.488	Diff.L2	-0.1448	0.073	-1	.984	0.049	-0.289	-0.001
Prob(Omnibus): 0.425 Jarque-Bera (JB): 1.434 Skew: -0.035 Prob(JB): 0.488	const	0.1836	0.295	0	.623	0.534	-0.398	0.765
Skew: -0.035 Prob(JB): 0.488	======================================		================ 1.	===== 709	Durb:	======================================		2.011
Skew: -0.035 Prob(JB): 0.488):						
Kurtosis: 3.419 Cond. No. 68.9	Skew:				-			0.488
	Kurtosis:		3.	419	Cond	. No.		68.9

<pre>TABLE 4: Augmented Dickey-Fuller Results for ORACLE (Regression with constant and time trend) Critical Values: -4.01 (1%), -3.43 (5%), -3.14 (10%) Null Hypothesis: The process contains a unit root. Alternative Hypothesis: The process is weakly stationary.</pre>							
Dep. Variable: y R-squared:						0.100	
Model:			OLS	-	R-squared:		0.076
Method:		Least Squa	res		atistic:		4.108
Date:	Wee	d, 16 Mar 2		Prob	(F-statistic)	:	0.00147
Time:		22:34	:52	Log-I	.ikelihood:		-358.98
No. Observat:	ions:		190	AIC:			730.0
Df Residuals	:		184	BIC:			749.4
Df Model:			5				
Covariance T	ype:	nonrob	ust				
	coef	std err	=====	====== t	P> t	[0.025	0.975]
Level.L1	-0.1494	0.043	-3	.495	0.001	-0.234	-0.065
Diff.L1	-0.0305	0.075	-0	.409	0.683	-0.178	0.117
Diff.L2	-0.0936	0.072	-1	.301	0.195	-0.236	0.048
Diff.L3	0.0951	0.072	1	.320	0.189	-0.047	0.237
const	0.9650	0.347	2	.779	0.006	0.280	1.650
trend	0.0329	0.009	3	.596	0.000	0.015	0.051
Omnibus:		2.	===== 057	Durbi	 _n-Watson:		2.015
Prob(Omnibus)):	0.	358	Jarqu	ue-Bera (JB):		1.883
Skew:		-0.	023	Prob			0.390
Kurtosis:		3	486	Cond.	No.		337.

b) [2.0] Given the outputs provided in Tables 1 - 4, how would you classify the orders of integration of the two series? Justify.

The S&P is a unit root nonstationary series (this result is consistent regardless of the test used (in both Table 1 and Table 2 the null of a unit root is not rejected)). Regarding ORACLE the situation is different, the results in Table 3 (test regression with constant only) do not reject the null hypothesis, but the results in Table 4 (test regression with constant and trendo) reject the null of a unit root, hence we opt for the latter given that a trend seems to be a relevant variable to be considered in the test regression. Hence, S&P is I(1) and ORACLE is I(0).

c) [1.0] Given the Augmented Dickey Fuller regression output in Table 4, what is the corresponding autoregressive order of the ORACLE variable in levels?

Since the results in Table 4 indicate an AR(3) in first differences in levels ORACLE should follow AR(4)dynamics.

d) [1.5] Based on your conclusions in b) discuss the validity of the regression results provided

in Table 5 (see below). Note that this output corresponds to a regression of the type:

.

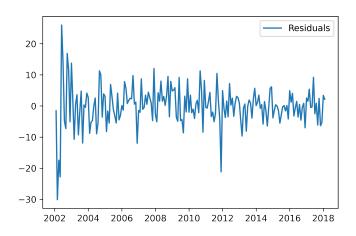
 $ORACLE_t = \alpha + \beta S \& P_t + \varepsilon_t$

Note that since S&P is I(1) and ORACLE is I(0) this corresponds to an unbalanced regression and consequently the results should be interpreted with care as the consequences are similar to those of a spurious regression. This is visible from Table 5 as the R^2 is large, the regressors are highly significant and and the DW is close to zero. Hence, this regression is meaningless.

