
Nonlinear Time Series Models



Introduction
• Regressions, ARMA models and VARs are all linear

• Illustrate with a regression:

yt = α + βxt + εt

• Straight line relationship between y and x

• β is marginal effect of x on y

• Marginal effect is same regardless of value of x

• Nonlinear models = anything that is not linear

• Marginal effect may be different depending on what value of x
is

• E.g. quadratric relationship

yt = α + β1xt + β2x
2
t + εt

• Marginal effect is β1 + 2β2xt



Types of Nonlinearity

• In macroeconomics and finance certain types of nonlinearities
of particular interest

• Abrupt change: at a point in time β abruptly changes

• Structural break models

• E.g. financial crisis fundamentally altered the financial
markets and relationships between variables changed

• Gradual change: β is gradually changing over time

• Time varying parameter (TVP) models

• E.g. financial liberalizations throughout the 1980s and 1990s
gradually changed the relationships between financial variables



Types of Nonlinearity

• Regime switching models: β is different in different regimes

• E.g. Regime = state of the business cycle

• Expansion and Recession might be two regimes

• E.g. β measures the effectiveness of monetary policy

• Measures how much inflation increases when money supply
increased

• Printing money in recessionary times might not cause inflation
(β = 0)

• Printing money when economy is booming will (β large)



Types of Nonlinearity

• So far talked about nonlinearities in β

• Nonlinearities in error variance (σ2)

• E.g. high volatility regime versus low volatility regime in stock
markets

• E.g. Risk on/Risk off behaviour of financial market
participants

• E.g. Great Moderation of Business Cycle

• In early 1980s volatility of many macro variables dropped



Why Worry About Nonlinearities?
• Strong empirical evidence it exists in many (most?)

macroeconomic and financial time series
• Macro variables: Stock and Watson (1996) “Evidence on

Structural Instability in Macroeconomic Time Series
Relations” Journal of Business and Economic Statistics

• Financial Variables: Ang and Bekaert (2002) “Regime
Switches in Interest Rates” Journal of Business and Economic
Statistics

• Many other papers present similar findings
• If nonlinearities exist linear models are mis-specified
• Linear researcher gives wrong policy advice/bad forecasts, etc.
• E.g. How much does inflation increase when money supply

increase?
• Linear methods give average estimate over expansions and

recessions
• Average over time where β = 0 and β large might give β

fairly large
• In recession β = 0 and saying β fairly large is wrong



The Econometrics of Nonlinear Time Series Models

• This lecture goes through various models of breaks/regime
switching/TVP

• Focus is on the models, their properties and how to use them
in practice

• Only a little about theory of estimation and hypothesis testing

• Maximum likelihood or Bayesian methods or least squares
typically done



The Econometrics of Nonlinear Time Series Models

• Stata will produce usual likelihood based model choice
methods including:

• Information criteria, tests of significance of individual
parameters and likelihood ratio tests

• Reading 1: Chapters 9 and 10 of Ghysels and Marcellino

• Reading 2: Chapter 4 of Tsay



Models with Structural Breaks

• Use AR(1) model to illustrate ideas

• Extensions to AR(p) easy (just add more lags)

• And usually want to include an intercept (results below do)

• Case of structural breaks in regression coefficients is easy (just
replace yt−1 by xt)

• A simple structural break model:

yt =

{
ρ1yt−1 + εt if t ≤ τ
ρ2yt−1 + εt if t > τ

• Different AR(1) models before or after break date τ

• For now assume break date known

• Note: extension to multiple breaks is straightforward



Example: Breaks in US GDP growth

• Data: Real Gross Domestic Product, Percent Change from
Preceding Period, Quarterly, Seasonally Adjusted Annual Rate

• Plotted on next graph

• Can write structural break model as

yt = ρ1yt−1 + γxt−1 + εt

where xt = Dtyt
• Dummy variable: Dt = 1 if t > τ, else Dt = 0

• If t ≤ τ then coefficient on yt−1 is ρ1
• If t > τ coefficient on yt−1 is ρ1 + γ (same as ρ2 on previous

slide)
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Example: Breaks in US GDP growth
• OLS estimates of the AR(1) model give fitted regression line

yt = 2.04+ 0.37yt−1

• Adding xt−1 using a break date τ = 1983Q1 (beginning of
Great Moderation of the Business Cycle?) gives

yt = 2.06+ 0.38yt−1 − .02xt−1

• Two fitted regressions look pretty similar, so maybe no break
in 1983Q1?

