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Abstract

This chapter provides an overview of and user's guide to dynamic factor models (DFMs), their esti-
mation, and their uses in empirical macroeconomics. It also surveys recent developments in methods
for identifying and estimating SVARs, an area that has seen important developments over the past
15 years. The chapter begins by introducing DFMs and the associated statistical tools, both paramet-
ric (state-space forms) and nonparametric (principal components and related methods). After review-
ing two mature applications of DFMs, forecasting and macroeconomic monitoring, the chapter lays
out the use of DFMs for analysis of structural shocks, a special case of which is factor-augmented
vector autoregressions (FAVARs). A main focus of the chapter is how to extend methods for iden-
tifying shocks in structural vector autoregression (SVAR) to structural DFMs. The chapter provides
a unification of SVARs, FAVARs, and structural DFMs and shows both in theory and through
an empirical application to oil shocks how the same identification strategies can be applied to each
type of model.
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1. INTRODUCTION

The premise of dynamic factor models (DFMs) is that the common dynamics of a large

number of time series variables stem from a relatively small number of unobserved

(or latent) factors, which in turn evolve over time. Given the extraordinary complexity

and regional and sectoral variation of large modern economies, it would seem surprising a

priori that such a simple idea would have much empirical support. Remarkably, it does.

Fig. 1 shows a key result for a single-factor DFM fit to 58 quarterly US real activity

variables (sectoral industrial production (IP), sectoral employment, sales, and National

Income and Product Account (NIPA) series); the details are discussed in Section 6. A sin-

gle common factor for these series was estimated using principal components analysis, a

least-squares method for estimating the unobserved factors nonparametrically discussed

in Section 2. The figure shows the detrendeda four-quarter growth rates of four measures

of aggregate economic activity (real Gross Domestic Product (GDP), total nonfarm

employment, IP, and manufacturing and trade sales), along with the fitted value from

a regression of the quarterly growth rate of each series on the single common factor.

None of the four series plotted in Fig. 1 were used to estimate the factor: although dis-

aggregated NIPA variables like consumption of durables, of nondurables, and of services

were used, total consumption, GDP, and other high-level aggregates were not. As can be

seen in the figure, the single factor explains a large fraction of the four-quarter variation in

these four series. For these four series, the R2s of the four-quarter fits range from 0.73 for

GDP to 0.92 for employment. At the same time, the estimated factor does not equal any

one of these series, nor does it equal any one of the 58 series used to construct it.

DFMs have several appealing properties that drive the large body of research on

methods and applications of DFMs in macroeconomics. First, as Fig. 1 suggests and as

is discussed in more detail later, empirical evidence supports their main premise: DFMs

fit the data. The idea that a single index describes the comovements of many macroeco-

nomics variables arguably dates at least to Burns and Mitchell (1946), and additional early

references are discussed in Section 2.

Second, as is discussed in the next section, the keyDFM restriction of a small number of

latent factors is consistent with standard dynamic equilibrium macroeconomic theories.

Third, techniques developed in the past 15 years have allowed DFMs to be estimated

using large datasets, with no practical or computational limits on the number of variables.

Large datasets are now readily available,b and the empirical application in this chapter uses

a 207-variable DFM. Estimation of the factors, DFM parameters, and structural DFM

impulse response functions (IRFs) takes only a few seconds. Forecasts based on large

a Following Stock and Watson (2012a) and as discussed in Section 6.1, the trends in the growth rates were

estimated using a biweight filter with a bandwidth of 100 quarters; the displayed series subtract off these trends.
b For example, McCracken and Ng (2015) have compiled an easily downloaded large monthly macroeco-

nomic dataset for the United States (FRED-MD), which is available through the Federal Reserve Bank of

St. Louis FRED data tool at https://research.stlouisfed.org/econ/mccracken/fred-databases/.
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Fig. 1 Detrended four-quarter growth rates of US GDP, industrial production, nonfarm employment,
andmanufacturing and trade sales (solid line), and the common component (fitted value) from a single-
factor DFM (dashed line). The factor is estimated using 58 US quarterly real activity variables. Variables
all measured in percentage points.



DFMs have rich information sets but still involve a manageably small number of predic-

tors, which are the estimates of the latent factors, and do so without imposing restrictions

such as sparsity in the original variables that are used by some machine learning algo-

rithms. As a result, DFMs have been the main “big data” tool used over the past 15 years

by empirical macroeconomists.

Fourth, DFMs are well suited to practical tasks of professional macroeconomists such

as real-time monitoring, including construction of indices from conceptually similar

noisy time series.

Fifth, because of their ability to handle large numbers of time series, high-dimensional

DFMs can accommodate enough variables to span a wide array of macroeconomic

shocks. Given a strategy to identify one or more structural shocks, a structural DFM

can be used to estimate responses to these structural shocks. The use of many variables

to span the space of the shocks mitigates the “invertibility problem” of structural vector

autoregressions (SVARs), in which a relatively small number of variables measured with

error might not be able to measure the structural shock of interest.

The chapter begins in Section 2 with an introduction to structural dynamic factor

models (SDFMs) and methods for estimating DFMs, both parametric (state-space

methods) and nonparametric (principal components and related least-squares methods).

This discussion includes extensions to data irregularities, such as missing observations and

mixed observation frequencies, and covers recent work on detecting breaks and other

forms of instability in DFMs.

The chapter then turns to a review of the main applications of DFMs. The first, mac-

roeconomic monitoring and forecasting, is covered in Section 3. These applications are

mature and many aspects have been surveyed elsewhere, so the discussion is relatively

brief and references to other surveys are provided.

Sections 4 and 5 examine estimation of the effects of structural shocks. One of the

main themes of this chapter is that the underlying identification approaches of SVARs

carry over to structural DFMs. This is accomplished through two normalizations, which

we call the unit effect normalization for SVARs and the named factor normalization for

DFMs. These normalizations set the stage for a unified treatment, provided in these sec-

tions, of structural DFMs, factor-augmented VARs (FAVARs), and SVARs.

The basic approaches to identification of structural shocks are the same in SVARs,

FAVARs, and SDFMs. Section 4 therefore surveys the identification of structural shocks

in SVARs. This area has seen much novel work over the past 10 years. Section 4 is a

stand-alone survey of SVAR identification that can be read without reference to other

sections of this chapter and complements Ramey (2016). Section 4 discusses another of

the main themes of this chapter: as modern methods for identification of structural shocks

in SVARs become more credible, they raise the risk of relying on relatively small vari-

ations in the data, which in turn means that they can be weakly identified. As in appli-

cations with microdata, weak identification can distort statistical inference using both

Bayes and frequentist methods. Section 4 shows howweak identification can arise in var-

ious SVAR identification strategies.

420 Handbook of Macroeconomics



Section 5 shows how these SVAR identification schemes extend straightforwardly to

SDFMs and FAVARs. Section 5 also develops another main theme of this chapter that

structural DFMs, FAVARs, and SVARs are a unified suite of tools with fundamentally

similar structures that differ in whether the factors are treated as observed or unobserved.

By using a large number of variables and treating the factors as unobserved, DFMs

“average out” the measurement error in individual time series, and thereby improve

the ability to span the common macroeconomic structural shocks.

Sections 6 and 7 turn to an empirical illustration using an eight-factor, 207-variable

DFM. Section 6 works through the estimation of the DFM, first using only the real

activity variables to construct a real activity index, then using all the variables.

Section 7 uses the 207-variable DFM to examine the effect of oil market shocks on the

US economy. The traditional view is that unexpected large increases in oil prices have

large and negative effects on the US economy and have preceded many postwar US

recessions (Hamilton, 1983, 2009). Subsequent work suggests, however, that since the

1980s oil shocks have had a smaller impact (eg, Hooker, 1996; Edelstein and Kilian,

2009; Blanchard and Galı́, 2010), and moreover that much of the movement in oil prices

is due to demand shocks, not oil supply shocks (eg, Kilian, 2009). We use a single large

DFM to illustrate how SVAR identification methods carry over to structural DFMs and

to FAVARs, and we compare structural DFM, FAVAR, and SVAR results obtained

using two different methods to identify oil market shocks. The structural DFM results

are consistent with the main finding in the modern literature that oil supply shocks

explain only a fraction of the variation in oil prices and explain a very small fraction

of the variation in major US macroeconomic variables since the mid-1980s.

In Section 8, we step back and assess what has been learned, at a high level, from the

large body of work on DFMs in macroeconomics. These lessons include some practical

recommendations for estimation and use of DFMs, along with some potential pitfalls.

There are several recent surveys on aspects of DFM analysis which complement this

chapter. Bai and Ng (2008) provide a technical survey of the econometric theory for

principal components and related DFM methods. Stock and Watson (2011) provide

an overview of the econometric methods with a focus on applications. Ba�nbura et al.
(2013) survey the use of DFMs for nowcasting. The focus of this chapter is DFMs in

macroeconomics and we note, but do not go into, the vast applications of factor models

and principal components methods in fields ranging from psychometrics to finance to big

data applications in the natural and biological sciences and engineering.

2. DFMs: NOTATION AND SUMMARY OF ECONOMETRIC METHODS

2.1 The DFM
The DFM represents the evolution of a vector ofN observed time series,Xt, in terms of a

reduced number of unobserved common factors which evolve over time, plus uncorre-

lated disturbances which represent measurement error and/or idiosyncratic dynamics

of the individual series. There are two ways to write the model. The dynamic form
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represents the dependence ofXt on lags (and possibly leads) of the factors explicitly, while

the static form represents those dynamics implicitly. The two forms lead to different

estimation methods. Which form is more convenient depends on the application.

The DFM is an example of the much larger class of state-space or hidden Markov

models, in which observable variables are expressed in terms of unobserved or latent vari-

ables, which in turn evolve according to some lagged dynamics with finite dependence

(ie, the law of motion of the latent variables is Markov). What makes the DFM stand out

for macroeconometric applications is that the complex comovements of a potentially

large number of observable series are summarized by a small number of common factors,

which drive the common fluctuations of all the series.

Unless stated explicitly otherwise, observable and latent variables are assumed to be

second-order stationary and integrated of order zero; treatment of unit roots, low-

frequency trends, and cointegration are discussed in Section 2.1.4. In addition, following

convention all data series are assumed to be transformed to have unit standard deviation.

Throughout this chapter, we use lag operator notation, so that a Lð Þ¼
X∞

i¼0
aiL

i,

where L is the lag operator, and a Lð ÞXt ¼
X∞

i¼0
aiXt�i.

2.1.1 Dynamic Form of the DFM
The DFM expresses a N�1 vector Xt of observed time series variables as depending on a

reduced number q of unobserved or latent factors ft and a mean-zero idiosyncratic compo-

nent et, where both the latent factors and idiosyncratic terms are in general serially correlated.

The DFM is,

Xt ¼ λ Lð Þft + et (1)

ft ¼Ψ Lð Þft�1 + ηt (2)

where the lag polynomial matrices λ(L) and Ψ (L) areN�q and q�q, respectively, and ηt is
the q�1 vector of (serially uncorrelated) mean-zero innovations to the factors. The idio-

syncratic disturbances are assumed to be uncorrelated with the factor innovations at all leads

and lags, that is, Eetη0t�k¼ 0 for all k. In general, et can be serially correlated. The ith row of

λ(L), the lag polynomial λi(L), is called the dynamic factor loading for the ith series, Xit.

The term λi(L)ft in (1) is the common component of the ith series. Throughout this chap-
ter, we treat the lag polynomial λ(L) as one sided. Thus the common component of each

series is a distributed lag of current and past values of ft.
c

The idiosyncratic disturbance et in (1) can be serially correlated. If so, models (1) and

(2) are incompletely specified. For some purposes, such as state-space estimation discussed

later, it is desirable to specify a parametric model for the idiosyncratic dynamics. A simple

and tractable model is to suppose that the ith idiosyncratic disturbance, eit, follows the

univariate autoregression,

c If λ(L) has finitely many leads, then because ft is unobserved the lag polynomial can without loss of

generality be rewritten by shifting ft so that λ(L) is one sided.
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eit ¼ δi Lð Þeit�1 + νit, (3)

where νit is serially uncorrelated.

2.1.1.1 Exact DFM
If the idiosyncratic disturbances et are uncorrelated across series, that is, Eeitejs¼0 for all t

and s with i 6¼ j, then the model is referred to as the exact dynamic factor model.

In the exact DFM, the correlation of one series with another occurs only through the

latent factors ft. To make this precise, suppose that the disturbances (et, ηt) are Gaussian.
Then (1) and (2) imply that,

E XitjX�i
t , ft,X

�i
t�1, ft�1,…

� �¼E λi Lð Þft + eitjX�i
t , ft,X

�i
t�1, ft�1,…

� �
¼E λi Lð ÞftjX�i

t , ft,X
�i
t�1, ft�1,…

� �
¼ λi Lð Þft,

(4)

where the superscript “�i” denotes all the series other than i. Thus the common com-

ponent of Xit is the expected value of Xit given the factors and all the other variables. The

other series X�i
t have no explanatory power for Xit given the factor.

Similarly, in the exact DFM with Gaussian disturbances, forecasts of the ith series

given all the variables and the factors reduce to forecasts given the factors andXit. Suppose

that eit follows the autoregression (3) and that (νt, ηt) are normally distributed. Under the

exact DFM, Eνitνjt¼0, i 6¼ j. Then

E Xit+1jXt, ft,Xt�1, ft�1,…½ � ¼E λi Lð Þft+1 + eit+1jXt, ft,Xt�1, ft�1,…½ �
¼ αfi Lð Þft + δi Lð ÞXit,

(5)

where αfi Lð Þ¼ λi0Ψ Lð Þ�δi Lð Þλi Lð Þ+L�1 λi Lð Þ� λ0ð Þ.d
If the disturbances (et, ηt) satisfy the exact DFM but are not Gaussian, then the expres-

sions in (4) and (5) have interpretations as population linear predictors.

Eqs. (4) and (5) summarize the key dimension reduction properties of the exact DFM:

for the purposes of explaining contemporaneous movements and for making forecasts,

once you know the values of the factors, the other series provide no additional useful

information.

2.1.1.2 Approximate DFM
The assumption that et is uncorrelated across series is unrealistic in many applications. For

example, data derived from the same survey might have correlated measurement error,

d Substitute (2) and (3) into (1) to obtain, Xit+1 ¼ λi0 Ψ Lð Þft + ηt +1ð Þ+
X

j
λij ft�j+1 + δi Lð Þeit + νit+1.

Note that
X

j
λij ft�j+1 ¼ L�1 λi Lð Þ�λi0ð Þft and that δi(L)eit¼δi(L)(Xit–λi(L)ft). Then Xit+1 ¼

λi0 Ψ Lð Þft + ηt+1ð Þ+L�1 λi Lð Þ�λi0ð Þft + δi Lð Þ Xit�λi Lð Þftð Þ+ νit+ 1. Eq. (5) obtains by collecting terms

and taking expectations.
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and multiple series for a given sector might have unmodeled sector-specific dynamics.

Chamberlain and Rothschild’s (1983) approximate factor model allows for such correlation,

as does the theoretical justification for the econometric methods discussed in Section 2.2.

For a discussion of the technical conditions limiting the dependence across the distur-

bances in the approximate factor model, see Bai and Ng (2008).

Under the approximate DFM, the final expressions in (4) and (5) would contain addi-

tional terms reflecting this limited correlation. Concretely, the forecasting Eq. (5) could

contain some additional observable variables relevant for forecasting series Xit. In appli-

cations, this potential correlation is best addressed on a case-by-case basis.

2.1.2 Static (Stacked) Form of the DFM
The static, or stacked, form of the DFM rewrites the dynamic form (1) and (2) to depend

on r static factors Ft instead of the q dynamic factors ft, where r�q. This rewriting makes the

model amenable to principal components analysis and to other least-squares methods.

Let p be the degree of the lag polynomial matrix λ(L) and let Ft ¼ f 0t , f
0
t�1,…, f 0t�p

� �0
denote an r�1 vector of so-called “static” factors—in contrast to the “dynamic” factors

ft. Also let Λ¼ (λ0, λ1,…, λp), where λh is theN�qmatrix of coefficients on the hth lag in

λ(L). Similarly, let Φ(L) be the matrix consisting of 1s, 0s, and the elements of Ψ (L) such

that the vector autoregression in (2) is rewritten in terms of Ft. With this notation the

DFM (1) and (2) can be rewritten,

Xt ¼ΛFt + et (6)

Ft ¼Φ Lð ÞFt�1 +Gηt, (7)

where G¼ Iq 0q� r�qð Þ
� �0

.

As an example, suppose that there is a single dynamic factor ft (so q¼1), that all Xit

depend only on the current and first lagged values of ft, and that the VAR for ft in (2) has

two lags, so ft¼Ψ 1 ft�1+Ψ 2 ft�2+ηt. Then the correspondence between the dynamic

and static forms for Xit is,

Xit ¼ λi0 ft + λi1 ft�1 + eit ¼ λi0 λi1½ � ft
ft�1

� �
+ eit ¼ΛiFt + eit, (8)

Ft ¼ ft
ft�1

� �
¼ Ψ 1 Ψ 2

1 0

� �
ft�1

ft�2

� �
+

1

0

� �
ηt ¼ΦFt�1 +Gηt, (9)

where the first expression in (8) writes out the equation for Xit in the dynamic form (1),

Λi¼ λi0 λi1½ � is the ith row of Λ, and the final expression in (8) is the equation for Xit in

the static form (6). The first row in Eq. (9) is the evolution equation of the dynamic factor

in (2) and the second row is the identity used to express (2) in first-order form.

In the static form of the DFM, the common component of the ith variable is ΛiFt, and

the idiosyncratic component is eit.
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With the additional assumptions that the idiosyncratic disturbance follows the auto-

regression (3) and that the disturbances (νt, ηt) are Gaussian, the one step ahead forecast of
the ith variable in the static factor model is,

E Xit+1jXt,Ft,Xt�1,Ft�1,…½ � ¼ αFi Lð ÞFt + δi Lð ÞXit, (10)

where αFi ¼ΛiΦ Lð Þ�δi Lð ÞΛi. If the disturbances are non-Gaussian, the expression is the

population linear predictor.

The forecasting Eq. (10) is the static factor model counterpart of (5). In both forms

of the DFM, the forecast using all the series reduces to a distributed lag of the factors and

the individual series. The VAR (7) for Ft can be written in companion form by stacking

the elements of Ft and its lags, resulting in a representation in which the stacked factor

follows a VAR(1), in which case only current values of the stacked vector of factors

enter (10).

Multistep ahead forecasts can be computed either by a direct regression onto current

and past Ft and Xit, or by iterating forward the AR model for eit and the VAR for Ft
(Eqs. (3) and (7)).

In general, the number of static factors r exceeds the number of dynamic factors q

because Ft consists of stacked current and past ft. When r>q, the static factors have a

dynamic singularity, that is, q� r linear combinations of Ft are perfectly predictable from

past Ft. In examples (8) and (9), there is a single dynamic factor and two static factors, and

the perfectly predictable linear combination is F2t¼F1t�1.

When the numbers of static and dynamic factors are estimated using macroeconomic

data, the difference between the estimated values of r and q is often small, as is the case in

the empirical work reported in Section 6. As a result, some applications set r¼q andG¼ I

in (7). Alternatively, if q< r, the resulting covariance matrix of the static factor innova-

tions, that is, of Ft�Φ(L)Ft�1¼Gηt, has rank q, a constraint that can be easily imposed in

the applications discussed in this chapter.

2.1.3 Normalization of the Factors
Because the factors are unobserved, they are identified only up to arbitrary normaliza-

tions. We first consider the static DFM, then the dynamic DFM.

In the static DFM, the space spanned by Ft is identified, but Ft itself is not identified:

ΛFt¼ (ΛQ�1) (QFt), where Q is any invertible r� r matrix. For many applications,

including macro monitoring and forecasting, it is necessary only to identify the space

spanned by the factors, not the factors themselves, in which case Q in the foregoing

expression is irrelevant. For such applications, the lack of identification is resolved by

imposing a mathematically convenient normalization. The two normalizations discussed

in this chapter are the “principal components” normalization and the “named factor”

normalization.
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2.1.3.1 Principal Components Normalization
Under this normalization, the columns of Λ are orthogonal and are scaled to have unit

norm:

N�1Λ0Λ¼ Ir and ΣF diagonal “principal components” normalizationð Þ (11)

where ΣF ¼E FtF
0
t

� 	
.