Dep. Variable:ORACLER-squared:0.7Model:OLSAdj. R-squared:0.7Method:Least SquaresF-statistic:676Date:Wed, 16 Mar 2022Prob (F-statistic):8.02e-Time:21:29:45Log-Likelihood:-611.No. Observations:194AIC:122Df Residuals:192BIC:123	78 5.2 65 11
Model:OLSAdj. R-squared:0.7Method:Least SquaresF-statistic:676Date:Wed, 16 Mar 2022Prob (F-statistic):8.02e-Time:21:29:45Log-Likelihood:-611.No. Observations:194AIC:122	5.2 65 11
Date: Wed, 16 Mar 2022 Prob (F-statistic): 8.02e- Time: 21:29:45 Log-Likelihood: -611. No. Observations: 194 AIC: 122	65 11
Time: 21:29:45 Log-Likelihood: -611. No. Observations: 194 AIC: 122	11
Time: 21:29:45 Log-Likelihood: -611. No. Observations: 194 AIC: 122	
No. Observations: 194 AIC: 122	6.
Df Residuals: 192 BIC: 123	
	3.
Df Model: 1	
Covariance Type: nonrobust	
	==
coef std err t P> t [0.025 0.97	5]
const -7.0546 1.334 -5.289 0.000 -9.686 -4.4	 24
SANDP 0.0225 0.001 26.003 0.000 0.021 0.0	24
Omnibus: 61.272 Durbin-Watson: 0.0	== 58
Prob(Omnibus): 0.000 Jarque-Bera (JB): 11.2	03
Skew: 0.169 Prob(JB): 0.003	69
Kurtosis: 1.872 Cond. No. 5.05e+	·03

TABLE 5: OLS Regression Results

The output in Table 6 corresponds to a regression of the type:


$$\Delta \log ORACLE_t = \delta_0 + \delta_1 \Delta \log S\&P_t + u_t$$

which corresponds to a regression of log returns of ORACLE on the log returns of the S&P500.

	TABLE 6: (DLS Reg	ression Result	ts	
Dep. Variable:	ret_oracle	R-sq	uared:		0.331
Model:	OLS	Adj.	R-squared:		0.328
Method:	Least Squares	F-sta	atistic:		94.51
Date:	Wed, 16 Mar 2022	Prob	(F-statistic)):	2.10e-18
Time:	21:52:14	Log-1	Likelihood:		-631.36
No. Observations:	193	AIC:			1267.
Df Residuals:	191	BIC:			1273.
Df Model:	1				
Covariance Type:	nonrobust				
coef	std err	t	P> t	[0.025	0.975]
const 0.0634	0.464	0.137	0.892	-0.852	0.979
ret_sandp 1.0892	2 0.112	9.722	0.000	0.868	1.310

In Figure 2 (see below) we plot the residuals of this regression.

Figure 2: Plot of Residuals

e) [1.5] We computed the following statistics from the residuals:

```
[('Jarque-Bera', 149.449),
('Chi^2 two-tail prob.', 0.000),
('Skew', -0.446),
('Kurtosis', 7.218)]
```

What information can we extract from these statistics, and what conclusion can be drawn with respect to the properties of the residuals.

Thse results are useful for understanding whether residuals are normally distributed. In the case of a normal distribution skewness=0 and kurtosis =3, hence from the results provided we see that the residuals display some negative asymmetry and leptokurtosis as Kurtosis >3. The non-normality is then confirmed by the Jarque-Bera test as the null hypothesis is rejected.

f) [1.5] We also performed an Engle test on the squared residuals using 5 lags:

[('lm', 25.444), ('lmpval', 0.000)]

Indicate how this test is implemented and what conclusion we can draw from the results.

The Engle test is a test for ARCH effects. In this case its implementation considers the residuals of the model estimated in Table 6, $\hat{\varepsilon}_t$ and compute the auxiliary regression,

$$\hat{\varepsilon}_{t}^{2} = \phi_{0} + \phi_{1}\hat{\varepsilon}_{t-1}^{2} + \phi_{2}\hat{\varepsilon}_{t-2}^{2} + \dots + \phi_{5}\hat{\varepsilon}_{t-5}^{2} + u_{t}$$

 $H_0: \phi_1 = \phi_2 = ... = \phi_5 = 0$ and $H_A: \phi_1 \neq 0$ or $\phi_2 \neq 0$ or $\phi_5 \neq 0$. Engle Test: $LM = T * R^2$

From the results we observe that the null is rejected and therefore there is evidence of ARCH effects in the residuals.

g) [1.0] Given the regression output in Table 7 (see below), indicate what model this corresponds to and whether you would use it?