• Can test this: if γ = 0, same AR model before/after break
• T-stat for H0 : γ = 0 is −0.20 with p-value 0.84
• Accept H0 there is no break in 1983Q1
• Another way to check is information criteria
• AR(1) gives AIC and BIC of 1495 and 1502
• AR(1) with break gives AIC and BIC of 1496 and 1507
• Choose AR(1) over model with break



Example: Breaks in US GDP growth

• Preceding assumed same error variance before and after break

• What if model is:

yt =

{
ρ1yt−1 + ε1t if t ≤ τ
ρ2yt−1 + ε2t if t > τ

• var (ε1t) = σ2
1 and var (ε2t) = σ2

2

• Can estimate this model by simply dividing the data into two
parts

• Part 1: all observations with t ≤ τ

• Part 2: all observations with t > τ



Example: Breaks in US GDP growth

• Divide the data into pre- and post-1983 samples

• Two OLS regressions yield:

• Fitted regression line with pre-1983 sample:

yt = 2.41+ 0.34yt−1

• s2 = 20.85

• Post-1983:
yt = 1.46+ 0.49yt−1

• s2 = 5.14

• Looks like break in error variance:

• Great Moderation of the Business Cycle: s2 much lower after
1983

• But how confident statistically?



Example: Breaks in US GDP growth

• Three models: AR(1), AR(1) with break in mean (i.e. ρ
changes) and AR(1) with break in both mean and error
variance

• Use information criteria (IC) to choose between them

• Note: IC for model with break in mean and variance just add
together ICs from pre- and post-break regressions

•
AIC BIC

AR(1) 1494.74 1501.98

AR(1) with break in mean 1496.70 1507.55

AR(1) using pre-break data 842.18 848.10

AR(1) using post-break data 592.56 598.32

AR(1) with break in mean and variance 1434.74 1446.43

• AR(1) with breaks in mean and variance has lowest IC’s – it is
best model



Chow Test

• General test used with regression or AR (here use for break)

• Do two parts of your sample have same regression line?

• H0 : ρ1 = ρ2, σ2
1 = σ2

2

• Steps in Chow Test using break date τ

• Estimate AR(1) model using entire sample and get Sum of
Squared Residuals (SSR0)

• Estimate AR(1) model using t ≤ τ sample and get SSR1

• Estimate AR(1) model using t > τ sample and get SSR2



Chow Test

• Chow test statistic is:

Chow =
SSR0−(SSR1+SSR2)

k
SSR1+SSR2
T1+T2−2k

• T1 = number of observations in t ≤ τ sample

• T2 = number of observations in t > τ sample

• k = number of explanatory variables (plus intercept) in model

• In AR(1) k = 2

• If H0 is true Chow ∼ F (k,T1 + T2 − 2k)

• Get critical value from F statistical tables



Example: Breaks in US GDP growth

• In our example k = 2, T1 = 132, T2 = 142

• SSR0 = 3640.1,SSR1 = 2940.6,SSR2 = 667.6

• Plugging these in we get Chow = 1.19

• 5% critical value from F (2, 270) is 3.09

• Test statistic less than critical value so accept H0

• In contrast to IC results, this indicates no break

• Classical hypothesis testing: only reject H0 if overwhelming
evidence against it

• BIC is (approximately) proportional to log of probability
model generated data

• ratio of exp of BICs for two models = relatively probabilities
of each model

• Hypothesis tests/ICs have different interpretations so
sometimes they give different results