The name for this normalization derives from its use in principal components estima-

tion of the factors. When the factors are estimated by principal components, additionally

the diagonal elements of ΣF are weakly decreasing.

2.1.3.2 Named Factor Normalization
An alternative normalization is to associate each factor with a specific variable. Thus this

normalization “names” each factor. This approach is useful for subsequent structural anal-

ysis, as discussed in Section 5 for structural DFMs, however it should be stressed that the

“naming” discussed here is only a normalization that by itself it has no structural content.

Order the variables in Xt so that the first r variables are the naming variables. Then the

“named factor” normalization is,

ΛNF ¼ Ir
ΛNF
r +1:n

� �
, ΣF is unrestricted “named factor” normalizationð Þ: (12)

Under the named factor normalization, the factors are in general contemporaneously

correlated.e

The named factor normalization aligns the factors and variables so that the common

component ofX1t is F1t, so that an innovation to F1t increases the common component of

X1t by one unit and thus increases X1t by one unit. Similarly, the common compo-

nent of X2t is F2t, so the innovation to the F2t increases X2t by one unit.

For example, suppose that the first variable is the price of oil. Then the normalization

(12) equates the innovation in the first factor with the innovation in the common com-

ponent of the oil price. The innovation in the first factor and the first factor itself therefore

can be called the oil price factor innovation and the oil price factor.

The named factor normalization entails an additional assumption beyond the princi-

pal components normalization, specifically, that matrix of factor loadings on the first r

variables (the naming variables) is invertible. That is, let Λ1:r denote the r� r matrix of

factor loadings on the first r variables in the principal components normalization. Then

ΛNF
r +1:N ¼Λ�1

1:r Λr +1:N . Said differently, the space of innovations of the first r common

components must span the space of innovations of the static factors. In practice, the nam-

ing variables must be sufficiently different from each other, and sufficiently representative

e Bai and Ng (2013) refer to (11) and (12) normalizations as the PC1 and PC3 normalizations, respectively,

and also discuss a PC2 normalization in which the first r� r block of Λ is lower triangular.
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of groups of the other variables, that the innovations to their common components span

the space of the factor innovations. This assumption is mild and can be satisfied by suitable

choice of the naming variables.

2.1.3.3 Timing Normalization in the Dynamic Form of the DFM
In the dynamic form of the DFM, an additional identification problem arises associated

with timing. Because λ(L)ft¼ [λ(L)q(L)�1][q(L)ft], where q(L) is an arbitrary invertible

q�q lag polynomial matrix, a DFMwith factors ft and factor loadings λ(L) is observation-
ally equivalent to a DFM with factors q(L) ft and factor loadings λ(L)q(L)�1. This lack of

identification can be resolved by choosing q variables on which ft loads contemporane-

ously, without leads and lags, that is, for which λi(L)¼λi0.

2.1.4 Low-Frequency Movements, Unit Roots, and Cointegration
Throughout this chapter, we assume that Xt has been preprocessed to remove large low-

frequencymovements in the formof trends andunit roots.This is consistentwith theecono-

metric theory for DFMs which presumes series that are integrated of order zero (I(0)).

In practice, this preprocessing has two parts. First, stochastic trends and potential

deterministic trends arising through drift are removed by differencing the data. Second,

any remaining low-frequency movements, or long-term drifts, can be removed using

other methods, such as a very low-frequency band-pass filter. We use both these steps

in the empirical application in Sections 6 and 7, where they are discussed in more detail.

If some of the variables are cointegrated, then transforming them to first differences

loses potentially important information that would be present in the error correction

terms (that is, the residual from a cointegrating equation, possibly with cointegrating

coefficients imposed). Here we discuss two different treatments of cointegrated variables,

both of which are used in the empirical application of Sections 6 and 7.

The first approach for handling cointegrated variables is to include the first difference

of some of the variables and error correction terms for the others. This is appropriate if the

error correction term potentially contains important information that would be useful in

estimating one or more factors. For example, suppose some of the variables are govern-

ment interest rates at different maturities, that the interest rates are all integrated of order 1

(I(1)), that they are all cointegrated with a single common I(1) component, and the

spreads also load on macro factors. Then including the first differences of one rate and

the spreads allows using the spread information for estimation of their factors.

The second approach is to include all the variables in first differences and not to

include any spreads. This induces a spectral density matrix among these cointegrated vari-

ables that is singular at frequency zero, however that frequency zero spectral density

matrix is not estimated when the factors are estimated by principal components. This

approach is appropriate if the first differences of the factors are informative for the com-

mon trend but the cointegrating residuals do not load on common factors. For example,
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in the empirical example in Sections 7 and 8, multiple measures of real oil prices are

included in first differences. While there is empirical evidence that these oil prices, for

example Brent and WTI, are cointegrated, there is no a priori reason to believe that

the WTI-Brent spread is informative about broad macro factors, and rather that spread

reflects details of oil markets, transient transportation and storage disruptions, and so

forth. This treatment is discussed further in Section 7.2.

An alternative approach to handling unit roots and cointegration is to specify the

DFM in levels or log levels of some or all of the variables, then to estimate cointegrating

relations and common stochastic trends as part of estimating the DFM. This approach

goes beyond the coverage of this chapter, which assumes that variables have been trans-

formed to be I(0) and trendless. Banerjee andMarcellino (2009) and Banerjee et al. (2014,

2016) develop a factor-augmented error correction model (FECM) in which the levels

of a subset of the variables are expressed as cointegrated with the common factors. The

discussion in this chapter about applications and identification extends to the FECM.

2.2 DFMs: A Brief Review of Early Literature
Factor models have a long history in statistics and psychometrics. The extension to DFMs

was originally developed by Geweke (1977) and Sargent and Sims (1977), who estimate

the model using frequency-domain methods. Engle and Watson (1981, 1983) showed

how the DFM can be estimated by maximum likelihood using time-domain state-space

methods. An important advantage of the time domain over the frequency-domain

approach is the ability to estimate the values of the latent factor using the Kalman filter.

Stock and Watson (1989) used these state-space methods to develop a coincident real

activity index as the estimated factor from a four-variable monthly model, and

Sargent (1989) used analogous state-space methods to estimate the parameters of a

six-variable real business cycle model with a single common structural shock.

Despite this progress, these early applications had two limitations. The first was

computational: estimation of the parameters by maximum likelihood poses a practical

limitation on the number of parameters that can be estimated, and with the exception

of the single-factor 60-variable system estimated by Quah and Sargent (1993), these early

applications had only a handful of observable variables and one or two latent factors. The

second limitation was conceptual: maximum likelihood estimation requires specifying a

full parametric model, which in practice entails assuming that the idiosyncratic compo-

nents are mutually independent, and that the disturbances are normally distributed, a less

appealing set of assumptions than the weaker ones in Chamberlain and Rothschild’s

(1983) approximate DFM.f For these reasons, it is desirable to have methods that can

f This second limitation was, it turns out, more perceived than actual if the number of series is large. Doz

et al. (2012) show that state-space Gaussian quasi-maximum likelihood is a consistent estimator of the

space spanned by the factors under weak assumptions on the error distribution and that allow limited

correlation of the idiosyncratic disturbances.
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handle many series and higher dimensional factor spaces under weak conditions on

distributions and correlation among the idiosyncratic terms.

The state-space and frequency-domain methods exploit averaging both over time and

over the cross section of variables. The key insight behind the nonparametric methods for

estimation of DFMs, and in particular principal components estimation of the factors, is

that, when the number of variables is large, cross-sectional variation alone can be

exploited to estimate the space spanned by the factors. Consistency of the principal com-

ponents (PC) estimator of Ft was first shown for T fixed and N!∞ in the exact factor

model, without lags or any serial correlation, by Connor and Korajczyk (1986). Forni and

Reichlin (1998) formalized the cross-sectional consistency of the unweighted cross-

sectional average for a DFM with a single factor and nonzero average factor loading

dynamics. Forni et al. (2000) showed identification and consistency of the dynamic

PC estimator of the common component (a frequency-domain method that entails

two-sided smoothing). Stock and Watson (2002a) proved consistency of the (time

domain) PC estimator of the static factors under conditions along the lines of

Chamberlain andRothschild’s (1983) approximate factor model and provided conditions

under which the estimated factors can be treated as observed in subsequent regres-

sions. Bai (2003) derived limiting distributions for the estimated factors and common

components. Bai and Ng (2006a) provided improved rates for consistency of the PC esti-

mator of the factors. Specifically, Bai and Ng (2006a) show that as N!∞, T!∞, and

N2/T!∞, the factors estimated by principal components can be treated as data (that is,

the error in estimation of the factors can be ignored) when they are used as regressors.

2.3 Estimation of the Factors and DFM Parameters
The parameters and factors of the DFM can be estimated using nonparametric methods

related to principal components analysis or by parametric state-space methods.

2.3.1 Nonparametric Methods and Principal Components Estimation
Nonparametric methods estimate the static factors in (6) directly without specifying a

model for the factors or assuming specific distributions for the disturbances. These

approaches use cross-sectional averaging to remove the influence of the idiosyncratic

disturbances, leaving only the variation associated with the factors.

The intuition of cross-sectional averaging is most easily seen when there is a single

factor. In this case, the cross-sectional average of Xt in (6) is �Xt ¼ΛFt +�et, where �Xt,

Λ, and �et, denote the cross-sectional averages �Xt ¼N�1
XN

i¼1
Xit, etc. If the cross-

sectional correlation among {eit} is limited, then by the law of large numbers

�et 


!p 0, that is, �Xt�ΛFt 


!p 0. Thus if Λ 6¼ 0, �Xt estimates Ft up to scale.Withmore

than one factor, this argument carries through using multiple weighted averages of Xt.

Specifically, suppose that N�1Λ0Λ has a nonsingular limit; then the weighted average
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N�1Λ0Xt satisfies N
�1Λ0Xt�N�1Λ0ΛFt 


!p 0, so that N�1Λ0Xt asymptotically spans

the space of the factors. The weightsN�1Λ are infeasible because Λ is unknown, however

principal components estimation computes the sample version of this weighted average.

2.3.1.1 Principal Components Estimation
Principal components solve the least-squares problem in which Λ and Ft in (6) are treated

as unknown parameters to be estimated:

minF1,…,FT ,ΛVr Λ, Fð Þ, whereVr Λ, Fð Þ¼ 1

NT

XT
t¼1

Xt�ΛFtð Þ0 Xt�ΛFtð Þ, (13)

subject to the normalization (11). Under the exact factor model with homogeneous

idiosyncratic variances and factors treated as parameters, (13) is the Gaussian maximum

likelihood estimator (Chamberlain and Rothschild, 1983). If there are no missing data,

then the solution to the least-squares problem (13) is the PC estimator of the factors,

F̂ t ¼N�1Λ̂
0
Xt, where Λ̂ is the matrix of eigenvectors of the sample variance matrix of

Xt, Σ̂X ¼T�1
XT

t¼1
XtX

0
t , associated with the r largest eigenvalues of Σ̂X .

2.3.1.2 Generalized Principal Components Estimation
If the idiosyncratic disturbances have different variances and/or some are cross correlated,

then by analogy to generalized least squares, efficiency gains should be possible by mod-

ifying the least-squares problem (13) for a more general weight matrix. Specifically, let Σe

denote the error variance matrix of et; then the analogy to generalized least-squares

regression suggests that Ft and Λ solve a weighted version of (13), where the weighting

matrix is Σ�1
e :

minF1,…,FT ,ΛT
�1
XT
t¼1

Xt�ΛFtð Þ0Σ�1
e Xt�ΛFtð Þ: (14)

A solution to (14) is the infeasible generalized PC estimator, eFt ¼N�1eΛ0
Xt, where eΛ are

the scaled eigenvectors corresponding to the r largest eigenvalues of Σ�1=2
e Σ̂XΣ�1=20

e .g

The feasible generalized PC estimator replaces the unknown Σe in (14) with an esti-

mator Σ̂e. Choi (2012) shows that if Σ̂e is consistent for Σe then the feasible generalized

PC estimator of {Ft} and Λ is asymptotically more efficient than principal components.

Several estimators of Σe have been proposed. The limited amount of evidence from sim-

ulation and empirical work comparing their performance suggests that a reasonable

approach is to use Boivin and Ng’s (2006) two-step diagonal weight matrix approach,

in which the first step is principal components (that is, identity weight matrix) and

g As stated in the beginning of this section, the series in X are typically preprocessed to have unit standard

deviation, so in this sense the unweighted principal components estimator (13) implicitly also has weighting

if it is expressed in terms of the nonstandardized data.
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the second step uses a diagonal Σ̂e, where the diagonal element is the sample variance of

the estimated idiosyncratic component from the first step.

Other approaches include Forni et al.’s (2005), which allows for contemporaneous

covariance across the idiosyncratic terms but does not adjust for serial correlation, and

Stock and Watson’s (2005) and Breitung and Tenhofen’s (2011), which adjusts for serial

correlation and heteroskedasticity in eit but not cross correlation. See Choi (2012) for

additional discussion.

2.3.1.3 Extension to Restrictions on L
The principal components methods described in Sections 2.3.1.1 and 2.3.1.2 apply to the

case that Λ and F are exactly identified using the principal components normalization. If

there are additional restrictions onΛ, then principal components no longer applies but the

least-squares concept does. Specifically, minimization can proceed using (13), however Λ
is further parameterized as Λ(θ) and minimization now proceeds over θ, not over unrest-
ricted Λ.

In general this minimization with respect to θ entails nonlinear optimization. In some

leading cases, however, closed-form solutions to the least-squares problem are available.

One such case is a hierarchical DFM in which there are common factors that affect all

variables, and group-level factors that affect only selected variables; for example, suppose

the groups are countries, the group factors are country factors, and the cross-group com-

mon factors are international factors. If the factors are normalized to be orthogonal, the

first-level factors can be estimated by principal components using all the series, then the

factors unique to the gth group can be estimated by principal components using the resid-

uals from projecting the group-g variables on the first-level factors. A second case is when

the restrictions are linear, so that vec(Λ)¼Rθ, where R is a fixed known matrix; in this

case, standard regression formulas provide an explicit representation of the minimizer θ̂
given F̂ t

� �
and vice versa.

2.3.2 Parametric State-Space Methods
State-space estimation entails specifying a full parametric model for Xt, et, and ft in the

dynamic form of the DFM, so that the likelihood can be computed.

For parametric estimation, additional assumptions need to be made on the distribu-

tion of the errors and the dynamics of the idiosyncratic component et in the DFM.

A common treatment is to model the elements of et as following the independent uni-

variate autoregressions (3).With the further assumptions that the disturbances νit in (3) are
i.i.d. Nð0,σ2νiÞ, i¼1, …, N, ηt is i.i.d. N(0,Ση), and {νt} and {ηt} are independent,

Eqs. (1)–(3) constitute a complete linear state-space model. Alternatively, the static

DFM can be written in state-space form using (6), (7), and (3).

Given the parameters, the Kalman filter can be used to compute the likelihood and

the Kalman smoother can be used to compute estimates of ft given the full-sample data on
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{Xt}. The likelihood can be maximized to obtain maximum likelihood estimates of the

parameters. Alternatively, with the addition of a prior distribution, the Kalman filter can

be used to compute the posterior distribution of the parameters and posterior estimates of

the unobserved factors can be computed from the Kalman smoother. The fact that the

state-space approach uses intertemporal smoothing to estimate the factors, whereas prin-

cipal components approaches use only contemporaneous smoothing (averaging across

series at the same date) is an important difference between the methods.

Parametric state-space methods have several advantages, including the use of quasi-

maximum likelihood estimation, the possibility of performing Bayes inference, efficient

treatment of missing observations (this latter point is discussed further in the next section),

and the use of intertemporal smoothing to estimate the factors. However, state-space

methods also have drawbacks. Historically, their implementation becomes numerically

challenging when N is large because the number of parameters grows proportionately

to N, making maximum likelihood estimation of the parameter vector prohibitive.h

In addition, state-space methods require specifying the degree of the factor loading lag

polynomial and models for the factors and for the idiosyncratic terms. These modeling

choices introduce potential misspecification which is not reflected in the model-based

inference, that is, standard errors and posterior coverage regions are not robust to model

misspecification.

2.3.3 Hybrid Methods and Data Pruning
2.3.3.1 Hybrid Methods
One way to handle the computational problem of maximum likelihood estimation of the

state-space parameters is to adopt a two-step hybrid approach that combines the speed of

principal components and the efficiency of the Kalman filter (Doz et al., 2011). In the first

step, initial estimates of factors are obtained using principal components, from which the

factor loadings are estimated and a model is fit to the idiosyncratic components. In the

second step, the resulting parameters are used to construct a state-space model which then

can be used to estimate Ft by the Kalman filter. Doz et al. (2011) show that, for large N

and T, the resulting estimator of the factors is consistent for the factor space and is robust

to misspecification of the correlation structure of the idiosyncratic components, and thus

has a nonparametric interpretation.

2.3.3.2 Pruning Datasets and Variable Selection
The discussion so far assumes that all the variables have been chosen using a priori knowl-

edge to include series that are potentially valuable for estimating the factors. Because the

emphasis is on using many variables, one possibility is that some extraneous variables

h Durbin and Koopman (2012, section 6.5) discuss computationally efficient formulae for Kalman filtering

when N is large.
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could be included, and that it might be better to eliminate those variables. Whether this is

a problem, and if so how to handle it, depends on the empirical application. If there is a

priori reason to model the factors as applying to only some variables (for example, there

are multiple countries and interest is in obtaining some country-specific and some

international factors) then it is possible to use a hierarchical DFM. In effect this prunes

out variables of other countries when estimating a given country factors. Another

approach is to use prescreening methods to prune the dataset, see for example Bai and

Ng (2006a). Alternatively, sparse data methods can be used to eliminate some of the vari-

ables, for example using a sparsity prior in a state-space formulation (eg, Kaufmann and

Schumacher, 2012).

2.3.4 Missing Data and Mixed Data Sampling Frequencies
Missing data arise for various reasons. Some series might begin sooner than others, the

date of the final observation on different series can differ because of timing of data releases,

and in some applications the series might have different sampling frequencies

(eg, monthly and quarterly). The details of how missing data are handled differ in prin-

cipal components and state-space applications. All the procedures in common use (and,

to the best of our knowledge, all the procedures in the literature) adopt the assumption

that the data are missing at random. Under the missing-at-random assumption, whether a

datum is missing is independent of the latent variables (no endogenous sample selection).

The missing-at-random assumption arguably is a reasonable assumption for the main

sources of missing data in DFMs in most macroeconomic applications to date.

2.3.4.1 Principal Components Estimation with Missing Data
The solution to the least-squares problem (13) in terms of the eigenvalues of Σ̂X holds

when all NT observations are nonmissing, that is, when the panel is balanced. When

there are missing observations, least-squares still can be used to estimate Ft and Λ, how-
ever the solution must be obtained numerically. Specifically, the modification of (13)

when there is missing data is,

minF1,…,FT ,Λ
1

NT

XN
i¼1

XT
t¼1

Sit Xit�ΛiFtð Þ2, (15)

where Sit¼1 if an observation on Xit is available and Sit¼0 otherwise and where Λi is

the ith row of Λ. The objective function in (15) can be minimized by iterations alter-

nating with Λ given {Ft} then {Ft} given Λ; each step in the minimization has a closed-

form expression. Starting values can be obtained, for example, by principal component

estimation using a subset of the series for which there are no missing observations.

Alternatively, Stock and Watson (2002b) provide an EM algorithm for handling miss-

ing observations.
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Given an estimate of the factor loadings and factors based on missing data, the esti-

mated common component for the ith series remains Λ̂iF̂ t and the one step ahead forecast

is given by (10), where the parameters of (10) are estimated treating F̂ t as data.

2.3.4.2 State-Space Estimation with Missing Data
The state-space framework can be adapted to missing data by allowing the measurement

Eq. (1) to vary depending on what data are available at a given date t; see Harvey (1989,

p. 325). Alternatively, the dimension of the measurement equation can be kept the same

by including a proxy value for the missing observation while adjusting the model param-

eters so that the Kalman filter places no weight on the missing observation. See Giannone

et al. (2008), Mariano and Murasawa (2010), and Marcellino and Sivec (2014) for var-

iations on this latter approach.