This is an ARCH(5) and it would not be usable as one of the coefficients is negative, violating one of the assumptions for validity of the model.

		TABLE 7: Const	ant Mean	- ARCH Mod	lel Results
Dep. Variable:	 :	 Residual	s R-so	uared:	0.000
Mean Model:		Constant Mea	-	-	0.000
Vol Model:		ARC	0	Likelihood:	
Distribution:		Norma	0		1201.25
Method:	Max	imum Likelihoo	d BIC:		1224.09
			No.	Observation	ns: 193
Date:	W	ed, Mar 16 202	2 Df R	lesiduals:	192
Time:		22:11:2	0 Df M	lodel:	1
Mean Model					
================		================		============	
	coef			P> t	95.0% Conf. Int.
 mu	-0.0180				[-0.653, 0.617]
			ility Mc		
	coef	std err	t	P> t	95.0% Conf. Int.
omega	11.7331				[5.278, 18.189]
alpha[1]	0.0000	2.106e-02	0.000	1.000	[-4.127e-02,4.127e-02]
alpha[2]	0.0806	4.763e-02	1.692	9.069e-02	[-1.277e-02, 0.174]

alpha[3]	-0.4328	0.135	3.203	1.359e-03	[0.168,	0.698]
alpha[4]	0.0000	8.755e-02	0.000	1.000	[-0.172,	0.172]
alpha[5]	0.1234	6.233e-02	1.979	4.780e-02	[1.198e-03,	0.246]
===============	========		.======		==============	======

Covariance estimator: robust

h) [1.5] Given the outputs in Tables 8 and 9 (see below), indicate the main difference between the two models and which of the two you would recommend for modeling the volatility in the residuals.

Table 8 corresponds to a GARCH(1,1) and Table 9 to a GJR(2,2). Given the significance of gamma in Table 9 this suggests asymmetric behaviour of the shocks and therefore ne shoull opt for the GJR.

i) [1.5] Given the output in Table 9 (see below) how persistent is the volatility based on this model.

The persistence is different depending on whether shocks are positive and negative. For negative shocks persistence is (0.1515+0+0.1429+0+0.8285) whereas when shocks are positive (0.1515+0+0+0.8285)

Dep. Variable:		Resid	luals R-s	quared:		0.000
Mean Model:			-	. R-squared		0.005
Vol Model:		G	ARCH Log	-Likelihood	:	-598.066
Distribution:		Nc	ormal AIC	:		1206.13
Method:	Max	imum Likeli				1222.45
_				Observation	ns:	193
Date:	h	Wed, Mar 16				193
Time:			4:16 Df			0
			ility Mode			
			t	P> t	95.0% Conf	. Int.
omega	3.2493	3.142				
alpha[1]						
alpha[2] 2.2	297e-10	0.147	1.518e-09	1.000	[-0.288,	0.288]
beta[1] 1.4	920e-08	0.279	5.354e-08	1.000	[-0.546,	0.546]
beta[2]	0.7556	9.956e-02	7.590	3.202e-14	[0.560,	0.951]
	=======		==========			======
Covariance est	imator:	robust				
	Т	ABLE 9: Zer	ro Mean - G	JR-GARCH Mod	del Results	
Dep. Variable:			luals R-s	-		0.000
Mean Model:			-	. R-squared		0.005
Vol Model:			-	-Likelihood	:	-596.147
Distribution:			ormal AIC			1204.29
Method:	Max	imum Likeli				1223.87
_				Observation	ns:	193
Date:	Ń	Ned, Mar 16				193
Time:			4:53 Df			0
Volatility Model						
	coef	std err	t	P> t	95.0% C	onf. Int.
omega	1.6541	1.203	1.374	0.169	 [_0.705	. 4.013]
alpha[1]	0.1515	9.780e-02	1.549		 [-4.020e-02	
-	0.0000	0.169	0.000		[-0.332	
=	-0.1429	6.854e-02			[-0.277,-8	-
•	0.0000		0.000		[-0.207	
beta[2]	0.8285	0.258	3.211		[0.323	
==============	=======			=============		