The Threshold Autoregressive (TAR) Model

• TAR models have same form as structural break models

• But different variable triggers regime change

yt =

{
ρ1yt−1 + ε1t if zt ≤ τ
ρ2yt−1 + ε2t if zt > τ

• var (ε1t) = σ2
1 and var (ε2t) = σ2

2

• τ is called the threshold



The TAR Model

• zt (the trigger) can be any exogenous or lagged dependent
variable

• Common choice: zt = yt−d

• d =delay parameter

• Must have d > 0

• Having yt being dependent variable and also trigger runs into
endogeneity problems

• zt could be some other variable (e.g. change in oil price)

• Structural break model is special case of TAR with zt = t



The TAR Model

• Assume τ (and d) known (talk about estimating them later)

• Econometrics exactly the same as structural break model
(with known break data) covered previously

• E.g. GDP growth and zt = yt−1 and τ = 0

• Two regimes: recession (yt−1 ≤ 0) and expansion (yt−1 > 0)

• Approach 1: TAR with change in mean

• Create Dt = a dummy variable = 1 for recessions, 0 for
expansions

• Create xt = Dtyt
• Add xt−1 as explanatory variable to AR(1) model

• Approach 2: TAR with change in mean and variance

• Run separate AR(1) models for recession and expansion



Example: Regime Switches in US GDP growth

• GDP growth data

• zt = yt−1 and τ = 0

• Table of information criteria in same format as for structural
breaks

•
AIC BIC

AR(1) 1494.74 1501.98

TAR(1) with change in mean 1496.54 1507.39

AR(1) using yt−1 ≥ 0 1241.28 1248.19

AR(1) using yt−1 < 0 247.96 251.38

TAR(1) with change in mean and variance 1489.24 1499.57

• Similar to structural break results



Example: Regime Switches in US GDP growth
• Little evidence that recessionary and expansionary regimes

have different AR coefficients

• But there is evidence that error variances differ between
recessions and expansions

• Larger error variances in recessions

• In substantive application, would consider longer lag length,
different thresholds, triggers and delays

• Or even multiple regimes

• E.g. 4 regimes: 1) recessions, 2) recovery from recessions 3)
normal times and 4) over-heating

• For financial applications, might want structural break or
regime switching in volatility

• E.g. Tsay, page 182-183 has threshold GARCH model

• Asymmetric responses to positive and negative return to an
asset.



What if Break Dates or Thresholds Unknown?

• Have now gone through basic ideas of structural break and
TAR class of regime switching models

• But always assumed τ (and zt and d) known

• The idea underlying estimation is simple:

• Estimate model for every possible choice for τ (and zt and d
if relevant)

• Choose value of τ with highest value for likelihood (MLE)

• Choose value for τ with lowest sum of squared residuals (least
squares estimator)

• May want to restrict possible values for τ to make sure
regimes contain a minimum number of observations

• E.g. break does not occur in first or last 5% of the
observations



What if Break Dates or Thresholds Unknown?

• You have to program in Stata to do estimation in this way
using loops

• Loops are commands of the form:

• “for each [value of τ] in [a grid of possible values] [estimate
the TAR]”

• And you have to specify things in [...]

• I won’t ask you to estimate τ in computer labs



What if Break Dates or Thresholds Unknown?

• With multiple breaks and other parameters can become
computationally demanding

• E.g. Monthly data for 40 years (T = 480)

• 3 regimes (2 thresholds) TAR model (τ1, τ2) with 12 values
for delay (d = 1, .., 12)

• On the order of 12× 4802 = 2764800 TARs to estimate

• Can reduce this somewhat by imposing restrictions (e.g.
τ2 > τ1 and each regime must contain at least 40
observations)

• But still a lot of TARs to estimate



Testing for Nonlinearity

• Can always use information criteria to choose between
different nonlinear time series models

• Or choose between nonlinear and linear

• What about formal hypothesis testing methods?