For largeN, one computational challenge is keeping the dimension of the state vector

small as N grows, which is more complicated with missing observations than with all

observations nonmissing; see Jungbacker et al. (2011) and Ba�nbura and Modugno

(2014) for discussion and proposed computationally efficient solutions.

One theoretical advantage of the state-space approach to mixed frequencies is that it

can pin down when precisely the measurement occurs (eg, the US establishment survey

measures payroll employment during the week including the 12th of the month).

A second theoretical advantage of the state-space approach is that it can explicitly differ-

entiate between stock variables (observed at a point in time, like employment) and flow

variables (temporal averages, like GDP). In practice, dealing with flows is complicated,

however, because the flow aggregation identities are in levels but the variables being

measured, such as sectoral output, are typically best modeled in growth rates. These com-

plications require approximations and can substantially increase the dimension of the

latent state variable. For an application with mixed sampling frequencies and mixed stock

and flow variables, see Aruoba et al. (2009). See Foroni and Marcellino (2013) for a sur-

vey of methods for handling mixed-frequency data, including DFMs and alternative

approaches.

There appears to be little research comparing the performance of parametric and

nonparametric approaches to mixed-frequency data.

2.3.5 Bayes Methods
An alternative approach to estimating DFMs is to use Bayes methods. In Bayesian esti-

mation, the DFM parameters are treated as random draws from a prior distribution.

Because the factors are unobserved and multiplied by the coefficients, Bayesian inference

is more complicated than it is in the standard regression model with observed regressors

and conjugate priors, and Bayesian DFM estimation requires using modern numerical

techniques.
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The first Bayesian treatments of DFMs of which we are aware are Kim and Nelson

(1998) and Otrok andWhiteman (1998), who both estimated a small single-factor system

using Markov Chain Monte Carlo methods. Kim and Nelson (1998) also incorporated

Markov switching in the process for the latent factor. In other early work, Kose et al.

(2003) extend Otrok and Whiteman (1998) to a 180-variable system with international

macroeconomic data, using a hierarchical regional/country structure. Aguilar and West

(2000) developed Bayes methods for estimating dynamic factor models with stochastic

volatility, which they apply to multivariate financial time series.

A theoretical advantage of Bayes methods is that the mean squared error of some

functions of the estimated parameters (such as in forecast functions) can be reduced by

shrinkage. Koopman and Mesters (forthcoming) take an empirical Bayes approach to

estimating the efficient amount of shrinkage. Their algorithm iterates between estimation

of the factors by Gaussian signal extraction (Kalman smoother) and Bayes estimation of

the parameters given the consistently estimated factors.

To date, the dominant methods used in macro applications are Frequentist, especially

the computationally straightforward methods based on principal components. This

chapter therefore focuses on Frequentist methods for estimation of DFMs. However,

because the number of parameters in Λ is large, Bayes methods for DFMs are a promising

area for improving estimator and forecast performance from a Frequentist perspective.

2.4 Determining the Number of Factors
2.4.1 Estimating the Number of Static Factors r
The number of static factors r can be determined by a combination of a priori knowledge,

visual inspection of a scree plot, and the use of information criteria and other statistical

measures.

2.4.1.1 Scree Plots
A scree plot displays the marginal contribution of the kth principal component to the aver-

age R2 of the N regressions of Xt against the first k principal components. This marginal

contribution is the average additional explanatory value of the kth factor. When there are

no missing data, the scree plot is a plot of the ordered eigenvalues of Σ̂X , normalized by

the sum of the eigenvalues.

2.4.1.2 Information Criteria
Information criteria, such as the Akaike information criterion, use a penalized objective

function to trade off the benefit of including an additional parameter against the cost

of increased sampling variability. Bai and Ng (2002) extend this idea to including an

additional factor using the penalized sum of squares,
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IC rð Þ¼ lnVr Λ̂, F̂
� 	

+ rg N ,Tð Þ, (16)

whereVr Λ̂, F̂
� 	

is the least-squares objective function in (13) evaluated at the PCs Λ̂, F̂
� 	

,

and where g(N,T) is a penalty factor such that g(N,T)!0 and min(N,T)g (N,T)!∞
as N, T!∞. Bai and Ng (2002) provide conditions under which the value of r that

minimizes an information criterion with g(N,T) satisfying these conditions is consistent

for the true value of r. A commonly used penalty function is the Bai and Ng (2002)

ICp2 penalty, for which g(N,T)¼ [(N+T)/NT]ln[min(N,T)]. When N¼T, this penalty

simplifies to two times the BIC penalty, T�1lnT. Monte Carlo evidence suggests that this

penalty function works well in designs calibrated to macroeconomic data.

2.4.1.3 Other Approaches
Onatski (2010) provides an alternative consistent estimator of r which estimates r as the

largest value of k for which the difference between eigenvalues k and k+1 of Σ̂X exceeds

a threshold provided in that paper; this estimator corresponds to finding the final “cliff” in

the scree plot larger than that threshold. Similarly, Ahn and Horenstein (2013) show that

an alternative consistent estimator of r is obtained as the maximizer of the ratio of eigen-

value k to eigenvalue k+1; their estimator corresponds to locating the largest “relative

cliff” in the scree plot. Onatski (2009) takes a different approach and considers tests as

opposed to estimation of r by information criteria.

Practical experience suggests that different methods frequently give different esti-

mates. There is limited research comparing the performance of the different methods.

This sensitivity suggests that it is important to augment the statistical estimators with

inspection of the scree plot and with judgment informed by the application at hand.

2.4.2 Estimating the Number of Dynamic Factors q
In principle, the number of dynamic factors can be less than the number of static factors

and if so, the static factors follow a singular dynamic process. Framed in terms of (7), these

singularities arise because the covariance matrix of the innovations to Ft (that is, Gηt in
(7)) is singular with rank q< r. This implies that the spectral density matrix of Ft is singular.

Estimation of q given r entails estimating the rank of this singularity. Although in principle

an information criterion could be used to estimate the number of dynamic factors based

on the likelihood of the dynamic form of the DFM, estimating q given r has the advantage

that it is unnecessary to compute that likelihood.

There are three related methods for consistently estimating q given r. Amengual and

Watson (2007) first compute the residual of the projection of Xt onto lagged values of the

PC estimator of Ft, then apply the Bai and Ng (2002) information criterion to the covari-

ance matrix of those residuals. Bai and Ng (2007) work directly with the factors and use

an information criterion to estimate the rank of the residual covariance matrix of a VAR

estimated using the r principal components. In contrast to these two approaches, Hallin
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and Liška (2007) propose a frequency-domain procedure which uses an information cri-

terion to estimate the rank of the spectral density matrix of Xt. There seems to be limited

research comparing these methods.

2.5 Breaks and Time-Varying Parameters
The discussion so far has considered DFMs with time-invariant parameters. In many

applications, however, there is at least the possibility of parameter instability. This section

reviews the robustness of PC estimator of the factors to small breaks. If, however, the

instability is large and widespread, the full-sample PC estimator breaks down. As a result,

in many applications it is important to check for and/or model structural instability in the

factor loadings. There are two broad approaches to handling instability in DFMs: positing

a break in the parameters, and modeling the parameters as evolving stochastically.

2.5.1 Robustness of PC to Limited Instability
If the amount of instability is small and/or limited across variables, the PC estimator of

the factors remains consistent. The intuition behind this initially surprising result can be

seen by returning to the example of Section 2.3.1 of the cross-sectional average when

there is a single factor. Suppose that the static factor loading matrix is time dependent,

so that Λ in (6) is replaced by Λt. Then �Xt ¼ΛtFt +�et, where Λt is the cross-sectional

average of Λt. Let Λ denote the time average of Λt. Then �Xt�ΛFt ¼ Λt�Λ
� �

Ft +�et.
If only a vanishing fraction of series have a break in their factor loadings, or if the breaks

in Λit are stochastic, have limited temporal dependence, and are uncorrelated across

series, or if Λit has persistent drift which has mean zero and is uncorrelated across series,

then by the law of large numbers Λt�Λ!p 0 and �et!p 0 so that �Xt�ΛFt!p 0. Thus,

despite this nontrivial instability, if Λ is nonzero, �Xt estimates the factor up to scale.

Bates et al. (2013) provide general conditions on parameter instability under which

the PC estimator remains consistent. They show, for example, that the factor estimates

remain consistent if there is a large discrete break in the factor loadings for a fraction

O(N�1/2) of the series, or if the factor loadings follow independent random walks with

relatively small innovations, as long as those innovations are independent across series.i

For these instabilities, tests for stability of Λ would reject with probability tending to one

in large samples but the PC estimator remains consistent.j

Despite these robustness results for the estimated factors, the coefficients in any spe-

cific equation could have large drift or breaks. Stock andWatson (2009) provide evidence

i Specifically, Bates et al. (2013) show that if Λt¼Λ0+hNTξt, where hNT¼O(1/min[N1/4T1/2, T3/4]), then

the estimated factors achieve the Bai and Ng (2002) mean square consistency rate of 1/min(N,T).
j Stock and Watson (2009) provide some empirical evidence that suggests the relevance of such breaks. In a

pseudo out-of-sample forecasting exercise using US macroeconomic data, they find evidence of a break in

1984 in the factor loadings, but also find that the best forecasts are produced by estimating the factors over

the full data span but estimating the factor loadings over the post-1984 subset.
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that allowing for such instability can be important in practice when interest is in a specific

series (say, for forecasting), even if full-sample principal components estimates of the fac-

tors are used.

2.5.2 Tests for Instability
Despite this insensitivity of the PC estimator to some forms of instability in the factor

loadings, principal components is not robust to widespread large breaks or to large time

variation in Λ that is systematically correlated across series. Following Stock and Watson

(2009) and Breitung and Eickmeier (2011), consider the case in which Λ takes on two

values:

Xt ¼ΛtFt + et, Λt ¼ Λ 1ð Þ if t< τ
Λ 2ð Þ if t� τ


: (17)

For this discussion, suppose the dynamics of the factor structure does not change. Thus

the DFMholds in both regimes, with the same r factors, but with different factor loadings.

As shown by Stock andWatson (2009) and Breitung and Eickmeier (2011), if the break in

Λ is widespread across the series, the split-sample PC estimators of the factors will differ

from each other. Moreover, if there are r factors in each subsample and a widespread

break in Λ, then in the full sample it will appear as though there are 2r factors.

Breitung and Eickmeier (2011) provide Monte Carlo evidence that as a result the Bai

and Ng (2002) procedure would systematically overestimates the number of factors.

There are now a number of tests for breaks in the factor loadings. Stock and Watson

(2009) consider the problem of breaks in a single equation and suggest regressing

each variable on the estimated factors and implementing break tests for each regres-

sion. Breitung and Eickmeier (2011) consider a related Lagrange multiplier test that

handles breaks in a fixed finite number of DFM equations; their test appears to improve

size control, relative to the Stock and Watson (2009) approach. Tests proposed by Chen

et al. (2014) and Han and Inoue (2015) test for a general break in Λ (all equations) by

noting that, if Λ changes, the covariance matrix of the full-sample PC estimator will

change at the break date in Λ. Chen et al.’s (2014) test entails testing for a break in

the regression of one of the estimated factors on the others. Han and Inoue (2015) test

for a break in the full covariance matrix of the PC estimator of the factors. All the fore-

going break tests generalize to unknown break dates using standardmethods. Cheng et al.

(Forthcoming) take a different approach and extend LASSOmethods to consider changes

in the factor loadings and/or changes in the number of factors.

Care must be taken when interpreting these break tests for at least two reasons. First,

although these tests are for a discrete break, break tests have power against other types of

parameter instability, in particular against drifting parameters.k

k See, for example, Stock and Watson (1998) and Elliott and M€uller (2006).
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Second, a more subtle issue of interpretation is that, although these tests are designed

to detect breaks in Λ and thus breaks in the factor space, at least some of them will have

power against heteroskedasticity in the factor innovations and/or breaks in the VAR pro-

cess followed by the factors. This power against heteroskedasticity in some tests but not

others arises because of different normalizations used in the tests. In principle, these dif-

ferent sources of instability—breaks in Λ, heteroskedasticity in the factor innovations, and
breaks in the VAR process for Ft—are separately identified. These tests are new and their

relative power against different types of breaks has not been studied in any detail. Because

the modeling and substantive implications of a widespread break in Λ are quite different

from those of a change in the volatility of the factor innovations, interpretation of rejec-

tions must be sensitive to this ambiguity.l

2.5.3 Incorporating Time-Varying Factor Loadings and Stochastic Volatility
Although tests for stability can detect breaks or evolution of the DFM parameters, the

empirical significance of that instability must be assessed by estimating the model taking

into account the instability.

The most straightforward way to estimate the DFM taking into account the instability

is through subsample estimation. However, doing so presumes a single common break

date, and inmany applications onemight be concerned about continuous parameter drift,

volatility clustering, or breaks for different series at different dates. If so, then it is appro-

priate to use a more flexible model of parameter change than the single common break

model.

An alternative approach to time variation is to model the parameters as evolving sto-

chastically rather than breaking at a single date. If parameter variation is small, this

approach can be implemented in two steps, first estimating the factors by least squares,

then estimating a time-varying model treating the factors as observed. See, for example,

Cogley and Sargent (2005) for time-varying parameter VARmethods for observed vari-

ables; for recent contributions and references see Korobilis (2014). Eickmeier et al. (2015)

l Empirical work applying break tests to DFMs suggests that DFM parameters have changed over the post-

war sample. In particular, there is evidence of a break in the factor loadings around onset of the Great

Moderation. Stock and Watson (2009) find evidence of a break in 1984, the only date they consider.

Breitung and Eickmeier (2011) apply their tests for breaks at an unknown date and find breaks in multiple

equations with estimated break dates around 1984. Chen et al. (2014) also find breaks around 1980. Stock

and Watson (2012a) and Cheng et al. (Forthcoming) find evidence of breaks at the onset of the 2007

recession. Stock and Watson (2012a) find that this break is in the variances of the factor innovations

(in Ση), whereas Cheng et al. find that the breaks are in Λ. However, the Cheng et al. normalization

imposes homoskedasticity in the factor innovations, so in their test a change in Ση would appear as a

change in Λ; thus both sets of results are consistent with the break being in Ση. All these papers examine

quarterly US data.
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work through the details of this two-step approach to time variation in DFMs. Using the

results in Bates et al. (2013) as motivation, Eickmeier et al. (2015) suggest estimating the

factors by principal components and treating them as observed. The time variation in the

DFM is now easily handled equation-by-equation. They apply these methods in a time-

varying FAVAR, but the methods equally apply to DFMs once one treats the estimated

factors as observed.

If, however, the parameter variation is large then (as discussed in the previous section)

this approach will yield misleading estimates of the factors. Consequently, recent work

has focused on treating the factors as unobserved while allowing for and estimating

time-varying stochastic processes for the factor loadings. An additional extension is to

stochastic volatility in the innovations to the factors and idiosyncratic terms, which allows

both for additional time variation in the implied filter and for volatility clustering in

the data.

Much of the current work on time-varying DFMs uses or extends the model of del

Negro and Otrok (2008). Their model allows the factor loadings to evolve according to a

random walk: Λit¼Λit�1+σΔΛ,iζit, where ζit is an i.i.d. N(0,1) disturbance. They also

allow for time variation in the factor VAR coefficients and in the autoregressive coeffi-

cients describing the idiosyncratic dynamics. Finally, del Negro and Otrok (2008) allow

for stochastic volatility in the innovations to the factors and to the idiosyncratic distur-

bances. The result of these extensions of the DFM is that the state evolution equation is a

nonlinear function of the state variables so that while it remains a hidden Markov model,

it can no longer be estimated by the Kalman filter. Del Negro and Otrok (2008) show

how the model can instead be estimated by numerical Bayes methods. Papers that apply

this algorithm or variants to DFMs with time-varying parameters include Mumtaz and

Surico (2012), Bjørnland and Thorsrud (2015a), and Stock and Watson (2015). The

details of these methods go beyond the scope of this chapter.

3. DFMs FOR MACROECONOMIC MONITORING AND FORECASTING

Two classic applications of DFMs are to real-time macroeconomic monitoring and to

forecasting. The early hope of some researchers for DFMs—initially small DFMs and

later “big data” high-dimensional DFMs—was that their ability to extract meaningful

signals (factors) from noisy data would provide a breakthrough in macroeconomic

forecasting. This early optimism turned out to be misplaced, arguably mainly because

so many of the shocks that matter the most for the economy, such as the invasion of

Kuwait by Iraq in August 1990 and the financial crisis in the fall of 2008, are simply

not known in advance. This said, DFMs have resulted in meaningful forecasting

improvements, especially for measures of real economic activity. They have also proven

particularly useful for the important task of macroeconomic monitoring, that is, tracking

economies in real time. The literature on using DFMs for forecasting and macro
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monitoring is vast. This section provides a selective survey of that literature, discusses

some technical issues at a high level, and provides references for readers interested in

the technical details.

3.1 Macroeconomic Monitoring
Economists at central banks, executive branches of government, and in the private sector

track the evolution of the economy in real time, that is, they monitor the macroecon-

omy. A key part of macroeconomicmonitoring is following and interpreting data releases

to glean insights as to where the economy is at present, and where the economy is going.

Macroeconomic monitoring has two salient challenges. First, data releases are peppered

throughout the month and quarter, so that the available data change from day to day or

even within a day, a feature referred to as the “ragged edge” problem. Second, the num-

ber of data releases and series contained within those releases is vast. Handling this flow of

large volumes of disparate data requires judgment and knowledge of idiosyncratic events.

Increasingly, the job of macroeconomic monitoring has also benefited from systematic

high-dimensional modeling in the form of DFMs.

DFMs are used for two related macro monitoring tasks. The first is the construction of

indices that distill the currently available data into a concise summary of economic

conditions. The second is nowcasting, which is the task of “forecasting” the current value

of a specific series which has not yet been released, for example, forecasting the value of

fourth-quarter GDP in November.

3.1.1 Index Construction
A natural application of DFMs is to a classic problem in empirical macroeconomics, the

construction of an index of indicators of economic activity. In the DFM, the latent factor

summarizes the comovements of the observed variables, so in a DFMwith a single factor,

the estimate of the latent factor is a natural index of the movements of the relevant

time series.

The first application of DFMs for real-time macromonitoring was the Stock and

Watson (1989, 1991) experimental coincident index (XCI), which was released monthly

through the National Bureau of Economic Research fromMay 1989 to December 2003.

The XCI was the Kalman filter estimate of the single common factor among four

monthly coincident indices: total nonfarm employment, the index of IP, real manu-

facturing and trade sales, and real personal income less transfers. The DFMwas estimated

by maximum likelihood in state-space form. This system handled the “ragged edge”

problem of one of the series (real personal income less transfers) being available

with a substantial delay, so the initial release of the index used a reduced-dimension

measurement equation for the final observation. Retrospective analysis of the real-time
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experience showed that the XCI was successful in contemporaneous monitoring and

(using a companion model for the probability of recessions) in real-time detection of

the recession of 1990, however, the XCI and its associated leading index did not forecast

the recession at the target 6-month horizon (Stock and Watson, 1993).

Subsequent work with small state-space DFMs include the construction of monthly

real activity indices for US states (Crone and Clayton-Matthews, 2005), which has been

released in real time by the Federal Reserve Bank of Philadelphia since 2005. Mariano

and Murasawa (2003) extended the XCI to mixed-frequency data by including quarterly

GDP. Aruoba et al. (2009) developed a weekly index using mixed-frequency data

(weekly, monthly, and quarterly), and the resulting “ADS” index is released in real time

by the Federal Reserve Bank of Philadelphia.

Much of the recent work on index construction has focused on higher dimensional

systems. Since January 2001, the Federal Reserve Bank of Chicago has released in real

time the monthly Chicago Fed National Activity Index (CFNAI), which is the principal

components estimate of the common factor in 85 real activity variables based on the real

activity index constructed in Stock andWatson (1999). Since January 2002, theUKCen-

tre for Economic Policy Research has released in real time the monthly EuroCOIN

index of EU real economic activity. EuroCOIN was developed by Altissimo et al.