TABLE 8: Zero Mean - GARCH Model Results

Covariance estimator: robust

j) [1.5] Figure 3 presents plots of the residuals and standardized residuals. Indicate why the standardized residuals may be important.

Standardized residuals may be important to analyse the quality of fit of the volatility modeled considered, as if it is well specified the standardized residuals should behave similar to white noise.

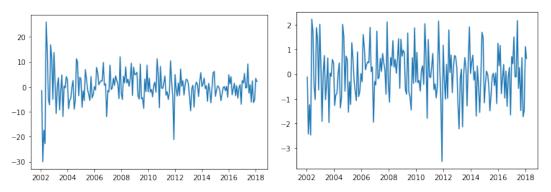


Figure 3: Residuals (left plot) and Standardized Residuals (right plot)

k) [1.5] Given the following results of the Engle test computed from the standardized residuals, what do you conclude?

Engle test on the squared residuals:

[('lm', 11.183), ('lmpval', 0.0479)]

Given the results provided we conclude that the volatility model is not able yet to capture all the volatility in the residuals and should therefore be improved. Note that the Engle test rejects the null of no ARCH effects in the standardized residuals.

Question 2: Consider the following regression model to study the impact of airline market power on airline pricing:

 $\ln P_{it} = \beta_0 + \alpha_i + \delta_t + \beta_1 market share_{it} + \beta_2 \ln miles_i + \beta_3 (\ln miles_i)^2 + \beta_4 \ln passeng_{it} + \varepsilon_{it}$

where $\ln P_{it}$ is the logarithm of the average price charged on route *i* in quarter *t*, *marketshare* is the market share of the largest carrier for each of the routes, $\ln miles$ is the logarithm of the route distance (in miles), and $\ln passeng$ is the logarithm of the average number of passengers. The terms α_i and δ_t are route and time specific effects, respectively.

1. Explain the importance of including the term α_i in this model. Which characteristics of a route can be captured by this term? Are these likely to be correlated with *marketshare_{it}*?

Including the term α_i is a way of accounting for time-invariant characteristics of a route *i* that affect prices and might also be correlated with the explanatory variables. Omitting this term may lead to an omitted variable bias problem.

Characteristics of the cities near the airports on a route could affect the demand for air travel, such as the population, education levels, or types of employers. Of course, each of these can be time-varying, although for a short stretch of time they are roughly constant.

Perhaps, the quality of the freeway system and access to trains, along with geographical features are roughly time-invariant and could certainly be correlated with market concentration.

Consider the estimates provided in the table below.

2. In the OLS and random effects model, the logarithm of the route distance (in miles) and its square are included. Carefully explain why these variables are not included in the fixed effects model.

	Dependent variable: logarithm of average price								
	(1)	(2)	(3)						
	Pooled OLS	Random effects	Fixed effects						
marketshare	0.3028***	0.0999***	0.0647**						
	(0.0298)	(0.0251)	(0.0265)						
ln miles	-0.9683***	-1.0638***							
	(0.1266)	(0.2508)							
$(\ln miles)^2$	0.1065***	0.1095***							
	(0.0096)	(0.0190)							
ln passeng	-0.0773***	-0.2236***	-0.3163***						
	(0.0056)	(0.0070)	(0.0086)						
intercept	7.0392***	8.5440***	6.9592***						
-	(0.4185)	(0.8269)	(0.0546)						
N	4596	4596	4596						
adj. R ²	0.422		0.048						

Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01

- 3. Should the authors be more confident in the random or fixed effects estimates? Why? What does it imply regarding the correlation between a_i and the explanatory variables included in the model?
- 4. Indicate how to perform an autocorrelation test in the context of model (3) in the Table above (within estimation).