• If τ is known can use Chow test

• But what is τ is unknown?

• Tests break into two groups:

• 1. Test in a particular model (e.g. testing TAR/structural
break versus AR)

• 2. general test for departures from linearity



Testing for Thresholds/Structural Breaks

• Same issues hold for TAR and structural break model,
illustrate with former

• Bottom line: econometric theory hard and hard to do these
tests in Stata (need to program)

• Consider hypothesis test for whether TAR is preferred to AR

•
yt =

{
ρ1yt−1 + ε1t if zt ≤ τ
ρ2yt−1 + ε2t if zt > τ

• H0 : ρ1 = ρ2, σ2
1 = σ2

2

• H1 : ρ1 ̸= ρ2, σ2
1 ̸= σ2

2



Testing for Thresholds/Structural Breaks

• But what about τ? H0 says nothing about it as it does not
appear in AR model

• Jargon: Nuisance parameter unidentified under the null or
Davies’ Problem

• Complicates the econometric theory of deriving asymptotic
distribution of test statistic

• Also have to program in Stata

• Beyond scope of this course, but see page 211 of Tsay
textbook if interested

• Davies’ problem make several nonlinear tests complicated

• Tsay, page 212 describes another TAR test which does not
run into Davies’ problem (but complicated in other ways)



Testing for Thresholds/Structural Breaks

• A simple test statistic for TAR can be obtained using the
sums of squared residuals for the linear (SSR0) and TAR
(SSR1) relative to estimated error variance from TAR (s2)

• But SSR1 and s2 depend on choice for threshold so write
them as SSR1(τ) and s2(τ)

• Hansen test statistic is based on

H(τ) =
SSR0 − SSR1(τ)

s2(τ)

• Test statistic is H(τ∗) where τ∗ is chosen to make the test
statistic as large as possible



Testing for Thresholds/Structural Breaks

• To do hypothesis testing you need test statistic and critical
value

• We have a test statistic H(τ∗), what is critical value?

• To get critical value you need to know distribution of test
statistic

• Distribution of H(τ∗) is not know analytically

• Need to use numerical methods

• This is not done in standard software like Stata



Tests for Departures from Linearity

• Several tests exist to check whether linear model is adequate
without specifying alternative model

• I will discuss one of these which can be easily done in Stata

• Intuition: if linear model is okay, then its errors should be
white noise

• Estimate linear model, calculate residuals and test if they are
white noise

• If not, then better consider a nonlinear model such as
structural break or TAR

• Note: sometimes looking at patterns in residuals can suggest
what form of nonlinearity.

• E.g. if large residuals bunch at one point in time might
indicate break



RESET Test

• Can be used with regression or AR(p) models, illustrate with
AR(1):

yt = ρyt−1 + εt

• Obtain OLS residuals ε̂t and their sum of squares, SSR0

• If linear model is correct, these residuals should be white noise
(unpredictable)

• Run a second OLS regression of:

ε̂t = ϕ1 ε̂t−1 + ϕ2 ε̂2t−1 + vt

and get sum of squared residuals, SSR1

• Note: can have higher powers (e.g. ε̂3t−1) on right hand side
of second regression



RESET Test

• H0 : ϕ1 = ϕ2 = 0

• If H0 true then SSR1 = SSR0

• If H1 true then SSR1 < SSR0

• This intuition forms basis of RESET test

• Test statistic

RS =
(SSR0 − SSR1) /g
SSR1/ (T − p − g)

• Note: p is AR lag length and and g is highest power on ε̂t−1

in second regression minus one

• If H0 is true, RS ∼ F (g , t − p − g)

• Get critical values from F-statistical tables



Practical Recommendations for Model Choice with
Nonlinear Time Series Models

• Often researcher faces questions

• Is a time series model linear or nonlinear?

• If nonlinear what type of nonlinearity?