(2001) and initially incorporated 951 Euro-area activity variables.m The index was

updated in Altissimo et al. (2010); that version entails estimating the factors by principal

components using 145 Euro-area real activity variables.

3.1.2 Nowcasting
Nowcasting focuses on predicting the current value of observable variables, such as

current-quarter GDP. Nowcasting has long been done by economists using methods that

allow the use of mixed-frequency data and intermittent releases. The older methods do

not specify joint distributions and in general are variable-specific, often without a model

structure tying together nowcasts across variables or over time as data become available.

In contrast, DFMs permit specifying an internally consistent model that can be used

for nowcasting multiple variables while placing appropriate weight on new data releases.

Early nowcasting applications that use high dimensions and mixed frequencies in a state-

space setting are Evans (2005), Giannone et al. (2008), and Angelini et al. (2010). Aastveit

et al. (2014) extend these methods to compute density nowcasts (not just point nowcasts)

of GDP growth. Ba�nbura, Giannone, Modugno, and Reichlin (2013) survey recent

developments and technical issues in nowcasting.

mThe index is calibrated to the smoothed component of GDP growth, specifically the reported index is the

common component of Euro-area GDP, filtered to eliminate high-frequency variation.
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3.2 Forecasting
The literature on forecasting with DFMs is very large and we do not attempt a compre-

hensive survey, instead we make some high-level comments. Eickmeier and Ziegler

(2008) provide a survey and meta-analysis of work in the field through the mid-

2000s. They find that factor forecasts tend to outperform small-model forecasts, and that

factor forecasts tend to work better for US real activity than for US inflation. For more

recent references, extensions of DFM forecasting methods, and comparisons to other

high-dimensional methods, see Stock and Watson (2012b), D’Agostino and Giannone

(2012), Clements (Forthcoming), and Cheng and Hansen (2015).

4. IDENTIFICATION OF SHOCKS IN STRUCTURAL VARs

This section provides a self-contained survey of contemporary methods for identification

of structural VARs. The methods are presented in a unified way that allows them to be

adapted directly to structural DFMs, as discussed in the next section.

A long-standing goal of empirical macroeconomics is to estimate the effect on the

economy of unanticipated structural disturbances, commonly called shocks. Examples

of shocks include an unanticipated rate hike by the central bank (a monetary policy

shock), an unexpected jump in oil prices due to oil supply disruptions (oil supply shock),

an unexpected improvement in productivity (productivity shock), and an unanticipated

shift in aggregate demand (demand shock). These shocks induce unexpected changes in

the values of economic variables, for example, a contractionary monetary policy shock

increases the short-term interest rate. Because these shocks are autonomous, they are

uncorrelated with other shocks. Because shocks are unanticipated, they are serially

uncorrelated.n

If a time series of shocks were observed, it would be straightforward to estimate the

effect of that shock, say ε1t, on a macro variable yt by regressing yt on current and past

values of ε1t. Because the shock ε1t is uncorrelated with the other shocks to the economy,

that regression would have no omitted variable bias. The population coefficients of that

regression would be the dynamic causal effect of that shock on the dependent variable,

also called the structural impulse response function (SIRF). The cumulative sum of those

population coefficients would be the cumulative causal effect of that shock over time,

called the cumulative SIRF. Thus if the time series of shocks were observed, its dynamic

effect could be estimated in a way that required no additional modeling assumptions.

Unfortunately, a complete time series of shocks is rarely if ever observed—a constructed

time series of shocks will have measurement error and/or miss some events—so that this

ideal regression of yt on current and past ε1t typically is infeasible.

n See the chapter by Ramey (2016, this Handbook) for an extensive discussion of shocks in structural VARs.
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Because direct observation of a complete series of shocks without measurement error

typically is infeasible, a large number of methods have been developed to identify shocks

in time series models with a minimum of additional assumptions. The dominant frame-

work for this identification, due to Sims (1980), is structural vector autoregressions. The

premise of SVARs is that the space of the innovations to a vector of time series variables

Yt—that is, the one step ahead forecast errors of Yt based on a population projection of Yt

onto its past values—spans the space of the structural shocks. Said differently, in popu-

lation the econometrician is assumed to be as good at one step ahead forecasting of the

economy as an agent who directly observes the structural shocks in real time. The task of

identifying the structural shock of interest thus reduces to the task of finding the linear

combination of the innovations that is the structural shock. Sims (1980) originally pro-

posed doing this construction using short-run “timing” restrictions. Subsequently, a host

of other approaches for identifying structural shocks have been developed, including

long-run restrictions based on the cumulative SIRFs, identification by heteroskedasticity,

partial identification by sign restrictions on the SIRFs, and most recently by the use of

external instruments.

This section has four themes. The first is the quest in the literature for increasingly

credible identification schemes. This emphasis on identification parallels the identifica-

tion revolution in microeconometrics, which stresses the importance of credible restric-

tions, typically in the form of isolating as-if random variation in the data, to identify a

causal effect of interest.

Second, methods that identify a unique SIRF of interest (that is, identification

schemes in which the SIRF is point identified) have natural interpretations in terms

of instrumental variables or generalized method of moments (GMM) regression.

Third, we stress the importance of the choice of normalization of the shocks and make

the case for what we call the unit effect normalization, which is different than the prevalent

normalization that sets the shock variance to one. Although this normalization choice does

not matter in population, it does matter in sample, and we argue that the unit effect nor-

malization is the most natural inmost applications.Moreover, the unit shock normalization

makes the extension of SVAR methods to structural DFMs straightforward.

The fourth theme ties the previous three together: this quest for credible identifica-

tion can push a research design to focus on exogenous movements that explain only a

small fraction of the variation in the data, which in turn can affect inference. In the

point-identified settings, we cast this potential pitfall in terms of weak instruments or

weak identification. In the set-identified settings (eg, identification of SVARs by sign

restrictions), these issues arise in the form of sensitivity of inference to Bayesian prior dis-

tributions, even if those priors are intended to be, in some sense, uninformative.

The focus of this section is explicating the normalization, identification schemes,

and issues raised by weak identification. We provide references to, but spend little time

on, conventional methods of inference, which is typically done using bootstrap
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methods (Kilian, 1998, 2001) or by computing a Bayesian posterior distribution (Sims

and Zha, 1998, 1999). For textbook treatments of VARs, conventional asymptotics,

and conventional inference, see L€utkepohl (2015). Kilian (2015) and Bjørnland and

Thorsrud (2015b) provide complementary summaries of SVAR methods, with more

details and examples than are given here but without the focus on our four themes.

This section is written to complement the chapter by Ramey (2016, this Handbook);

while the broad coverage of material is similar, this section focuses more on methods and

econometric issues, while Ramey’s chapter focuses more on applications and assessing

identification in practice.

Section 4.1 lays out the SVARnotation and assumptions, including the normalization

condition in Section 4.1.3. Various methods for identifying the SIRFs are discussed in

Sections 4.2–4.7.

4.1 Structural Vector Autoregressions
SVAR analysis undertakes to identify the structural impulse responses of observable vari-

ables to one or more shocks, which are linear combinations of the VAR innovations.

4.1.1 VARs, SVARs, and the Shock Identification Problem
4.1.1.1 The VAR
Let Yt be a n�1 vector of stationary time series, assumed for convenience to have mean

zero. A pth order VAR model represents Yt as a linear function of its first p lagged values

plus a serially uncorrelated disturbance ηt. This disturbance ηt, which is referred to as the

innovation in Yt, has conditional mean zero given past Y; thus ηt is the population one

step ahead forecast error under squared-error loss. That is, the VAR(p) model of Yt is,

Yt ¼A1Yt�1 + � � �+ApYt�p + ηt or A Lð ÞYt ¼ ηt, (18)

where A Lð Þ¼ I�A1L�����ApL
p and L is the lag operator, and where the disturbance

ηt is a martingale difference sequence with covariance matrix Ση, so that ηt is serially
uncorrelated.

In practice, Yt will generally have nonzero mean and the VAR in (18) would include

an intercept. The assumption of zero mean and no intercept in the VAR is made without

loss of generality to simplify notation.

The VAR (18) is called the reduced-form VAR. The ith equation in (18) is the pop-

ulation regression of Yit onto lagged values of Yt. Because (18) is the population regression

of Yt onto its lags, its parameters A(L) and Ση are identified.

The innovation in Yit is the one step ahead forecast error, ηit, in the ith equation in (18).
The vector moving average representation of Yt, which in general will be infinite order,

expresses Yt in terms of current and past values of the innovations:
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Yt ¼C Lð Þηt, whereC Lð Þ¼ I +C1L+C2L
2 + � � � ¼ A Lð Þ�1: (19)

4.1.1.2 The SVAR
A structural VAR model represents Yt not in terms of its innovations ηt, but rather in
terms of a vector of underlying structural shocks εt, where these structural shocks represent
unexpected exogenous disturbances to structural economic relationships such as produc-

tion functions (productivity shocks), central bank reaction functions (monetary policy

shocks), or oil supply functions (oil supply shocks).o The SVAR assumes that the inno-

vations are a linear combination of the unobserved structural shocks:

ηt ¼Hεt: (20)

The structural shocks are assumed to be uncorrelatedp:

Eεtε
0
t ¼Σε¼

σ2ε1 0

. .
.

0 σ2εn

0B@
1CA: (21)

Substituting (20) into (18) and (19) delivers the structural VAR and the structural moving

average representation of the observable variables in terms of the structural shocks:

A Lð ÞYt ¼Hεt or B Lð ÞYt ¼ εt, where B Lð Þ¼H�1A Lð Þ Structural VARð Þ (22)

Yt ¼D Lð Þεt, where D Lð Þ¼C Lð ÞH , Structural MAð Þ (23)

where the second expression in (22) holds if H�1 exists.

4.1.1.3 The SVAR Identification Problem
BecauseA(L) and Ση are identified from the projection of Yt onto its past, the parameters of

the structural VAR (22) and the structuralMA (23) are identified ifH and Σε are identified.

The problem of identifying H and Σε is known as the SVAR identification problem.

Strictly speaking, the concept of identification refers to nonrandom parameters or func-

tions, but because D(L) is the projection of Yt onto current and past shocks, the SVAR

identification problem is also called the problem of identifying the structural shocks.

o Ramey (2016) characterizes structural shocks as having three characteristics: (1) they are exogenous and

unforecastable, (2) they are uncorrelated with other shocks, and (3) they represent either unanticipated

movements in exogenous variables or news about future movements in exogenous variables.
p This assumption that Σε is diagonal is a natural part of the definition of an autonomous structural shock. For

example, if one was to posit that two structural shocks were correlated, presumably there would be some

structural reason or linkage, but if so then one of the shocks (or both) would be responding to the other

endogenously in which case it would not be an exogenous structural shock. See Ramey (2016) for a

discussion of this assumption.
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4.1.1.4 SIRFs, Historical Decompositions, and Forecast Error Variance Decompositions
The structural MA (23) summarizes the dynamic causal effect of the shocks on cur-

rent and future Yt, and it directly delivers two key objects in SVAR analysis: the

SIRF and the decomposition of Yt into structural shocks. With the additional

assumption (21) that the structural shocks are uncorrelated, the structural moving

average representation also delivers the structural forecast error variance decompo-

sition (FEVD).

The SIRF is the time path of the dynamic causal effect on variableYit of a unit increase

in εjt at date 0. Let Dh denote the hth lag matrix of coefficients in D(L). Then Dh,ij is the

causal effect on the ith variable of a unit increase in the jth shock after h periods, that is,

Dh,ij is the effect on Yit+h of a unit increase in εjt. Thus the structural impulse response function
(SIRFij) is the sequence of structural MA coefficients,

SIRFij ¼ Dh, ij

� �
, h¼ 0,1,…, where Dh¼ChH , (24)

where from (19) C(L)¼A(L)�1. The contemporaneous effect, D0, is called the impact

effect; note that D0¼H because C0¼ I.

The cumulative structural impulse response function is the cumulative dynamic causal effect

on Yt of a unit shock at date 0. Expressed in terms of D(L), the cumulative SIRF on var-

iable i of shock j after h periods is
Xh

k¼0
Dk, ij.

Because D(L)εt is a linear function of current and lagged values of εt, (23) is the
historical decomposition of the path of Yt into the distinct contributions of each of

the structural shocks; given D(L), this decomposition is unique.

The FEVDh,ij measures how important the jth shock is in explaining the variation in

Yit by computing the relative contribution of that shock to the variance of the unexpected

changes inYit over h periods, that is, to the variance of its h-step ahead forecast errors. The

FEVD is,

FEVDh, ij ¼
Xh

k¼0
D2

k, ijσ
2
εj

var Yit + hjYt,Yt�1,…ð Þ¼
Xh

k¼0
D2

k, ijσ
2
εjXn

j¼1

Xh

k¼0
D2

k, ijσ
2
εj

, (25)

where D(L)¼A(L)�1H.

4.1.1.5 System Identification
System identification entails identification of the full matrix H and thus the full matrix

D(L) of SIRFs. System identification makes the assumption that the space of innovations

spans the space of structural shocks, so that H is invertible:

H�1 exists so that εt ¼H�1ηt: (26)

Assumption (26) is equivalent to saying that the system SVAR representation (22) exists.

Eqs. (20) and (21) imply that
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Ση ¼HΣεH
0: (27)

The number of free parameters is n(n+1) (n2 inH and n in Σε). Because covariance matri-

ces are symmetric, the number of unique equations in Ση¼HΣεH
0 is n(n+1)/2. Thus

identification of H and Σε requires n(n+1)/2 additional assumptions. Of these, n are

obtained from normalizing the scale of the shocks, leaving n(n�1)/2 additional restric-

tions for identification of H.

When the shocks are i.i.d. Gaussian, the restrictions (27) are the only ones available for

identification. If the shocks are not Gaussian then additional restrictions on higher

moments can be available, and some research pursues the use of these restrictions. Typ-

ically these restrictions require strong additional assumptions, for example that the shocks

are independently distributed (as opposed to simply uncorrelated) and in any event this

approach does not enhance identification in the Gaussian case. We do not pursue further

identification that exploits non-Gaussianity.

4.1.1.6 Single Shock Identification
In many applications, such as the application to the effect of oil supply shocks in Section 7,

interest is in the effect of just one shock. Without loss of generality, let the shock of interest

be the first shock, ε1t. In general, the other shocks need not be identified to identify the SIRF

for the first shock, and the innovations need not span the shocks other than ε1t to identify the
first SIRF. To stress this point, for single shock identification we rewrite (20) as,

ηt ¼H
ε1teη�t

� �
¼ H1 H�½ � ε1teη�t

� �
¼ H11 H1�

H�1 H��

� �
ε1teη�t

� �
, (28)

where H1 is the first column of H and H• denotes the remaining columns and the final

expression partitions these columns similarly, and where eη�t spans the space of ηt orthog-
onal to ε1t. Because these other shocks are uncorrelated with ε1t,cov ε1t,eη�tð Þ¼ 0.

In single shock identification, the aim is to identify H1. Given H1, the structural

moving average representation (23) can be written,

Yt ¼C Lð Þηt ¼C Lð ÞH1ε1t +C Lð ÞH�eη�t, where cov ε1t,eη�tð Þ¼ 0: (29)

Evidently, the SIRF for shock 1 isC(L)H1 and the historical contribution of shock 1 to Yt

is C(L)H1ε1t.
IfH in (28) is invertible, then ε1t can be obtained as a linear combination of ηt. Denote

the first row of H�1 by H1. It follows from the partitioned inverse formula and the

assumption (21) that the shocks are mutually uncorrelated that if H1 is identified, then

H1 is identified up to scale. In turn, knowing H1 up to scale allows construction of

the shock ε1t up to scale:

ε1t ¼H1ηt∝ 1 eH1�
h i

ηt, (30)
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where eH1�
is a function ofH1 and Ση.

q Thus identification ofH1 permits the construction

of ε1t up to scale. An implication of (30) is that identification of H1 and identification of

the shock are interchangeable.r

Note that (30) obtains without the additional assumption that the innovations span all

the shocks or, for that matter, that they span any shock other than ε1t.

4.1.2 Invertibility
The structuralMA representationYt¼D(L)εt representsYt in terms of current and past values

of the structural shocks εt. Themoving average is said to be invertible if εt can be expressed as a
distributed lag of current and past values of the observed data Yt. SVARs typically assume

εt¼H�1ηt¼H�1A(L)Yt, so an SVAR typically imposes invertibility.s Yet, an economic

model may give rise to a structural moving average process that is not invertible. If so the

VAR innovations will not span the sapce of the structural shocks. Because identification

of the shocks and identification of the SIRF are equivalent, if the true SIRF is not invertible,

a SVAR constructed from the VAR innovations will not recover the true SIRF.

q Use the partitioning notation for H in the final expression in (28) and the partitioned matrix inverse

formula to write, H1 ¼ H11 �H11H1�H�1
��

� �
∝ 1 �H1�H�1

��
� �

, where H11 is the scalar, H11 ¼
ðH11�H1�H�1

�� H
0
�1Þ�1

. Because the goal is to identify ε1t up to scale, the scale of ε1t is arbitrary, so for

convenience we adopt the normalization that Σε¼ I; this is the unit standard deviation normalization

of Section 4.1.3 and is made without loss of generality. Then (27) implies that Ση ¼HH 0. Adopt partition-
ing notation for Ση conformable with that of H in (28). Then Ση ¼HH 0 implies that

Ση,1� ¼H11H
0
�1 +H1�H 0

�� and Ση,�� ¼H�1H 0
�1 +H��H 0

��, which in turn implies

H1�H 0
�� ¼Ση ,1� �H11H

0
�1 and H��H 0

�� ¼ Ση,�� �H�1H 0
�1. Using these final two expressions and the fact

that H1�H 0
�� H��H 0

��
� 	�1 ¼H1�H�1

�� yields H1�H�1
�� ¼ Ση,1� �H11H

0
�1

� 	
Ση,�� �H�1H 0

�1
� 	�1

. Thus

H1∝ 1 eH1�
h i

, where eH1� ¼ � Ση,1� �H11H
0
�1

� 	
Ση,�� �H�1H 0

�1
� 	�1

. Because Ση is identified from

the reduced form, knowledge of H1 and the uncorrelated shock assumption therefore determines H1,

and thus the shock ε1t, up to scale.
r Here is a second, perhaps more intuitive, method for constructing ε1t from ηt given H1, the assumption

(21) that the shocks are mutually uncorrelated, and the invertibility of H. Let H?
1 be any n� (n�1)

matrix with linearly independent columns that are orthogonal to H1. Then H 0?
1 ηt ¼H 0?

1 Hεt ¼
H 0?

1 H1 H�½ �εt ¼ 0 H 0?
1 H�

� �
εt ¼H 0?

1 H�ε�t. If H is invertible, then H 0?
1 H� is invertible, so

ε�t ¼ H 0?
1 H�

� ��1

H 0?
1 ηt. In addition, H 0

1ηt ¼H 0
1Hεt ¼H 0

1H1ε1t +H 0
1H�ε�t. Because ε1t and ε•t are

uncorrelated, H 0
1ηt�Proj H 0

1ηtjε�t
� 	¼H 0

1H1ε1t, where Proj(XjY) is the population projection of

X on Y. Because ε�t ¼ H 0?
1 H�

� ��1

H 0?
1 ηt, ε1t ¼ H 0

1H1

� 	�1
H 0

1ηt�Proj H 0
1ηtjε�t

� 	� �¼ H 0
1H1

� 	�1

H 0
1ηt�Proj H 0

1ηtjH 0?
1 ηt

� �h i
; this is an alternative representation of the linear combination of ηt given by

H1ηt in (30).
s In linear filtering theory, a time series representation is called fundamental if the disturbances are a function

of current and past values of the observable data. Accordingly, the invertibility assumption is also referred to

as the assumption that the structural shocks are fundamental.
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There are at least three reasons why the structural moving average might not be

invertible. One is that there are too few variables in the VAR. For example, suppose that

there are four shocks of interest (monetary policy, productivity, demand, oil supply) but

only three variables (interest rates, GDP, the oil price) in the VAR. It is impossible to

reconstruct the four shocks from current and lagged values of the three observed time

series, so the structural moving average process is not invertible. Estimates from a SVAR

constructed from the VAR innovations will therefore suffer from a form of omitted

variable bias.