• Sometimes economic theory and knowledge about the
economy can help answer

• If not, then experiment:

• Try some generic test (like RESET or others in textbook)

• If any indication of nonlinearity, look at IC’s for a few different
nonlinear models

• E.g. TAR (different choices for zt , d and τ), structural break
models (different choices for τ)

• Choose specification with best IC



Other Threshold Autoregressive Models
• Several variants on the TAR model I will not go through

• STAR = smooth transition autoregressive model (see chapter
9 of textbook)

• e.g. TAR switches abruptly from one regime to another,
STAR does this more gradually

• My models and examples involve switching between two
regression models

• Can do very similar things with error variances

• E.g. Tsay (Chapter 3) has threshold GARCH model
(TGARCH)

• GARCH involves equation for volatilities of asset returns, rt

σ2
t = α0 + α1σ2

t−1 + α2r
2
t−1

• TGARCH allows this to differ across regimes

• e.g. one GARCH equation if rt−1 < τ, another if rt−1 ≥ τ



Markov Switching Models

• Popular class of regime-switching model

• Similar idea to state space model

• Latent variable (similar to state) denotes which regime you
are in

• Automatically classifies observations into regimes

• Illustrate for AR(1) model with two regimes

• Ideas go through for AR(p) (or time series regression or
VARs) with many regimes



Markov Switching Models

•
yt =

{
ρ1yt−1 + ε1t if st = 1
ρ2yt−1 + ε2t if st = 2

• Different AR models depending on whether st = 1 or 2

• Similar structure to TAR

• Would be a TAR if we were to define “regime indicator” or
“state” st as

• st = 1 if zt ≤ τ

• st = 2 if zt > τ

• But Markov switching model defines st differently



Markov Switching Models

• st is hidden two-state Markov chain

• What does this mean?

• “Hidden” means not directly observed (latent) similar to
states

• Wikipedia’s definition of Markov Chain:

• ‘random process that undergoes transitions from one state to
another on a state space. It must possess a property that is
usually characterized as memorylessness: the probability
distribution of the next state depends only on the current
state and not on the sequence of events that preceded it.’



Markov Switching Models

• E.g. Suppose st = 1,what is st+1?

• Can either stay in regime 1, or switch (transition) to regime 2

Pr (st+1 = 1|st = 1) = p11

Pr (st+1 = 2|st = 1) = p12

• Probability of switching depends only on st (not on st−1 or
any past data, etc. = memoryless)

• E.g. suppose st = 1 is recession, 2 is expansion

• p11 is probability of staying in recession next period

• p12 is probability of switching from regime 1 to 2

• I.e. out of recession into expansion (turning point of business
cycle)

• p12 = 1− p11



Markov Switching Models

• Similarly can define a p22 as probability of staying in regime 2
given currently in regime 2

•

Pr (st+1 = 1|st = 2) = p21

Pr (st+1 = 2|st = 2) = p22

• p21 = 1− p22 is probability of switching from regime 2 to 1

• e.g. switching from expansion to recession

• Used for dating turning points in business cycles, calculating
probability economy will go into recession, etc.



Markov Switching Models

• Definition:

yt =

{
ρ1yt−1 + ε1t if st = 1
ρ2yt−1 + ε2t if st = 2

•
Pr (st+1 = j |st = i) = pij

• var (εjt) = σ2
j

• Can have σ2
1 ̸= σ2

2 (regimes have different error variances)

• Or can have σ2
1 = σ2

2 (homoskedastic: regimes have same
error variances)



Markov Switching Models

• Can estimate Markov switching model, e.g., in Stata using
maximum likelihood

• Estimates of pij and st for t = 1, ..,T provided

• Can use information criteria to choose between Markov
switching and other models

• st tells you which observation is in which regime



Markov Switching Models

• Important difference with TAR

• TAR you (the researcher) chooses the regimes

• E.g. GDP growth and choice of zt = yt−1 and threshold
τ = 0 implies:

• One regime where last period’s growth was negative, another
positive

• The researcher has imposed: regime 1 is recessionary, regime
2 is expansionary

• Markov switching estimates which observation lies in which
regime

• Maybe the classification could accord with
expansion/recession, but maybe not

• Could get any division into regimes



Example: Markov Switching in US GDP growth

• Markov switching AR(1) model (homoskedastic)

• Include an intercept in each model (called αj in tables below)

• Stata will produce:

• Estimates of intercept and AR coeff. for each regimes

• Error variance

• transition probabilities

• See table on next slide



Estimate St. Error 95% Confidence Interval

α1 1.805 0.280 1.257 2.353

ρ1 0.379 0.056 0.269 0.488

α2 14.816 2.365 10.180 19.451

ρ2 −0.091 0.223 −0.528 0.346

p11 0.987 0.009 0.948 0.997

p12 0.013 0.009 0.003 0.052

p21 0.641 0.250 0.175 0.938

p22 0.359 0.250 0.062 0.825



Example: Markov Switching in US GDP growth
• How are results interpreted?

• p11 is close to one: if in regime 1, stay there with high
probability

• p22 is much smaller (0.359): if in regime 2, tend to switch to
regime 1

• Stata (command: estat durations) will estimate durations of
each regime

• Estimated duration of regime 1 is 75.4 quarters

• Estimated duration of regime 2 is 1.6 quarters

• Regime 1 long, regime 2 very short

• Regime 2 has few observations in it so imprecise estimation
(wide confidence intervals)

• Next slide has estimates of probability each period is in regime
1 (filtered)

• Probabilities for regime 2 are one minus this
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Example: Markov Switching in US GDP growth

• Figure shows regime 1 holds almost all the time

• Regime 2 only holds for a few periods

• If you look at data (remember we are using % change since
previous quarter at annual rate):

• 7 quarters have very fast (>11%) growth rates: 1950Q1, Q2,
Q3, 1955Q1, 1971Q1, 1978Q2

• These are exactly the ones classified as regime 2

• Regime 2 = outliers of unusually fast growth



Example: Markov Switching in US GDP growth

• Note: fitted AR(1) model in regime 2 is:

yt = 14.82− 0.091yt−1

• AR coefficient is insignificant, hence regime 2 is (approx.)
saying yt = 14.82 (i.e. predicted GDP growth in regime 2 is
very high)

• This (homoskedastic) Markov switching model has been asked
to divide data in two regimes

• Answer: regime 1 is “normal growth”, regime 2 is “small
number of outliers”



Example: Markov Switching in US GDP growth

• Repeat the analysis with heteroskedastic model

• Now σ2
1 ̸= σ2

2

• All other specification choices the same

• Next table gives parameter estimates



Estimate St. Error 95% Confidence Interval

α1 2.205 0.340 1.538 2.857

ρ1 0.247 0.100 0.051 0.442

α2 2.152 0.453 1.264 3.040

ρ2 0.387 0.078 0.239 0.534

p11 0.983 0.014 0.920 0.997

p12 0.017 0.014 0.003 0.080

p21 0.014 0.012 0.003 0.068

p22 0.986 0.012 0.932 0.997

σ2
1 1.949 0.137 1.698 2.238

σ2
2 4.545 0.271 4.043 5.109



Example: Markov Switching in US GDP growth

• How are results interpreted?

• p11 and p22 now both much closer to one

• Once in a regime, tend to stay there for long time

• Estimated duration of regime 1 is 59.9 quarters

• Estimated duration of regime 2 is 70.9 quarters

• Fitted regression lines in two regimes similar to one another

• Regimes differ in error variances: σ̂2
1 = 1.949 and σ̂2

2 = 4.043

• Next slide has estimates of probability each period is in regime
1 (filtered)

• Probabilities for regime 2 are one minus this
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Example: Markov Switching in US GDP growth

• Figure shows regime 1 holds for most of time since 1983 (with
some exceptions)

• Post-1983 often called Great Moderation of the Business Cycle

• Exceptions around 2008-2009 (Financial Crisis) and 2001
(bursting of dotcom bubble)