Second, some elements ofYmay bemeasured with error, which effectively adds more

shocks (the measurement error) to the model. Again, this makes it impossible to recon-

struct the structural shocks from current and lagged values of Y. This source of nonin-

vertibility can be thought of as errors-in-variables bias.

Third, noninvertibility can arise when shocks contain news about the future. To see

the mechanics of the problem, consider the first-order moving average univariate model

with a single lag:Yt¼εt�dεt�1. Solving for εt as a function of current and lagged values of

Yt yields εt ¼
Xh�1

i¼0
diYt�i + dhεt�h. If jdj<1, then dh�0 for h large and

E εt�
Xh�1

i¼0
diYt�i

� �2
! 0 as h!∞, so that εt can be recovered from current and

lagged values of y and the process is invertible. In contrast, when jdj>1, the initial value

of ε0 remains important, so the process is not invertible. In this case, however, εt can be

recovered from current and future values of yt: solving the moving average process for-

ward yields the representation, εt ¼� 1=dð Þ
Xh

i¼1
1=dð ÞiYt+ i + 1=dð Þhεt+ h, where

E 1=dð Þhεt+ h

� �2
! 0 when jdj>1. In economic models, noninvertibility can arise,

for example, because technological innovations (shocks) may have small initial effects

on productivity and much larger effects on future productivity, so a technology shock

today (an invention today) is actually observed in the data as a productivity increase in

the future. As a second example, if the central bank announces that it will raise interest

rates next month, the monetary policy shock occurs today but is not be observed in the

overnight rate until next month. Like the case of omitted variables, news shocks are an

example of economic agents knowing more about shocks than the econometrician can

decipher from current and past data.

Unfortunately, statistics based on the secondmoments of the data—which include the

parameters of the SVAR—cannot determine whether the true SIRF is invertible or not:

each noninvertible moving average representation has an invertible moving average rep-

resentation that is observationally equivalent based on the second moments of the data.

To see this, consider the univariate first-order moving average example of the previous

paragraph, yt¼εt�dεt�1. By direct calculation, var ytð Þ¼ 1+ d2
� 	

σ2ε , cov yt, yt�1ð Þ¼
�dσ2ε , and cov(yt,yt�i)¼0, jij>1. It is readily verified that for any set of parameter values
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(d,σε
2) with jdj<1, the alternative parameter values ed, eσ2ε� �

¼ d�1,d2σ2ε
� 	

produce the

same autocovariances; that is, (d,σε
2) and d�1,d2σ2ε

� 	
are observationally equivalent values

of the parameters based on the second moments of the data. If the data are Gaussian, then

these two sets of parameter values are observationally equivalent based on the likelihood.

Because these pairs have the same autocovariances, they produce the same reduced-

form VAR, but they imply different SIRFs.

Noninvertibility is an important threat to the validity of SVAR analysis. Hansen and

Sargent (1991) provide an early and important discussion, Sargent (1987) provides an

illuminating example using the permanent income model of consumption, and

Fernández-Villaverde et al. (2007) discuss the restrictions on linear economic models

that give rise to invertibility. For more detailed discussion of the literature and references,

see Forni et al. (2009), Leeper et al. (2013), Plagborg-Møller (2015), and Ramey (2016,

this Handbook). As Forni et al. (2009) point out and as discussed in more detail in

Section 5, SDFMs can resolve the problems of measurement error, omitted variables,

and in some cases timing (news) through the use of large numbers of series.

4.1.3 Unit Effect Normalization
Because the structural shocks are unobserved, their sign and scale are arbitrary and must

be normalized. There are two normalizations commonly used, the unit standard devia-

tion normalization and the unit effect normalization.

The unit standard deviation normalization makes each shock have unit variance:

Σε¼ I unit standard deviation normalizationð Þ: (31)

The normalization (31) fixes the units of the shock, but not its sign. The sign must be

fixed separately, for example by defining a positive monetary shock to increase the target

rate on impact.

The unit effect normalization fixes the sign and scale of the jth shock so that a unit

increase in εjt induces a contemporaneous unit increase in a specific observed variable,

which we take to be Yjt. Written in terms of the H matrix, the unit effect normalization

sets

Hjj ¼ 1 unit effect normalizationð Þ: (32)

Equivalently, under the unit effect normalization a unit increase in εjt increases ηjt by one
unit, which in turn increases Yjt by one unit. For example, if the Federal Funds rate is

measured in percentage points, then a unit monetary shock induces a one percentage

point increase in the Federal Funds rate. A unit shock to productivity growth increases

the growth rate of productivity by one percentage point, and so forth.

For system identification, both normalizations provide n additional restrictions onH,

so that n(n�1)/2 additional restrictions are needed.
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For single shock identification, both normalizations set the scale of ε1t. Under the unit

standard deviation assumption, σ2ε1 ¼ 1. Under the unit effect normalization,

H1¼ 1

H1�

� �
: (33)

In both cases, n�1 additional restrictions are needed to identify H1.

In population, these two normalizations are interchangeable. Nevertheless, the unit

effect normalization is preferable for three reasons.

First, the unit effect normalization is in the units needed for policy analysis or real-

world interpretation. A monetary policy maker needs to know the effect of a 25 basis

point increase in the policy rate; providing the answer in standard deviation units does

not fulfill that need. When oil prices fall by, say, 10%, because of an oil supply shock, the

question is what the effect of that fall is on the economy; again, stating the SIRFs in stan-

dard deviation units does not answer that question.

Second, although the two formulations are equivalent in population, statistical infer-

ence about the SIRFs differs under the two normalizations. In particular, it is an inferential

error to compute confidence intervals for SIRFs under the unit standard deviation normal-

ization, then renormalize those bands so that they answer the questions relevant to policy-

makers. The inferential error is that this renormalization entails dividing by an estimator of

H11, which introduces additional sampling uncertainty. If, under the unit standard devia-

tion normalization, H11 is close to zero, then this sampling variability can be considerable

and renormalization introduces inference problems related to weak instruments.t

Third, as discussed in the next section, the unit effect normalization allows SVAR

identification schemes to be extended directly to SDFMs.

For these reasons, we adopt the unit effect normalization throughout this chapter.

Finally, we note that the unit effect normalization could alternatively involve the

normalization that shock j induces a unit increase in variable i. In this case, the normal-

ization for shock j would be Hij=1 instead of Hjj=1 as in (32). If each shock has a unit

impact on a different VAR innovation, the distinction we are making here is trivial

because the named shocks can always be ordered to align with the order of the variables

in the VAR. For example, without loss of generality the Fed funds rate can be listed first,

the monetary policy shock can be taken to be the first shock, andH11=1 is the unit effect

normalization.

t Another way to state this problem is in the context of bootstrap draws of the IRFs. If the bootstrap uses the

unit standard deviation normalization to compute confidence intervals, then multiplies the confidence

intervals by a scaling coefficient which converts from standard deviation to native units, the resulting

IRF confidence intervals do not incorporate the sampling uncertainty of that scaling coefficient. In con-

trast, if the bootstrap does that conversion for every draw, which is equivalent to using the unit effect nor-

malization, then the IRF confidence intervals do incorporate the sampling uncertainty of the unit

conversion step.
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This distinction, however, becomes nontrivial when two distinct shocks are normal-

ized to have unit effects on the same variable. For example, suppose one was interested in

investigating the separate effects of an oil supply shock (ε1t, say) and an oil inventory

demand shock (ε2t, say), and for the purpose of the investigation it was useful to fix

the scales of the two shocks so that they each produced a one percentage point increase

in the price of oil. Without loss of generality, let the oil price be the first variable so η1t is
the innovation in the oil price. Then this alternative unit effect normalization would be

that H11=1 and H12=1. If the results will be presented using this normalization, then

adopting this normalization from the outset ensures that confidence intervals will cor-

rectly incorporate the data-dependent transformations to impose this normalization.

Because the circumstance described in the previous paragraph is unusual, throughout

this chapter we use the version of the unit effect normalization in (32).

4.1.4 Summary of SVAR Assumptions.
We now collect the assumptions underlying SVAR analysis:

(SVAR-1) The innovations in Yt, ηt, span the space of the one or more structural

shocks:

(a) for system identification, ηt¼Hεt as in (20) and H�1 exists and

(b) for single shock identification, (28) holds and H1 exists.

(SVAR-2) The structural shocks are uncorrelated as in (21).

(SVAR-3) The scale of the shocks is normalized using either the unit standard deviation

normalization (31) or the unit effect normalization (32).

With one exception, these assumptions, which were discussed earlier, are needed for all

the shock identification schemes discussed in this section. The exception is single shock

identification based on direct measurement of the time series of structural shocks, which,

because the shock is observed, requires only assumption SVAR-2.

For this chapter, we make the further assumptions:

(SVAR-4) The innovations ηt are the one step ahead forecast errors from the VAR(p)

(18) with time-invariant parameters A(L) and Ση.

(SVAR-5) The VAR lag polynomial A(L) is invertible.

Assumptions SVAR-4 and SVAR-5 are technical assumptions made for convenience.

For example, SVAR-4 can be relaxed to allow for breaks, or time variation can be

introduced into the VAR parameters using the methods of, for example, Cogley

and Sargent (2005) or Sims and Zha (2006). Assumption SVAR-5 presumes that the

variables have been transformed to stationarity, typically using first differences or

error correction terms. Alternatively the series could be modeled in levels in which case

the SIRF would have the interpretation of a cumulative SIRF. Levels specifications

are used in much of the literature. These relaxations of SVAR-4 and SVAR-5 do

not materially affect any of the subsequent discussion and they are made here to stream-

line the discussion.
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4.2 Contemporaneous (Short-Run) Restrictions
Contemporaneous restrictions rest on timing arguments about the effect of a given shock

on a given variable within the period (monthly if monthly data, etc.). Typically these are

zero restrictions, indicating that shock εjt does not affect Yit (equivalently, does not affect

ηit) within a period because of some sluggish or institutional feature of Yit. These con-

temporaneous timing restrictions can identify all the shocks, or just some shocks.

4.2.1 System Identification
Sims’s (1980) original suggestion for identifying the structural shocks was of this form,

specifically he adopted an ordering for the variables in which the first innovation responds

only to the first shock within a period, the second innovation responds only to the first

and second shocks, etc. Under this recursive scheme, the shocks are simply linear regres-

sion residuals, where the first regression only controls for lagged observables, the second

regression controls for lags and one contemporaneous variable, etc. For example, in many

recursive monetary SVARs, the monetary policy shock is identified as the residual from

an Taylor rule-type regression.

This recursive identification scheme is a Wold (1954) causal chain and corresponds to

assuming thatH is lower triangular. BecauseΣη¼HΣεH
0, the lower-triangular assumption

implies thatHΣ1=2
ε ¼Chol Ση

� 	
, whereChol denotes the Cholesky factorization.With the

unit effect normalization,H is obtained as the renormalized Cholesky factorization, that is,

H ¼Chol Ση

� 	
Σ�1=2
ε , where Σε¼diag({[Chol(Ση)jj]

2, j¼1, …, n}). This lower-triangular

assumption remains a common identification assumption used in SVAR empirical

applications.

Nonrecursive restrictions also can provide the n(n�1)/2 contemporaneous restric-

tions for system identification. For example, some of the elements of H can be specified

by drawing on application-specific information. An early example of this approach is

Blanchard and Watson (1986), who used information about automatic stabilizers in

the budget to determine the contemporaneous fiscal response to aggregate demand

shocks which, along with zero restrictions based on timing arguments, identified H.

Blanchard andWatson (1986) also show how short-run restrictions on the coefficients

can be reinterpreted from an instrumental variables perspective.

4.2.2 Single Shock Identification
Identification of a single shock requires fewer restrictions onH; here we give three exam-

ples. The first example is to suppose that a given variable (without loss of generality, Y1t)

responds within the period only to a single structural shock; if so, then ε1t¼η1t and no

additional assumptions are needed to identify ε1t. This first example corresponds to order-

ing the variable first in a Cholesky factorization, and no additional assumptions are
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needed about the ordering of the remaining variables (or in fact whether the remaining

shocks are identifiable).

The second example makes the opposite assumption: that a given shock affects only

one variable within a period, and that variable (and innovation) potentially responds to all

other shocks as well. This second example corresponds to ordering the variable last in a

Cholesky factorization.

The third example is the “Slow-r-Fast” identification scheme frequently used to

identify monetary policy shocks, see, for example, Christiano, Eichenbaum, and

Evans, (1999) and Bernanke et al. (2005). Under this scheme, so-called slow-moving

variables Yt
s such as output and prices do not respond to monetary policy or to move-

ments in asset prices within the period; through monetary policy, the Fed funds rate rt
responds to shocks to the slow-moving variables within a period but not to asset price

developments; and fast-moving variables Yt
f, such as asset prices and expectational vari-

ables, respond to all shocks within the period. This delivers the block recursive scheme,

ηst
ηrt

ηft

0B@
1CA¼

Hss 0 0

Hrs Hrr 0

Hfs Hfr Hff

0B@
1CA εst

εrt

εft

0B@
1CA where Yt is partitioned

Ys
t

rt

Y
f
t

0B@
1CA, (34)

whereHss is square. Under (34), ηt
s spans the space of εt

s, so the monetary policy shock εt
r is

the residual in the population regression of the Fed funds rate innovation ηt
r on ηt

s. Equiv-

alently, εt
r is identified as the residual in the regression of the monetary instrument on

current values of slow-moving variables as well as lags of all the variables.

4.3 Long-Run Restrictions
Identification of the shocks, or of a single shock, can also be achieved by imposing restric-

tions on the long-run effect of a given shock on a given variable (Shapiro and Watson,

1988; Blanchard and Quah, 1989; King, Plosser, Stock, andWatson, 1991). Because Yt is

assumed to be stationary, the cumulative long-run effect of εt on future values of Yt is the

sum of the structural MA coefficientsD(1), whereD(1)¼C(1)H¼A(1)�1H, whereC(1)

and A(1) are, respectively, the sums of the reduced-form MA and VAR coefficients.

4.3.1 System Identification
LetΩ denote the long-run variance matrix of Yt, that is, Ω¼ var

ffiffiffi
n

p
�Y

� 	 ¼ 2π times the

spectral density matrix of Yt at frequency zero. Then

Ω¼A 1ð Þ�1ΣηA 1ð Þ�10 ¼A 1ð Þ�1HΣεH
0A 1ð Þ�10 ¼D 1ð ÞΣεD 1ð Þ0: (35)

Imposing n(n�1)/2 restrictions on D(1) permits identifying D(1) and, because

A(1)�1H¼D(1), H is identified by H¼A(1)D(1).
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A common approach is to adopt identifying assumptions that imply that D(1) is lower

triangular. For example, Blanchard and Quah (1989) identify a demand shock as having no

long-run effect on the level of output. Let Yt¼ (GDP growth, unemployment rate) and let

ε1t be an aggregate supply shock and ε2t be an aggregate demand shock. The assumption

that ε2t has no long-run effect on the level of output is equivalent to saying that its cumu-

lative effect on output growth is zero. Thus the long-term effect of ε2t (the demand shock)

on Y1t (output growth) is zero, that is, D12(1)¼0, so D(1) is lower triangular.

In another influential paper, Gali (1999) used long-run restrictions to identify a tech-

nology shock. Specifically, Gali (1999) uses a small aggregate structural model to argue

that only the technology shock has a permanent effect on the level of labor productivity.

Let Yt¼ (labor productivity growth, hours growth), ε1t be a technology shock, and ε2t be
a non-technology shock. Gali’s (1999) restriction that the nontechnology shock has zero

long-run effect on the level of labor productivity implies that D12(1)¼0, so that D(1) is

lower triangular.

Blanchard and Quah (1989), King, Plosser, Stock, and Watson (1991), and Gali

(1999) use the unit standard deviation normalization, so that Σε¼ I and, by (35),

Ω¼D(1)D(1)0. The lower triangular factorization of Ω is uniquely the Cholesky factor-

ization, D(1)¼Chol(Ω). Using the first expression in (35) and H¼A(1)D(1), the com-

bination of the unit standard deviation normalization and the identifying restriction that

D(1) is lower triangular provides the closed-form expression for H,

H ¼A 1ð ÞChol A 1ð Þ�1ΣηA 1ð Þ�1
� �

: (36)

In general, the sample estimate ofH can be estimated by substituting sample counterparts

for the reduced-form VAR, Â(1) and Σ̂η̂, for the population matrices, imposing the

restrictions on D(1), and solving (35). In the case that D(1) is lower triangular and the

unit standard deviation assumption is used, the estimator of H has the closed-form solu-

tion which is the sample version of (36).

4.3.2 Single Shock Identification
Long-run restrictions can also identify a single shock. The Blanchard and Quah (1989)

and Gali (1999) examples have n¼2, but suppose that n>2. Then the assumption that

only ε1t affects Y1t in the long run imposes n�1 zero restrictions on the first row ofD(1),

and implies that ε1t is proportional toA(1)
1ηt, whereA(1)

1 is the first row ofA(1)�1. Thus

this assumption identifies ε1t up to scale, and the scale is then set using either the unit

effect normalization or the unit standard deviation normalization.

4.3.3 IV Interpretation of Long-Run Restrictions
Shapiro and Watson (1988) provide an instrumental variables interpretation of identi-

fication by long-run restrictions. We illustrate this interpretation for a two-variable
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VAR(1). Following (22), write the SVAR as B(L)Yt¼εt, where B(L)¼H�1A(L)¼
B0+B1L, where the final expression assumes the VAR lag length p¼1. Add and subtract

B0L so that B(L)Yt¼ (B0+B1L)Yt¼B0ΔYt+B(1)Yt�1, and note that B0¼H�1 so that the

SVAR can be written, H�1ΔYt¼�B(1)Yt�1+εt. Under the unit effect normalization,

H11¼H22¼1 so, using the formula for the inverse of a 2�2 matrix, the SVAR can be

written,

ΔY1t ¼H12ΔY2t� det Hð ÞB 1ð Þ11Y1t�1� det Hð ÞB 1ð Þ12Y2t�1 + det Hð Þε1t
ΔY2t ¼H21ΔY1t� det Hð ÞB 1ð Þ21Y1t�1� det Hð ÞB 1ð Þ22Y2t�1 + det Hð Þε2t:

(37)

The parameters H12 and H21 are unidentified without a further restriction on the simul-

taneous equations model (37), however, long-run restrictions on D(1) provide such a

restriction. Specifically, the assumption that D(1) is lower triangular implies that

D(1)�1¼B(1) is lower triangular, so that B(1)12¼0. Thus, the assumption that D(1) is

lower triangular implies that Y2t�1 is excluded from the first equation of (37), and

thus is available as an instrument for ΔY2t to estimate H12 in that equation. Because

Y2t�1 is predetermined, E(ε1tY2t�1)¼0 so Y2t�1 satisfies the exogeneity condition for

a valid instrument.

As an example, consider the special case of the VAR(1) (37) where,

ΔY1t ¼H12ΔY2t +det Hð Þε1t
ΔY2t ¼H21ΔY1t + α�1ð ÞY2t�1 + det Hð Þε2t: (38)

Because ΔY2t depends on ΔY1t, (38) is a system of simultaneous equations and neitherH12

nor H21 can be estimated consistently by OLS. However, because Y2t�1 does not appear

in the first equation, it can be used as an instrument for ΔY2t to estimate H12. The

instrumental variables estimator of H12 is,

Ĥ12¼
XT

t¼2
ΔY1tY2t�1XT

t¼2
ΔY2tY2t�1

: (39)

This instrumental variables interpretation is noteworthy for two reasons. First, although

standard estimation algorithms for long-run identification, such as the Cholesky factor

expression (36), appear to be quite different from instrumental variables, when the system

is exactly identified the two estimation approaches are equivalent. Thus, the “equation

counting” identification approach to identification is the same as having a valid instru-

ment for ΔY2t.

Second, the IV interpretation links the inference problem under long-run restrictions

to the well-studied topic of inference in IV regressions. Here, we focus on one aspect of

inference in IV regression which turns out to be relevant for SVARs with long-run

restrictions: inference when instruments are weak.
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4.3.4 Digression: Inference in IV Regression with Weak Instruments
An instrument in IV regression is said to be weak if its correlation with the included

endogenous regressor is small. Although a detailed discussion of weak instruments and

weak identification is beyond the scope of this chapter, it is useful to lay out the central

ideas here because they also arise in other SVAR identification schemes. For this digres-

sion only, we modify notation slightly to align with the standard regression model. With

this temporary notation, the IV regression model is,

Y1t ¼ βY2t + ut

Y2t ¼ π0Zt +Vt

(40)

where Y2t is the single included endogenous variable, β is the coefficient of interest, and

the second equation in (40) is the first-stage equation relating the included endogenous

variable to the vector of k instruments, Zt. The instruments are assumed to be exogenous

in the sense that E(Ztut)¼0. When there is a single instrument, the IV estimator is

β̂IV ¼
XT

t¼1
Y1tZtXT

t¼1
Y2tZt

: (41)

With multiple instruments, there are multiple estimators available, such as two-stage least

squares.

The weak-instrument problem arises when the included endogenous variable Y2t is

weakly correlated with Zt or, equivalently, when π in (40) is small. In this case, the

sample covariance in the denominator of (41) can have a mean sufficiently close to zero

that, in some samples, the denominator itself could be close to zero or even have a sign

different from the population covariance. When the sampling distribution of the

denominator includes small values, the result is bias in the IV estimator, heavy tails

in its distribution, and substantial departures from normality of its associated t-statistic.

These features are general and arise in time series, panel, and cross-sectional regression,

with multiple instruments, multiple included endogenous regressors, and in GMM

estimation (eg, Nelson and Startz, 1990a,b; Staiger and Stock, 1997; Stock and

Wright, 2000).

In linear IV regression, the primary measure of strength of an instrument is the so-called

concentration parameter, divided by the number of instruments. The concentration

parameter is defined in the classical linear instrumental variables model with homoscedas-

ticity and i.i.d. observations. The concentration parameter is μ2¼ π0Z 0Zπ=σ2v , where σv
2

is the variance of the first-stage error. The quantity μ2/k is the noncentrality parameter of

the F-statistic testing the coefficient on the instrument in the first-stage regression.One rule
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of thumb is that weak-instrument problems are an important concern when this first-stage

F-statistic is less than 10 (Staiger and Stock, 1997).u

4.3.5 Inference Under Long-Run Restrictions and Weak Instruments
A number of studies have pointed out that SVAR inference based on long-run restric-

tions can be delicate to seemingly minor changes, such as different sample periods or

different number of VAR lags. In addition, in Monte Carlo simulations, IRFs based

on long-run restrictions have been found to be biased and/or have confidence intervals

that do not have the desired coverage probability; see, for example, Christiano et al.

(2006). One interpretation of these problems, as put forth by Faust and Leeper

(1997), is that they arise because it is difficult to estimate the long-run variance Ω, which
entails estimating A(1)�1. In our view, however, this interpretation, while not incorrect,

is less useful than posing the problem in terms of the IV framework earlier. Viewing the

problem as weak identification both explains the pathologies of the sampling distribution

and points the way toward inference procedures that are robust to these problems.

We therefore focus on the IV interpretation of identification by long-run restrictions

and weak-instrument issues, initially raised by Sarte (1997), Pagan and Robertson (1998),

andWatson (2006). We focus on the special case (38) and the IV estimator (39), however

as shown by these authors these comments apply generally to inference using long-run

restrictions.

Comparison of the SVAR example (38) and (39) to the IV model and estimator (40)

and (41) indicates that the instrument Y2t will be weak when α is sufficiently close to

one. Consider the special case H21¼0, so that the second equation in (38) is the first

stage and the first-stage coefficient is α�1. A direct calculation in this case shows that

the concentration parameter is T(α�1)2/(1�α2). For T¼100, the concentration

parameter is 5.3 for α¼0.9 and is 2.6 for α¼0.95. These are small concentration param-

eters, well below the rule-of-thumb cutoff of 10.

Gospodinov (2010) provides a more complete treatment of the distribution theory

when the excluded variable is persistent and shows that in general standard inferences

will be misleading when the instrument is weak (estimated IRFs are biased, confidence

intervals do not have the advertised coverage rates).

Because theweak-instrument problems arisewhen roots are large, standardmethods for

inference in the presence of weak instruments under stationarity (eg, Stock and Wright,

2000) no longer apply directly. Chevillon et al. (2015) develop a method for constructing

u There is now a very large literature on weak instruments in IV regression and weak identification in gen-

eralized method of moments estimation. Andrews and Stock (2007) survey the early econometrics liter-

ature on weak instruments. For a recent survey of weak instruments in the context of estimation of the

New Keynesian Phillips curve, see Mavroeidis et al. (2014).
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confidence sets in this application that is robust to this weak-instruments problem, and they

find that using weak-instruments procedures change conclusions in some classic long-run

identification SVAR papers, including Blanchard and Quah (1989).

4.4 Direct Measurement of the Shock
Measuring ε1t through direct observation solves the identification problem, and some

papers undertake to do so.

One approach to direct measurement of shocks uses narrative sources to determine

exogenous policy changes. This methodwas developed byRomer andRomer (1989) for

the measurement of monetary policy shocks, and the same authors have used this

approach to measure tax, financial distress, and monetary policy shocks (Romer and

Romer, 2004, 2010, 2015). For example, Romer and Romer (2010) use textual data

including presidential speeches and congressional reports to construct a series of exoge-

nous tax changes. Ramey and Shapiro (1998) and Ramey (2011) use related methods to

measure government spending shocks.

A series of papers take this approach to measuring monetary policy shocks by exploit-

ing the expectations hypothesis of the term structure and/or high-frequency financial

data. Early contributions include Rudebusch (1998), Kuttner (2001), Cochrane and

Piazzesi (2002), Faust et al. (2003, 2004), G€urkaynak et al. (2005), and Bernanke and

Kuttner (2005), and recent contributions (with references) are Campbell et al. (2012),

Hanson and Stein (2015), and Nakamura and Steinsson (2015). For example, Kuttner

(2001) measures the monetary policy shock as the change in the Fed Funds futures rate

on the day that the Federal Open Market Committee (FOMC) announces a target rate

change. Under the expectations hypothesis, any expected change in the target rate will be

incorporated into the preannouncement rate, so the change in the Fed Funds futures rate

on the announcement date measures its unexpected movement. Cochrane and Piazzesi

(2002) take a similar approach, using changes in the Eurodollar rate around FOMC target

change announcements. Upon aggregation to the monthly level, this yields a series of

monetary policy shocks, which they use as a regressor to estimate SIRFs.

Another set of applications of this method is to the direct measurement of oil supply

shocks. Hamilton (2003) and Kilian (2008a) develop an historical chronology of OPEC

oil supply disruptions based on exogenous political events to construct numerical esti-

mates of exogenous oil production shortfalls, that is, exogenous shocks to oil supply.

The approach of directly measuring shocks is ambitious and creative and often delivers

new insights. This approach, however, has two challenges. The first is that there are inev-

itable questions about whether the constructed seriesmeasures only the exogenous shock of

interest. For example, short-term interest rates can change at announcement dates because

of an exogenous monetary shock resulting in a change in a target rate, or because the

change in the target rate revealed inside knowledge that the Fed might have about the
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economy (that is, about the values of other shocks). Additionally, if the window around the

announcement is too wide, then rate changes can reflect influences other than the mon-

etary shock (Nakamura and Steinsson, 2015).

The second challenge is that these constructed shocks rarely measure the entirety of

the structural shock. For example, some of the monetary shock could be revealed in

speeches by Federal Reserve officials in the weeks leading up to a FOMC meeting, so

that the change in short rates before and after the FOMC meeting understates the full

shock. Whether this omission leads to bias in the estimator of the effect of the monetary

policy shock depends on whether the measured shock is correlated with the unmeasured

shock. If the measured and unmeasured components are correlated, then this measure-

ment error produces bias in the SIRF estimated using the constructed shock.

The first of these problems, exogeneity, is intrinsic to the research design and does not

have a econometric resolution. The second of these problems, errors-in-variables bias,

can be solved using econometric methods, in particular by using the measured shock

series as an external instrument as discussed in Section 4.7.

4.5 Identification by Heteroskedasticity
Identification can also be achieved by assuming that the H matrix remains fixed but the

structural shocks are heteroskedastic. This heteroskedasticity can take the form of differ-

ent heteroskedasticity regimes, or conditional heteroskedasticity.

4.5.1 Identification by Heteroskedasticity: Regimes
Rigobon (2003) and Rigobon and Sack (2003, 2004) showed thatH can be identified by

assuming it is constant across regimes in which the variance of the structural shocks

change.

Suppose that H is constant over the full sample, but there are two variance regimes,

one in which the structural shocks have diagonal variance matrix Σε
1 and a second with

diagonal variance matrix Σε
2. Because ηt¼Hεt in both regimes, the variance matrices of ηt

in the two regimes, Ση
1 and Ση

2 satisfy,

Σ1
η ¼HΣ1

εH
0

Σ2
η ¼HΣ2

εH
0 (42)

The first matrix equation in (42) (the first regime) delivers n(n+1)/2 distinct equations, as

does the second, for a total of n2+n equations. Under the unit effect normalization that

the diagonal elements ofH are 1,H has n2�n unknown elements, and there are an addi-

tional 2n unknown diagonal elements of Σε
1 and Σε

2, for a total of n2+n unknowns. Thus

the number of equations equals the number of unknowns.

For these equations to solve uniquely for the unknown parameters, they must provide

independent information (satisfy a “rank” condition). For example, proportional
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heteroskedasticity Σ2
ε ¼ aΣ1

ε provides no additional information because then Σ2
η ¼ aΣ1

η

and the equations from the second regime are the same as those from the first regime.

In practice, it is difficult to check the “rank” condition because Ση
1 and Ση

2 must be esti-

mated. For example, in the previous example Σ2
η ¼ aΣ1

η in population, but the sample

estimates of Ση
1 and Ση

2 would not be proportional because of sampling variability.

Economic reasoning or case-specific knowledge is used in identification by hetero-

skedasticity in one and, in some applications, two places. The first is to make the case that

H does not vary across heteroskedasticity regimes, that is, that H is time-invariant even

though the variances of the structural shocks are time varying. The second arises when

some of the shocks are not naturally associated with a specific observable variable. For

example, Rigobon (2003) works through a bivariate example of supply and demand

in which the variance of the supply disturbance is posited to increase, relative to the

variance of the demand disturbance, and he shows that this increase identifies the slope

of the demand curve, however this identification requires a priori knowledge about the

nature of the change in the relative shock variances. Similarly, Rigobon and Sack (2004)

and Wright (2012) exploit the institutional fact that monetary policy shocks arguably

have a much larger variance at announcement dates than otherwise, while plausibly

their effect (H1) is the same on announcement dates and otherwise. This heteroske-

dasticity around announcement dates provides a variant of the approach discussed in

Section 4.3 in which the shock itself is measured as changes in some market rate around

the announcement.

For additional references and discussion of regime-shift heteroskedasticity, see

L€utkepohl and Netšunajev (2015) and Kilian (2015).

4.5.2 Identification by Heteroskedasticity: Conditional Heteroskedasticity
The idea of identification by conditional heteroskedasticity is similar to that of identifi-

cation by regime-shift heteroskedasticity. Suppose that the structural shocks are condi-

tionally heteroskedastic butH is constant. Then ηt¼Hεt implies the conditional moment

matching equations,

E ηtη
0
tjYt�1,Yt�2,…

� 	¼HE εtε
0
tjYt�1,Yt�2,…

� 	
H 0: (43)

The conditional covariance matrix of εt is diagonal. If those variances evolve according
to a GARCH process, then they imply a conditionally heteroskedastic process for

ηt. Sentana and Fiorentini (2001) and Normandin and Phaneuf (2004) show that a

GARCH process for εt combined with (43) can identify H. Lanne et al. (2010)

extend this reasoning from GARCH models to Markov switching models. These

are similar to the regime-shift model in Section 4.5.1, however the regime-shift indi-

cator is latent; see Hamilton (2016). For further discussion, see L€utkepohl and

Netšunajev (2015).
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4.5.3 Instrumental Variables Interpretation and Potential Weak Identification
As pointed out by Rigobon (2003) and Rigobon and Sack (2003), identification by het-

eroskedasticity regimes has an instrumental variables interpretation, and this interpreta-

tion illustrates the potential inference challenges when the change in the variance

provides only limited identification power either because the change is small, or because

there are few observations in one of the regimes.

To illustrate the instrumental variables interpretation of identification by heteroske-

dasticity, let n¼2 and suppose that the variance of the first shock varies between the two

regimes while the variance of the other shock does not. This is the assumption used by

Rigobon and Sack (2004) and Wright (2012) with high-frequency data, in which the

variance of the monetary policy shock (ε1t) is elevated around FOMC announcement

dates while the variance of the other shocks does not change around announcement

dates. Then under the unit effect normalization, (42) becomes,

Σj
η1η1

Σj
η1η2

Σj
η2η1

Σj
η2η2

 !
¼ 1 H12

H21 1

 !
σ2ε1, j 0

0 σ2ε2

 !
1 H21

H12 1

 !
, j¼ 1,2, (44)

where σ2ε1 varies across regimes (announcement dates, or not) while σ2ε2 does not.
Writing out the equations in (44) and solving shows that H21 is identified as the

change in the covariance between η1t and η2t, relative to the change in the variance of η1t:

H21¼
Σ2
η1η2

�Σ1
η1η2

Σ2
η1η1

�Σ1
η1η1

: (45)

This suggests the estimator,

Ĥ21 ¼
XT

t¼1
η̂2tZtXT

t¼1
η̂1tZt

, (46)

where Zt ¼Dtη̂1t, where Dt¼�1/T1 in the first regime and Dt¼1/T2 in the second

regime, where T1 and T2 are the number of observation in each regime, and where

η̂t are the innovations estimated by full-sample OLS or weighted least squares.

The estimator in (46) is the instrumental variables estimator in the regression of η̂2t on
η̂1t, usingZt as an instrument. Note the similarity of this IV interpretation to the IV inter-

pretation in (39) arising from the very different identifying assumption that the cumula-

tive IRF is lower triangular, so that H21 is estimated by the instrumental variables

estimator using Y2t�1 as an instrument for ΔY2t.

The IV expression (46) connects inference in the SVAR identification by heteroske-

dasticity to inference in instrumental variables regression, and in particular to inference

when instruments might be weak. In (46), a weak instrument corresponds to the case that
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Zt is weakly correlated with η̂1t, that is, when the population change in the variance of η1t,
which appears in the denominator of (45), is small. Using the weak-instrument asymp-

totic nesting of Staiger and Stock (1997), one can show that, under standard moment

conditions, Ĥ21 


!d z2=z1, where z1 and z2 are jointly normally distributed variables

and where the mean of z1 is T
1=2 Σ2

η1η1
�Σ1

η1η1

� �
. If the variability in z1 is sizeable com-

pared with this mean, then the estimator will in general have a nonnormal and potentially

bimodal distribution with heavy tails, and inference based on conventional bootstrap

confidence intervals will be misleading.

These weak-instrument problems can arise if the regimes each have many observa-

tions, but the difference between the regime variances is small, or if the differences

between the variances is large across regimes but one of the regimes has only a small num-

ber of observations. In either case, what matters for the distribution of Ĥ21 is the precision

of the estimate of the change in the variance of η1t, relative to the true change.

Work on weak-identification robust inference in SVARs identified by heteroskedas-

ticity is in its early stages. Magnusson andMavroeidis (2014) lay out a general approach to

construction of weak-identification robust confidence sets, and Nakamura and Steinsson

(2015) implement weak-identification robust inference in their application to differential

monetary policy shock heteroskedasticity around FOMC announcement dates.

4.6 Inequality (Sign) Restrictions
The identification schemes discussed so far use a priori information to identify the param-

eters of H, or the parameters of the first column of H in the case of single shock iden-

tification. The sense in which these parameters are identified is the conventional one:

different values of the parameter induce different distributions of the data, so that the

parameters of H (or H1) are identified up to a single point. But achieving point identi-

fication can entail strong and, in many cases, controversial assumptions. As a result, in two

seminal papers, Faust (1998) and Uhlig (2005) argued that instead identification could be

achieved more convincingly by imposing restrictions on the signs of the impulse

responses. They argued that such an approach connects directly with broad economic

theories, for example a broad range of monetary theories suggest that monetary stimulus

will have a nonnegative effect on economic activity over a horizon of, say, 1 year. This

alternative approach to identification, in which the restriction takes the form of inequality

restrictions on the IRF, does not produce point identification, however it does limit the

possible values ofH (orH1) to a set. That is, under inequality restrictions,H (orH1) is set

identified.

Set identification introduces new econometric issues for both computation and infer-

ence. The standard approach to set identification in SVARs is to use Bayesian methods,

which are numerically convenient. This section therefore begins by reviewing themechan-

ics of Bayesian inequality restriction methods, then turns to inferential issues arising from
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set identification with a focus on Bayesian sign-identified SVARs. The section concludes

with some new research suggesting alternative ways to address these inferential issues.

4.6.1 Inequality Restrictions and Computing an Estimate of the Identified Set
In some applications, economic theory or institutional circumstances might provide a strong

argument about the sign of the effect of a given shock on some variable. For example, in a

supply and demand example with price and quantity as data, economic theory strongly sug-

gests that the supply elasticity is positive, the demand elasticity is negative, so a positive supply

shock increases quantity and decreases price while a positive demand shock increases both

quantity and price. More generally, theory might suggest the sign of the effect of a given

positive shock on one or more of the variables in the VAR over a certain number of

horizons, that is, theory might suggest sign restrictions on elements of the SIRF.

As shown by Faust (1998) and Uhlig (2005) and surveyed by Fry and Pagan (2011),

sign restrictions, or more generally inequality restrictions on the SIRF, can be used to

help identify the shocks. In general, inequality restrictions provide set, but not point,

identification of H, that is, they serve to identify a set of H matrices which contains

the unique true H. The econometric problem, then, is how to estimate H and how

to perform inference about H given that it is set identified.

The dominant approach in the literature is Bayesian, following Uhlig (2005). The

Bayesian inference problem is to compute the posterior distribution of the SIRFs D(L)

given the data and a prior. With abuse of notation, we denote this posterior by f(DjY).
Computing f(DjY) requires a prior distribution for D(L). Because D(L)¼A(L)�1H,

developing a prior for D(L) in turn entails developing a prior for A(L) and H. Uhlig’s

(2005) algorithm adopts the unit standard deviation normalization (31), so that Ση¼HH0.
Thus anyH can be written asΣη

1/2Q, whereΣη
1/2 is the Cholesky decomposition ofΣη and

Q is an orthonormal matrix. Thus, under the unit standard deviation normalization,

D Lð Þ¼A Lð Þ�1Σ1=2
η Q. This expression has substantial computational advantages:

A(L) and Ση are reduced-form parameters which have conjugate priors under the stan-

dard assumption of normally distributed errors, and the only nonstandard part of the prior

is Q. Moreover, the dimension for the prior over Q is substantially reduced because

QQ0 ¼ In. LetD denote the set of IRFs satisfying the sign restriction, so the prior impos-

ing the sign restrictions is proportional to 1 D Lð Þ 2D½ �.
Continuing to abuse notation, and adopting the convention that the priors overA(L),

Ση, and Q are independent conditional on D Lð Þ 2D, we can therefore write the poste-

rior f(DjY) as
f DjYð Þ∝ f Y jA Lð Þ,Ση,Q

� 	
π Að Þπ Ση

� 	
π Qð Þ1 D Lð Þ 2D½ �

∝ f A Lð Þ,ΣηjY
� 	

π Qð Þ1 D Lð Þ 2D½ � (47)

where f(YjA(L),Ση,Q) is the Gaussian likelihood for the SVAR A Lð ÞYt ¼Σ1=2
η Qεt, with

Σε¼ In, and f(A(L),ΣηjY) is the posterior of the reduced-form VAR, where the second
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line in (47) follows because the likelihood does not depend on Q. Uhlig’s (2005)

algorithm uses conjugate Normal–Wishart priors for A(L) and Σ�1
η , so computation of

(or drawing from) f(A(L),ΣηjY) is straightforward.
The sign restrictions are imposed using the following algorithm.

(1) Draw a candidate eQ from π(Q), and (Ã(L), eΣη) from the posterior f(A(L),ΣηjY).
(2) Compute the implied SIRF, eD Lð Þ¼ eA Lð Þ�1eΣ1=2

η
eQ.