• Regime 2 holds for these exceptions plus most of earlier part
of sample

• This (heteroskedastic) Markov switching model has been
asked to divide data in two regimes

• Its answer: regime 1 is “low volatility”, regime 2 is “high
volatility”



Example: Markov Switching in US GDP growth

• Model comparison between hetero and homo versions:

• AIC for homo is 1484.6 and for hetero is 1446.8

• BIC for homo is 1509.9 and for hetero is 1475.8

• Heteroskedastic version of model clearly preferred

• Comparing to TAR and AR, heteroskedastic Markov switching
is best

• Of all the models considered in this lecture for GDP growth
best one is:

• Markov switching model involving high and low volatility
regimes



Time-varying Parameter AR Model

• Markov switching: abrupt switches between regimes

• TVP-AR allows for constant gradual evolution of parameters

• Illustrate with TVP-AR(1)

• Same ideas work with TVP-AR(p), TVP regression or
TVP-VARs

• They are state space models

• All our state space tools (Kalman filter, etc.) can be used



Time-varying Parameter AR Model

• Measurement equation

yt = ρtyt−1 + εt

• Note t subscript on AR coefficient

• State equation
ρt+1 = ρt + ut



The TVP-AR

• Remember our general Normal Linear State Space model

• Measurement equation:

yt = Wtδ + Ztβt + εt

• State equation:
βt+1 = Dtβt + ut

• TVP-AR is special case of this with:

• Wt = 0 (although can add explanatory variables with
constant coeffs through Wt)

• Zt = yt−1

• βt = ρt
• Dt = 1



Example: Estimating the TVP-AR using GDP Growth Data
• Will not discuss econometric estimation and model

comparison for TVP-AR
• Already covered in state space model lecture
• Stata cannot estimate the TVP-AR (without further

programming)
• It only allows for Normal linear state space model where

Zt = Z (constant over time)
• With TVP-AR Zt = yt−1 (varying over time)
• Allowing for time-varying intercept in Stata possible
• That is, estimating

yt = αt + βxt + εt

can be done in Stata (can have regression terms playing role
like Wtδ in Normal linear state space model)

• But not
yt = αt + βtxt + εt

using Stata’s state space commands



Example: Time Varying CAPM

• Tsay textbook has example with CAPM with time-varying α
and β

• CAPM = capital asset pricing model

• Key model in finance (we will consider similar models in next
lecture on Factor Models)

• Here outline Tsay’s Time varying version of CAPM

• rt = excess return on asset of interest (e.g. General Motors
stock)

• rM,t = excess return on the market as a whole (e.g. S&P500
index)



Example: Time Varying CAPM

• Conventional (constant parameter) CAPM

rt = α + brM,t + εt

• b is CAPM beta

• Idea: b is measure of risk, measure of volatillity of GM stock
relative to market as a whole

• b < 1 GM is less volatile than stock market as a whole

• b > 1 GM is more volatile than stock market as a whole

• α is CAPM alpha

• Idea: α is expect to be zero, if positive it measures abnormal
returns (on risk adjusted basis) investor gets from hold GM
stock

• Excess return on portfolio/mutual fund above what an
equilibrium model like CAPM might suggest



Example: Time Varying CAPM

• Tsay suggests CAPM alpha and/or beta might be changing
over time

• E.g. There are some times mutual fund manager can enjoy
abnormal returns (α > 0) other times not (α ≈ 0)

• E.g. Financial crisis caused correlation between stock market
as a whole and individual stocks to change (β changes)

• Time-varying CAPM:

rt = αt + btrM,t + εt

αt+1 = αt + uat

bt+1 = bt + u
β
t



Example: Time Varying CAPM

• But this is a Normal linear State Space Model with:

• Wt = 0

• Zt = [1, rM,t ]

• βt =

(
αt

bt

)
• Dt =

(
1 0
0 1

)



Artificial Neural Networks

• Artificial Neural Network (ANN) very popular in machine
learning

• Less popular in time series econometrics, but growing in
popularity

• Hence, I provide brief introduction to them

• Cannot easily estimate ANN’s in Stata

• ANNs provide valid approximation a huge class of nonlinear
functions

• So if you think nonlinearity is likely, but do not know
functional form, ANN’s can be useful

• Black box method (can be hard to interpret results)

• For forecasting this may not be a problem, but for structural
economic analysis can be a problem



Artificial Neural Networks
• An example of a neural network involving dependent variable

yt
•

yt = αξt−h +
n

∑
i=1

γiG (ξt−hβi ) + εt

• ξt is some data.

• E.g. ξt = (1, yt , yt−1, .., yt−p+1) is you want p lags of the
depedendent variable to be used as predictors

• h is forecast horizon.

• E.g. typical to set h = 1 but can set h > 1 for longer forecast
horizons

• G (.) is the logistic function (other forms possible):

G (x) =
1

1+ exp(x)



Artificial Neural Networks

• General idea: yt is nonlinear function of p lags of
ξt = (1, yt , yt−1, .., yt−p+1)

• Why this particular function?

• ANN theory says highly flexible, capable of approximating
virtually anything

• So if you do not know function form, can try ANN

• ANN terminology:

• There are n ”hidden units” in the ANN

• G is ”activation function”

• ξt are ”inputs” that enter the activation function

• βi are ”connection strengths”

• γi are ”weights” that determine the ”output layer” (yt)



Artificial Neural Networks

• This is a ”univariate single layer feed-forward neural network”

• ”Univariate” since one dependent variable

• ”Single layer” since can have more layers (see next slide)

• ”feed forward” since past information (ξt−h) on right hand
side ”feeds forward” in time to predict the left hand side
variable

• Neural networks (and associated terminology) inspired by how
learning happens in the brain



Artificial Neural Networks

• Univariate single layer feed-forward neural network very flexible

• But can be made even more flexible by having multiple hidden
layers

• Double layer feed-forward neural betwork:

yt = αξt−h +
n1

∑
i=1

γiG (
n2

∑
j=1

λj ,iG (ξt−hβi )) + εt



Econometric of ANNs

• Use nonlinear least squares methods to estimate unknown
parameters in α, βi and γi for i = 1, .., n

• Use information criteria to choose n

• Evaluate information for n = 1, then n = 2, etc. and choose
best one

• If you have different possible choices for G (.) can also use
information criteria

• To decide whether single versus double layer can use
information criteria, etc.



Interpreting Results from ANNs

• When forecasting interpration of parameters is unimportant
(all you care is whether forecasts are good or not)

• Econometric techniques will provide estimates of βi and γi for
i = 1, .., n

• Hard for the economist to directly interpret their meaning

• If ξt contains only a few elements can plot fitted regression
line

• E.g. h = 1 and ξt−1 = (1, yt−1) then can plot

yt = αξt−h +
n

∑
i=1

γiG (ξt−hβi ) + εt

for various values of yt−1



Interpreting Results from ANNs

• Put yt−1 on X-axis and fitted value of yt on Y-axis

• If an AR(1) model is appropriate then such a plot should be
straight line

• With ANN such a plot could be nonlinear

• Manner in which ANN deviates from linearity could be
informative to the economist

• E.g. Does ANN plot reveal different value above/below a
threshold? This suggests TAR behaviour

• etc.



Summary

• In many (most?) macro and finance time series evidence of
parameter change

• Often need nonlinear time series model to avoid
mis-specification

• But what kind of nonlinearity?

• I have gone through variety of models in this lecture

• Abrupt break at specific time: Structural break

• Gradual change over time: TVP-AR (or STAR)

• Switching between regimes: TAR or Markov switching

• ANNs are very flexible approach suitable when nonlinear form
is unknown

• Lecture focusses on AR(1) but these models also work with
AR(p), regressions, VARs or even volatilities