(3) Retain eD Lð Þ if it satisfies the inequality restrictions.

(4) Repeat Steps (1)–(3) many times to obtain draws from f(DjY).
This algorithm uses a prior distribution π(Q) over the space of orthonormal matrices. In

the two-dimensional case all orthonormal matrices can be written as,

eQ¼ cosθ � sinθ
sinθ cosθ

� �
: (48)

Thus drawing from π(Q) reduces to drawing from a prior over θ, 0	θ	2π. Following
Uhlig (2005), it is conventional to use (48) with θ
U[0,2π].

For n>2, the restrictions are more complicated. For reasons of computational speed,

Rubio-Ramı́rez et al. (2010) recommend using the QR or householder transformation

method for drawing eQ, also see Arias et al. (2014). The QR method for constructing a

draw of eQ in step (1) proceeds by first drawing a n�n matrix eW , with elements that are

independent standard normals, then using the QR decomposition to write eW ¼ eQ eR,
where eQ is orthonormal and eR is upper triangular.

The choice of prior π(Q)—in the n¼2 case, the prior distribution for θ in (48)—is

consequential and ends up being informative for the posterior, and we return to this issue

in the next section.

4.6.1.1 Single Shock Identification
The discussion here has focused on system identification, however it can also be imple-

mented for identification of a single shock. Specifically, if the inequality restrictions only

involve one shock ε1t, then those restrictions only involve the first column of eQ, eQ1, and

the resulting draw of H1 is Σ1=2
η
eQ1.

4.6.2 Inference When H Is Set Identified
The statistical problem is to provide a meaningful characterization of what the data tell us

about the true value of H (and thus the true SIRFs) when H is only set identified. As

pointed out by Fry and Pagan (2011), Moon and Schorfheide (2012), Moon et al.

(2013), and Baumeister and Hamilton (2015a), the standard treatment of uncertainty

using the posterior computed according to the algorithm in the preceding subsection

raises a number of conceptual and technical problems. Central to these problems is that,

because the SIRF is a nonlinear transformation of the parameter over which the prior is

placed—in the n¼2 case, over θ in (48)—a seemingly flat prior over Q ends up being
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highly informative for inference. Thus inference about the SIRFs is driven by assump-

tions unrelated to the economic issues at hand (priors over the space of orthonormal

matrices) and which have opaque but impactful implications.

We focus on two inferential problems. To illustrate the issues, we consider a stripped-

down two-variable SVAR.v The researcher is interested in constructing SIRFs and

makes the sign restriction that the effect of shock 1 on both variables 1 and 2 is nonneg-

ative on impact and for the first four periods; that is,Dh,11�0 andDh,21�0, h¼0,…, 4,

where D(L)¼A(L)�1H is the SIRF.

To keep the example as simple as possible, suppose that the reduced-formVAR is first

order, that A(L) is diagonal, and that the innovations have identity innovation variance.

That is,

A Lð Þ¼ 1�α1L 0

0 1�α2L

� �
where α1,α2 > 0 and Ση ¼ I (49)

soChol(Ση)¼ I. Further suppose that the sample size is sufficiently large that these reduced-

form parameters can be treated as known; thus the only SVAR uncertainty arises from Q

or, because n¼2, from θ in (48). The researcher draws candidate orthonormal matrices eQ
using (48), where θ
U[0,2π].w What is the resulting inference on the SIRF D(L)?

Under these assumptions, both the identified set for the SIRF for the first shock and

the posterior distribution can be computed analytically. In large samples, for a particular

draw eQ, the candidate IRF is,

eD Lð Þ¼ eA Lð Þ�1Σ1=2
η
eQ¼ 1�α1Lð Þ�1

cosθ � 1�α1Lð Þ�1
sinθ

1�α2Lð Þ�1
sinθ 1�α2Lð Þ�1

cosθ

� �
, (50)

where the equality uses the large-sample assumption that there is no sampling variability

associated with estimation of A(L) or Ση, so that the posterior draws eA Lð Þ,eΣη

� �
¼

A Lð Þ,Ση

� 	
. Applying the sign restrictions to the first column of (50) implies thateD Lð Þ satisfies the sign restrictions if cos θ�0 and sin θ�0, that is, if 0	θ	π/2. Thus

the identified set for D21(L) is 0	D21(L)	 (1�α2L)
�1, so the identified set for the hth

lag of the IRF is [0,α2
h].

BecauseD21(L)¼ (1�α2L)
�1sin θ, the posterior distribution of the h-period SIRF of

shock 2 on variable 1,Dh,21, is the posterior distribution of α2
h sin θ, where θ
U[0,π/2].

The mean of this posterior is E Dh,21½ � ¼E αh2 sinθ
� 	¼ 2αh2=π� 0:637αh2 and the posterior

median is 0.707α2
h. By a change of variables, the posterior density of Dh,21 is

pD̂21, ijY xð Þ∝2αh2=π
ffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

p
, and the equal-tailed 68% posterior coverage region is

[0.259α2
h, 0.966α2

h].

v This example is similar to the n¼2 example in Baumeister and Hamilton (2015a), but further simplified.
w In the case n¼2, this is equivalent to drawing eQ using the QR algorithm discussed in Section 4.6.1.
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This example illustrates two issues with sign-identified Bayesian inference. First,

the posterior coverage interval concentrates strictly within the identified set. As

pointed out by Moon and Schorfheide (2012), this result is generic to set-identified

Bayesian econometrics in large samples. From a frequentist perspective, this is trou-

bling. In standard parametric settings, in large samples Bayesian 95% posterior intervals

coincide with frequentist 95% confidence intervals so, from a frequentist perspective,

Bayes confidence sets contain the true parameter value in 95% of all realizations of the

sample for all values of the true parameter. This is not the case in this sign-identified

setting, however: over repeated samples, the Bayesian interval contains the true param-

eter value all of the time for some values of the parameter, and none of the time for

others.x

Second, although the sign restrictions provide no a priori knowledge over the iden-

tified region, the “flat” prior on θ induces an informative posterior over the identified

set, and in this example places most of the mass on large values of Dh,21. Although

this effect is transparent in this simple example, Baumeister and Hamilton (2015a)

show that the implied posteriors over the identified set can have highly informative

and unintuitive shapes in more complicated models and in higher dimensions. The

presence of sampling uncertainty in A(L) and Ση, which this example assumes away,

further complicates the problem of knowing how inference is affected by the prior

distribution.

In practice there is additional sampling variability in the reduced-form parameters

A(L) and Ση. In the Bayesian context, this variability is handled by additionally integ-

rating over the priors for those parameters, and with sampling variability the Moon

and Schorfheide (2012) result that the posterior coverage set is strictly contained in

the identified set need not hold. The lesson of the example, however, is that Bayesian

posterior inference depends on the arbitrary prior over the space of orthonormal

matrices. In short, conventional Bayesian methods can be justified from a subjectivist

Bayes perspective, but doing so results in inferences that a frequentist would find

unacceptable.y

x The asymptotic coincidence of Bayesian and frequentist confidence sets in standard parametric models, and

of the posterior mean and the maximum likelihood estimator, is generally known as the Bernstein–von
Mises theorem. Freedman (1999) provides an introduction to the theorem and examples of the breakdown

of the theorem other than set-identified inference here. Also see Moon and Schorfheide (2012).
y A technical issue with Bayesian sign-identified SVARs is that it is conventional to examine impulse

responses pointwise, as we did in the example by examining the posterior for Dh,21 for a given h rather

than as a function of h. Thus the values of the VAR parameters corresponding to the posterior mode

at one horizon will in general differ from the value at another horizon. See Sims and Zha (1999) for a

discussion. Inoue and Kilian (2013) suggest a way to handle this problem and compute most likely IRFs

pathways not pointwise.
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4.6.2.1 Implications of the Unit Standard Deviation Normalization
The use of the unit standard deviation normalization in conventional Bayesian algorithms

means that the SIRFs are all in standard deviation units. For questions posed in native

units (what is the effect of a +25 basis point monetary policy shock to the Federal Funds

rate?), it is necessary to rescale by the standard deviation of the shock. As Fry and Pagan

(2011) point out, in the set-identified context, this rescaling raises additional inferential

problems beyond those in the point-identified setting. Specifically, the conversion to

the unit effect normalization must be done for each draw, not at a final step, because there

is no consistent estimator for H under this method.

4.6.2.2 New Approaches to Inference in Set-Identified SVARs
These inferential problems are difficult and research is ongoing. Here, we briefly describe

five new approaches.

The first two approaches are frequentist. A great deal of econometric research over

the past decade has tackled frequentist approaches to set-identified inference in

general. Inference when the parameter is identified by moment inequalities is nonstan-

dard and—as in the SVAR application—can have the additional problem that the

number of moment inequalities can be large but that only one or a few inequalities might

be binding for a given value of the parameters. Including many non-binding inequalities

for inference typically widens confidence intervals. The two approaches proposed to date

for frequentist inference in set-identified SVARs differ in how to handle the problem of

many inequalities. Moon et al. (2013) start with all the inequalities, then use a modifi-

cation of Andrews and Soares’s (2010) moment selection procedure to tighten the con-

fidence intervals. Alternatively, Gafarov and Montiel Olea (2015) use only inequality

constraints on H (ie, impact effects), which yield substantial computational simplifica-

tions. Their results suggest that, despite using fewer restrictions, confidence intervals

can be tighter in some applications than if all the inequalities are used.

The remaining approaches are Bayesian. Baumeister and Hamilton (2015a) suggest

replacing the prior on Q (on θ in the two-dimensional case) with a prior directly on

the impact multiplier, that is, onH21. That prior could be flat, truncated (for sign restric-

tions) or otherwise informative. This approach addresses the problem in the example

earlier that the “flat” prior π(Q) on the space of orthonormal matrices induces an infor-

mative posterior for the IRF even in large samples. However, this approach remains

subject to the Moon and Schorfheide (2012) critique that the Bayesian posterior set

asymptotically falls strictly within the identified set.

Giacomini and Kitagawa (2014) propose instead to use robust Bayes inference. This

entails sweeping through the set of possible priors over Q, computing posterior regions

for each, and reporting the posterior region that is the union of the prior-specific regions,

and range of posterior means which is the range of the prior-specific posterior means.
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They provide conditions under which the robust credible set converges to the identified

set if the sample is large (thereby avoiding the Moon and Schorfheide (2012) critique).

Plagborg-Møller (2015) takes a very different approach and treats the SIRF as the

primitive over which the prior is placed; in contrast to Baumeister and Hamilton

(2015a,b) who place priors on the impact effect (H), Plagborg-Møller (2015) places
a joint prior over the entire IRF. By directly parameterizing the structural MA represen-

tation he also handles the problem of noninvertible representations, where the prior

serves to distinguish observationally equivalent SVARs.

4.7 Method of External Instruments
Instrumental variables estimation uses some quantifiable exogenous variation in an

endogenous variable to estimate the causal effect of the endogenous variable. If a variable

measuring such exogenous variation is available for a given shock, but that variable is not

included in the VAR, it can be used to estimate the SIRF using a vector extension of

instrumental variable regression. This method, which is due to Stock (2008), has been

used in a small but increasing number of recent papers including Stock and Watson

(2012a), Mertens and Ravn (2013), and Gertler and Karadi (2015). This method is also

called the “proxy VAR” method, but we find the “method of external instruments”

more descriptive.

Consider identification of the single shock ε1t. Suppose that there is a vector of vari-
ables Zt that satisfies:

ið Þ E ε1tZ
0
t

� 	¼ α0 6¼ 0 (51)

iið Þ E εjtZ
0
t

� 	¼ 0, j¼ 2,…,n: (52)

The variableZt is called an external instrument: external because it is not an element ofYt in

the VAR, and an instrument because it can be used to estimate H1 by instrumental

variables.

Condition (i) corresponds to the usual relevance condition in instrumental variables

regression and requires that the instrument be correlated with the endogenous variable of

interest, ε1t. Condition (ii) corresponds to the usual condition for instrument exogeneity

and requires that the instrument be uncorrelated with the other structural shocks.

Conditions (i) and (ii), combined with the assumption (21) that the shocks are uncor-

related and the unit effect normalization (32), serve to identifyH1 and thus the structural

shock. To see this, use ηt¼Hεt along with (i) and (ii) and the partitioning notation (28)

to write,

E η1tZ
0
t

� 	
E η�tZ

0
t

� 	 !
¼E ηtZ

0
t

� 	¼EðHεtZ
0
tÞ¼ H1 H�½ � E ε1tZ

0
t

� 	
E ε�tZ 0

t

� 	 !
¼H1α

0 ¼ α0

H1�α0

 !
,

(53)
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where η•t denotes the final n�1 rows of ηt, the second equality uses ηt¼Hεt, the third
equality uses the partitioning notation (28), the fourth equality uses (i) and (ii), and the

final equality uses the unit effect normalization H11¼1 in (33).

Equating the first and the final expressions in (53) show thatH1•, and thusH1 and ε1t,
are identified. In the case of a single instrument, one obtains the expression,

H1� ¼Eη�tZt

Eη1tZt

: (54)

This expression has a natural instrumental variables interpretation: the effect of ε1t on ηjt,
that is, the jth element ofH, is identified as the coefficient in the population IV regression

of ηjt onto η1t using the instrument Zt.

As with standard instrumental variables regression, the success of the method of exter-

nal instruments depends on having at least one instrument that is strong and credibly

exogenous. Although the literature on SVAR estimation using external instruments is

young, at least in some circumstances such instruments are plausibly available. For exam-

ple, the Cochrane and Piazzesi (2002) measure of the monetary shock discussed in

Section 4.2 is not in fact the monetary shock: as they note, even if it successfully captures

that part of the shock that was learned as an immediate result of FOMC meetings, it is

possible that speeches of FOMCmembers and other Fed actions could provide signals of

rate movements before the actual FOMC meeting. Thus, the Cochrane and Piazzesi

(2002) measure is better thought of as an instrumental variable for the shock, not the

shock itself; that is, it is plausibly correlated with the monetary policy shock and, because

it is measured in a window around the FOMCmeeting, it is plausibly exogenous. Viewed

in this light, many of the series constructed as measures of shocks discussed in Section 4.4

are not in fact the actual shock series but rather are instruments for the shock series.

Accordingly, SVARs that include these measures of shocks as a variable are not actually

measuring the SIRF with respect to those shocks, but rather are measuring a reduced-

form IRFwith respect to this instrument for the shocks. In contrast, the method of exter-

nal instruments identifies the IRF with respect to the structural shock.

As with IV regression more generally, if the instrument is weak then conventional

asymptotic inference is unreliable. The details of external instruments in SVARs are suf-

ficiently different from IV regression that the methods for inference under weak identifi-

cation do not apply directly in the SVAR application. Work on inference with potentially

weak external instruments in SVARs is currently under way (Montiel Olea et al., 2016).

5. STRUCTURAL DFMs AND FAVARs

Structural DFMs hold the possibility of solving three recognized shortcomings of

SVARs. First, including many variables increases the ability of the innovations to span

the space of structural shocks, thereby addressing the omitted variables problem discussed
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in Section 4.1.2. Second, because the shocks are shocks to the common factors, DFMs

provide a natural framework for allowing for measurement error or idiosyncratic

variation in individual series, thereby addressing the errors-in-variables problem in

Section 4.1.2. Third, high-dimensional structural DFMs make it possible to estimate

SIRFs, historical decompositions, and FEVDs that are consistent across arbitrarily many

observed variables. Although these goals can be achieved using high-dimensional VARs,

because the number of VAR parameters increases with n2, those large-n VARs require

adopting informative priors which typically are statistical in nature. In contrast, because in

DFMs the number of parameters increases proportionately to n, DFMs do not require

strong restrictions, beyond the testable restrictions of the factor structure, to estimate

the parameters.

This section describes how SVAR methods extend directly to DFMs, resulting in a

SDFM. In a SDFM, all the factors are unobserved. With a minor modification, one or

more of the factors can be treated as observed, in which case the SDFM becomes a

FAVAR. The key to meshing SVAR identification straight forwardly with DFMs is

two normalizations: the “named factor” normalization in Section 2.1.3 for DFMs and

the unit effect normalization described in Section 4.1.3 for SVARs. The named factor

normalization ascribes the name of, say, the first variable, to the first factor, so that the

innovation in the first factor equals the innovation in the common component of the

first variable. The unit effect normalization says that the structural shock of interest,

say the first shock, has a unit effect on the innovation to the first factor.

Taken together, these normalizations link an innovation in a factor to the innovation

in a common component in a variable (naming) and set the scale of the structural shock

(unit effect). For example, a one percentage point positive monetary supply shock

increases the innovation in the Fed funds factor by one percentage point, which increases

the innovation to the common component of the Federal funds rate by one percentage

point, which increases the Federal funds rate by one percentage point. These normali-

zations do not identify the monetary policy shock, but any scheme that would identify

the monetary policy shock in a SVAR can now be used to identify the monetary policy

shock from the factor innovations.

This section works through the details of the previous paragraph. The section first

considers SDFMs in the case of no additional restrictions on the factor loading matrix

Λ, next turns to SDFMs in which Λ has additional restrictions and concludes with the

extension of SVAR identification methods to FAVARs. This section provides a unified

treatment that clarifies the link between SVARs, SDFMs, and FAVARs, including

extensions to overidentified cases.

The literature has taken a number of approaches to extending SVARs to structural

DFMs, and this section unifies and extends those approaches. The original FAVAR struc-

ture is due to Bernanke et al. (2005). Stock andWatson (2005) propose an approach with

different normalizations and the treatment here streamlines theirs. The treatment of

472 Handbook of Macroeconomics



exactly identified SDFMs here is the same as in Stock and Watson (2012a). The other

closest treatments in the literature are Forni and Gambetti (2010), Bai and Ng (2013),

Bai and Wang (2014), and Bjørnland and Thorsrud (forthcoming).

5.1 Structural Shocks in DFMs and the Unit Effect Normalization
The structural DFM posits that the innovations in the factors are linear combinations of

underlying structural shocks εt.

5.1.1 The SDFM
The SDFM augments the static DFM (6) and (7) with the assumption (20) that the factor

innovations ηt are linear combinations of the structural shocks εt:

Xt

n�1¼ Λ
n�r

Ft

r�1

+ et
n�1

(55)

Φ
r�r

Lð Þ Ft
r�1¼ G

r�q

ηt
q�1

where Φ Lð Þ¼ I�Φ1L�����ΦpL
p, (56)

ηt
q�1¼ H

q�q

εt
q�1

(57)

where following (7), there are r static factors and q dynamic factors, with r�q. In this sys-

tem, the q structural shocks εt impact the common factors but not the idiosyncratic terms.

Additionally, we assume that (SVAR-1)—(SVAR-3) in Section 4.1.4 hold, that the q�q

matrix H is invertible (so the structural shocks can be recovered from the factor innova-

tions), and that the shocks are mutually uncorrelated, that is, Σε is diagonal as in (21).

The SIRF is obtained by substituting (57) into (56) and the result into (55) to obtain,

Xt ¼ΛΦ Lð Þ�1
GHεt + et: (58)

The dynamic causal effect on all n variables of a unit increase in εt is the SIRF, which is

ΛΦ(L)�1GH. Equivalently, the first term on the right-hand side of (58) is the moving

average representation of the common component ofXt in terms of the structural shocks.

If interest is only in one shock, say the first shock, then the SIRF for that shock is

ΛΦ(L)�1GH1.

The SDFM generalizes the SVAR by allowing for more variables than structural

shocks, and by allowing each variable to have idiosyncratic dynamics and/or measure-

ment error. In the special case that there is no idiosyncratic error term (so et¼0), r¼q¼n,

Λ¼ I, and G¼ I, the SDFM (58) is simply the structural MA representation (23), where

Φ(L)¼A(L).

5.1.2 Combining the Unit Effect and Named Factor Normalizations
The SDFM (55)–(57) requires three normalizations: Λ, G, and H. We first consider the

case r¼q, so that the static factors have a full-rank covariance matrix, then turn to the case

of r�q.
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5.1.2.1 Normalization with r¼q
In this case, setG¼ I, so that ηt are the innovations to the factors.We use the named factor

normalization (12) for Λ and the unit effect normalization (32) for H. Using these two

normalizations provides SIRFs in the native units of the variables and ensure that infer-

ence about SIRFs will not err by neglecting the data-dependent rescaling needed to con-

vert from standard deviation units (if the unit standard deviation normalization is used) to

native units.

As discussed in Section 2.1.3, the named factor normalization associates a factor

innovation (and thus a factor) with the innovation to the common component of the

naming variable. Without loss of generality, place the naming variables first, so that

the first factor adopts the name of the first variable and so forth up to all r factors. Then

Λ1:r¼ Irwhere, as in (12), Λ1:r denotes rows 1 through r of Λ. If there are no overidentify-
ing restrictions on Λ, Λ and Ft can first be estimated by principal components, then trans-

formed as discussed following (12). That is, letting PC denote the principal components

estimators,

Λ̂¼
Ir

Λ̂
PC

r +1:n Λ̂
PC

1:r

� ��1

" #
and F̂ t ¼ Λ̂

PC

1:r F̂
PC

t : (59)

Together, the named factor normalization and the unit effect normalization set the scale

of the structural shocks. For example, if the oil price and oil price supply shock are

ordered first, a unit oil price supply shock induces a unit innovation in the first factor,

which is the innovation in the common component of the oil price, which increases

the oil price by one native unit (for example, by one percentage point if the oil price

is in percent). Restated in terms of the notation in (58) and (59), the impact effect of

ε1t on X1t is Λ1H1, where Λ1 is the first row of Λ. Because Λ1¼ (1 0 … 0) and the unit

effect normalization sets H11¼1, Λ0
1H1¼ 1. Thus a unit increase in ε1t increases X1t by

one (native) unit.

This approach extends to overidentifying restrictions on Λ using the methods of

Section 2.3.1. To be concrete, in Section 7 we consider an empirical application to

identifying an oil supply shock. Our dataset has four different oil prices (the US producer

price index for crude petroleum, Brent, West Texas Intermediate (WTI), and the US

refiners’ acquisition cost of imported oil estimated by the US Energy Information

Administration, all in logs). These series, which are available over different time spans,

generally move together but their spreads vary because of local conditions and differ-

ences in crude oil grades. All four variables are measures of oil prices that have been, used

in the oil-macro literature. We therefore model the real oil price factor innovation as

impinging on all four real prices with a unit coefficient. The named factor normalization

thus is,
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pPPI�Oil
t

pBrentt

pWTI
t

pRACt

X5:n, t

266666664

377777775
¼

1 0 � � � 0

1 0 � � � 0

1 0 � � � 0

1 0 � � � 0

Λ5:n

26666664

37777775
Foil
t

F2:r, t

" #
+ et, (60)

where pPPI�Oil
t is the logarithm of the real price of crude oil from the producer price

index, etc. Strictly speaking, any one of the first four rows of (60) is a naming normal-

ization; the remaining rows are additional restrictions that treat the other three oil prices

as additional indicators of the single oil price shock. At this point the number of static

factors r is left unspecified; in the empirical application of Section 7, we use r¼8.

Given the restricted Λ in (60), the static factors can be estimated by restricted principal

components as described in Section 2.3.1 (by numerical minimization of the least-squares

objective function (14) subject to the restrictions on Λ shown in (60)). The first factor

computed from this minimization problem is the oil factor.

5.1.2.2 Normalization with r>q
If the empirical analysis of the DFM discussed in Section 2.4.2 indicates that the number

of dynamic factors q is less than the number of static factors r, then an additional step is

needed to estimate G. This step also needs to be consistent with the unit effect normal-

ization. Accordingly, we normalize G so that

G¼ Iq

Gq+1:r

" #
, (61)

where Gq+1:r is an unrestricted (q� r)�q matrix.

In population, G satisfying (61) can be constructed by first obtaining the innovations

at to the factors, so that Φ(L)Ft¼at. Because r>q, Σa¼Eata
0
t has rank q. Partition

at ¼ a01t a
0
2t

� 	0
, where a1t is q�1 and a2t is (r�q)�1, and similarly partition Σa. Assuming

that the upper q�q block of Σa is full rank, we can set ηt¼a1t and Gq+1:r ¼Σa,21Σ�1
a,11.

This construction results in the normalization (61).

In sample, these population objects can be replaced by sample objects. That is, let ât be

the residuals from a regression of F̂ t onto p lags of F̂ t, let η̂t ¼ â1t and let Σ̂a denote the

sample covariance matrix of ât. Then Ĝq+1:r ¼ Σ̂a,21Σ̂
�1

a,11 is the matrix of coefficients in

the regression of â2t onto η̂t.
z

z This algorithm assumes that the sample inverse Σ̂�1

a,11 is well behaved.
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5.1.2.3 Estimation Given an Identification Scheme
With the normalization set, the identification schemes discussed in Section 4 carry over

directly. The innovation ηt in Section 4 is now the innovation to the factors, however,

the factors (or the subset that are needed) have now been named, and the scale has been

set on the structural shocks, so all that remains is to implement the identification scheme.

The formulas in Section 4 carry over with the notational modification of setting A(L) in

Section 4 to Φ(L). Section 6 illustrates two contemporaneous restriction identification

schemes for oil prices.

5.1.3 Standard Errors for SIRFs
There are various ways to compute standard errors for the SIRFs and for other statistics of

interest such as FEVDs. The method used in this chapter is the parametric bootstrap,

which (like other standard bootstrap methods) applies only when there is strong

identification.

The parametric bootstrap used here proceeds as follows.

1. Estimate Λ, Ft,Φ(L),G, and Ση, and compute the idiosyncratic residual êt ¼Xt� Λ̂F̂ t.

2. Estimate univariate autoregressive processes for êt, êit ¼ di Lð Þêit�1 + ζit (this chapter
uses an AR(4)).

3. Generate a bootstrap draw of the data by (a) independently drawing eηt 
N 0, Σ̂η

� 	
and ζit 
N 0, σ̂2ζi

� �
; (b) using the draws of ζit and the autoregression coefficients

d̂i Lð Þ to generate idiosyncratic errors ẽt; (c) using Φ̂ Lð Þ, Ĝ, and eηt to generate factorseFt; and (d) generating bootstrap data as eXt ¼ Λ̂eFt +eet.
4. Using the bootstrap data, estimate Λ, Ft,Φ(L),G, andH to obtain a bootstrap estimate

of the SIRF ΛΦ(L)GH. For identification of a subset of shocks, replace H with the

columns of H corresponding to the identified shock(s).

5. Repeat Steps 3 and 4 for the desired number of bootstrap draws, then construct boot-

strap standard errors, confidence intervals, and/or tests.

Variations on this approach are possible, for example the normal errors drawn in Step 3

could be replaced by block bootstrap resampling of the residuals from the factor VAR and

the idiosyncratic autoregression.

There is ongoing work on improving inference in DFMs, SDFMs, and FAVARs

using the bootstrap. For example, Yamamoto (2012) develops a bootstrap procedure

for FAVARs under the unit standard deviation normalization. Corradi and Swanson

(2014) consider the bootstrap for tests of the stability of the factor loadings and

factor-augmented regression coefficients. Gonçalves and Perron (2015) establish the

asymptotic validity of the bootstrap for the parameters in factor-augmented regres-

sions. Gonçalves et al. (forthcoming) develop bootstrap prediction intervals for DFMs

for h-period ahead forecasts. Going into detail on these developments is beyond the

scope of this paper.
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5.2 Factor-Augmented Vector Autoregressions
Originally developed by Bernanke et al. (2005), FAVARs model some of the factors as

observed variables while the remaining factors are unobserved. The FAVAR thus

imposes restrictions on the DFM, specifically, that one or more of the factors is measured

without error by one or more of the observable variables. Accordingly, SVAR identifi-

cation methods with the unit effect normalization carry over directly to FAVARs.

The FAVARmodel can be represented in two ways. The first is as a DFMwith para-

metric restrictions imposed. For simplicity, consider the case of a single observed factor eFt

which is measured without error by the variable Yt, r unobserved factors Ft, and order the

variable observing eFt first. Then the structural FAVAR model is,

Yt

Xt

 !
¼ 1 01�r

Λ

 ! eFt

Ft

 !
+

0

ut

 !
, (62)

F +
t ¼Φ Lð ÞF +

t�1 +Gηt where F +
t ¼

eFt

Ft

 !
, (63)

ηt ¼Hεt: (64)

Thus, the FAVAR model combines the unit effect normalization on the factor loadings

in (12) with the assumption that there is no idiosyncratic component for the variable

observing eFt.

The second, more common representation of the FAVAR model makes the substi-

tution Yt ¼ eFt (from the first line of (62)), so that Yt is included as a factor directly:

Xt ¼Λ
Yt

Ft

� �
+ ut (65)

F +
t ¼Φ Lð ÞF +

t�1 +Gηt, where F +
t ¼ Yt

Ft

� �
, (66)

ηt ¼Hεt: (67)

With this substitution, the SDFM identification problem becomes the SVAR identifica-

tion problem, where the VAR is now in terms of (Yt Ft
0). The factors and factor loadings

can be estimated by least squares; if there are overidentifying restrictions on Λ, they can be
imposed using restricted least squares as in Section 2.3.1aa.

As an illustration, consider Bernanke et al.’s (2005) FAVAR application of the

“slow-R-fast” identification scheme for monetary policy shocks. This original FAVAR

application achieves two goals. First, by including a large number of variables, it addresses

aa Additional details about implementing this restricted least squares approach are provided in the discussion

of the empirical application in Section 7.3.
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the omitted variable problem of low-dimensional VARs and in particular aims to

resolve the so-called “price puzzle” of monetary VARs (see Ramey, 2016, this

Handbook). Second, the joint modeling of these many variables permits estimating inter-

nally consistent SIRFs for an arbitrarily large list of variables of interest.

In the slow-R-fast scheme, monetary policy shocks or news/financial shocks are

assumed not to affect slow-moving variables like output, employment, and price indices

within a period, monetary policy responds within a period to shocks to slow-moving

variables but not to news or financial shocks, and fast-moving variables (like asset prices)

respond to all shocks, including news/financial shocks that are reflected only in those

variables.bb Let “s” and “f” denote slow/fast-moving variables, innovations, and shocks,

order the slow-moving variables first in Xt, and (departing from the convention earlier)

order the slow-moving innovations and factors first, followed by the observable factor

(Yt¼Rt, the Fed funds rate), then the fast-moving factors and innovations. Then the

Bernanke et al. (2005) implementation of the slow-R-fast identification scheme is,
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This scheme imposes overidentifying restrictions on Λ in (68), and those restrictions can

be imposed by restricted principal components as in Section 2.3.1.

6. A QUARTERLY 200+ VARIABLE DFM FOR THE UNITED STATES

Sections 6 and 7 illustrate the methods in the previous section using a 207-variable DFM

estimated using quarterly data, primarily for the US economy. This section describes the

reduced-form DFM: the number of factors, its fit, and its stability. Section 7 uses the

reduced-form DFM to estimate structural DFMs that estimate the effect of oil market

shocks on the economy under various identification schemes.

bb For additional discussion of the slow-R-fast scheme, see Christiano et al. (1999).
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6.1 Data and Preliminary Transformations
The data are quarterly observations on 207 time series, consisting of real activity variables,

prices, productivity and earnings, interest rates and spreads, money and credit, asset and

wealth variables, oil market variables, and variables representing international activity.

The series are listed by category in Table 1, and a full list is given in the Data Appendix.

Data originally available monthly were converted to quarterly by temporal averaging.

Real activity variables and several other variables are seasonally adjusted. The dataset

updates and extends the dataset used in Stock and Watson (2012a); the main extension

is that the dataset used here includes Kilian’s (2009) international activity measure and

data on oil market, which are used in the analysis in the next section of the effects of

oil market shocks on the economy. The full span of the dataset is 1959Q1-2014Q4. Only

145 of the 207 series are available for this full period.

From this full dataset, a subset was formed using the 86 real activity variables in the first

four categories in Table 1; this dataset will be referred to as the “real activity dataset.” Of

the real activity variables, 75 are available over the full sample.

The dataset is described in detail in the Data Appendix.

6.1.1 Preliminary Transformations and Detrending
The data were subject to four preliminary transformations. First, the DFM framework

summarized in Section 2 and the associated theory assumes that the variables are

second-order stationary. For this reason, each series was transformed to be approximately

Table 1 Quarterly time series in the full dataset

Category
Number
of series

Number of series used
for factor estimation

(1) NIPA 20 12

(2) Industrial production 11 7

(3) Employment and unemployment 45 30

(4) Orders, inventories, and sales 10 9

(5) Housing starts and permits 8 6

(6) Prices 37 24

(7) Productivity and labor earnings 10 5

(8) Interest rates 18 10

(9) Money and credit 12 6

(10) International 9 9

(11) Asset prices, wealth, and household balance

sheets

15 10

(12) Other 2 2

(13) Oil market variables 10 9

Total 207 139

Notes: The real activity dataset consists of the variables in the categories 1–4.
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integrated of order zero, for example real activity variables were transformed to growth

rates, interest rates were transformed to first differences, and prices were transformed to first

differences of rates of inflation. The decisions about these transformations were guided by

unit root tests combinedwith judgment, and all similar serieswithin a categorywere subject

to the same transformation (for example, all measures of employment were transformed to

growth rates). Selected cointegrating relations were imposed by including error correction

terms. Specifically, interest rate spreads are modeled as integrated of order zero.

Second, a small number of outliers were removed. Third, following Stock and Watson

(2012a), the long-term mean of each series was removed using a biweight filter with band-

width of 100 quarters. This step is nonstandard and is discussed in the next subsection. Fourth,

after these transformations, the series were standardized to have unit standard deviation.

The Data Appendix provides more details on these steps, including the preliminary

transformation of each series.

6.1.1.1 Removing Low-Frequency Trends
Recent research has documented that there has been a long-term slowdown in the mean

growth rate of GDP over the postwar period, see Stock andWatson (1996, 2012a), Council

of Economic Advisers (2013), and Gordon (2014, 2016). Although there is debate over the

cause or causes of this slowdown, it is clear that long-termdemographic shifts play an impor-

tant role. The entry of women into the US labor force during the 1970–90s increased the
growth rate of the labor force, and thus increased the growth rate of full-employmentGDP,

and the aging and retirement of the workforce are now decreasing the labor force partic-

ipation rate (Aaronson et al., 2014 and references therein). The net effect of these demo-

graphic shifts is a reduction in the annual growth rate of GDP due to supply side

demographics of approximately one percentage point from the early 1980s to the present.

This long-term slowdown is present in many NIPA aggregates and in theory could appear

in long-term trends in other series as well, such as interest rates.

These long-term trends, while important in their own right, are relevant to the exercise

here for reasons that are technical but nonetheless important. These trends pose two specific

problems. First, if the trends are ignored and the series, say employment growth and GDP

growth, are modeled as stationary, then because these persistent components are small, the

empirically estimated model will be mean reverting. However, the underlying causes of

the trends, such as demographics, do not suggest mean reversion. Thus ignoring these

long-term trends introduces misspecification errors into forecasts and other reduced-form

exercises. Second, structural analysis that aims to quantify the response of macroeconomic

variables to specific shocks generally focus on shocks that have transitory effects on GDP

growth, such as monetary shocks, demand shocks, or oil supply shocks. Ignoring long-term

trends by modeling growth rates as mean reverting introduces specification error in the

dynamics of VARs and DFMs: the reduced-form IRFs confound the responses to these

transitory shocks with the slowly unfolding trends arising from other sources.
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In principal one could model these long-term trends simultaneously with the other

factors, for example by adopting a random walk drift term as a factor appearing in the

growth rate of some series. This approach has the advantage of explicitly estimating

the low-frequency trends simultaneously with the rest of the DFM, however it has the

disadvantage of requiring time series models for these trends, thereby introducing

the possibility of parametric specification error. Because the purpose of the DFM analysis

in this and the next section—and more generally in the vast bulk of the VAR and DFM

literature—is analysis and forecasting over short- tomedium-horizons (say, up to 4 years),

a simpler and arguably more robust approach is simply to remove the low-frequency

trends and to estimate the time series model using detrended growth rates.

For these reasons, we detrend all the series prior to estimating the DFM. Although the

decline in these growth rates has been persistent, neither the underlying reasons for the

declines nor visual inspection of the trends (eg, as displayed in Stock and Watson, 2012a;

Gordon, 2014) suggest that they follow a linear trend, so that linear detrending is not

appropriate.

The specific detrending method used here follows Stock and Watson (2012a). First,

the series is transformed to being approximately integrated of order zero as discussed ear-

lier, for example employment is transformed to employment growth. Second, the trend

of each transformed series (for example, employment growth) is estimated nonparame-

trically using a biweight low-pass filter, with a bandwidth of 100 quarters.cc

Fig. 2 compares the biweight filter to three other filters that could be used to estimate

the low-frequency trend: an equal-weighted moving average filter with 40 leads and lags

(ie, an 81-quarter centered moving average), the Hodrick and Prescott (1997) filter with

the conventional quarterly tuning parameter (1600), and the Baxter and King (1999)

lowpass bandpass filter with a passband of 200 quarters, truncated to �100 lags. Each

of these filters is linear, so that the estimated trend is w(L)xt where xt is the original series

(eg, employment growth) and where w(L) generically denotes the filter. Fig. 2A plots the

weights of these filters in the time domain and Fig. 2B plots the spectral gain of these

filters.dd

As can be seen in these figures, the biweight filter is very similar to the Baxter–King
lowpass filter. It is also comparable to the equal-weight moving average filter of

�40 quarters, however the biweight filter avoids the noise induced by the sharp cutoff

of the moving average filter (these higher frequency components in the moving average

filter are evident in the ripples at higher frequencies in the plot of its gain in Fig. 2B). In

contrast, all three of these filters focus on much lower frequencies than the Hodrick and

cc Tukey’s biweight filter w(L) is two sided with wj¼ c(1– (j/B)2)2 for jjj	B and jjj¼0 otherwise, where B is

the bandwidth and c is a normalization constant such that w(1)¼1.
dd For filter w(L), the estimated trend is w(L)xt and the detrended series is xt–w(L)xt. The spectral gain of the

filter w(L) is kw(eiω)k, where k�k is the complex norm.
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Prescott filter, which places most of its weight on lags of�15 quarters. The biweight filter

estimates trends at multidecadal frequencies, whereas the Hodrick and Prescott trend

places considerable weight on fluctuations with periods less than a decade.

The biweight filter needs to be modified for observations near the beginning and end

of the sample. One approach would be to estimate a time series model for each series, use

forecasts from that model to pad the series at end points, and to apply the filter to this

Fig. 2 Lag weights and spectral gain of trend filters. Notes: The biweight filter uses a bandwidth
(truncation parameter) of 100 quarters. The bandpass filter is a 200-quarter low-pass filter
truncated after 100 leads and lags (Baxter and King, 1999). The moving average is equal-weighted
with 40 leads and lags. The Hodrick and Prescott (1997) filter uses 1600 as its tuning parameter.
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padded series. This approach corresponds to estimating the conditional expectation of the

filtered series at the endpoints, given the available data. However, doing so requires esti-

mating a model which raises the problems discussed earlier, which our approach to trend

removal aims to avoid: if the trends are ignored when the model is estimated, then the

long-term forecasts revert to the mean and this mean reversion potentially introduces

misspecification into the trend estimation, but alternatively specifying the trends as part

of the model introduces potential parametric misspecification. Instead, the approach used

here is to truncate the filter, renormalize, and apply the modified filter directly to the

available data for observations within a bandwidth of the ends of the sample.ee

6.1.2 Subset of Series Used to Estimate the Factors
The data consist of series at multiple levels of aggregation and as a result some of the series

equal, or nearly equal, the sum of disaggregated component series. Although the aggrega-

tion identity does not hold in logarithms, in the context of the DFM, the idiosyncratic term

of the logarithm of higher-level aggregates is highly correlated with the share weighted

average of the idiosyncratic term of the logarithms of its disaggregated components. For

this reason, when the disaggregated components series are available, the disaggregated com-

ponents are used to estimate the factors but the higher-level aggregate series are not used.

For example, the dataset contains total IP, IP of final products, IP of consumer goods,

and seven sectoral IP measures. The first three series are constructed from the seven

sectoral IP series in the dataset, so the idiosyncratic terms of the three aggregates are

collinear with those of the seven disaggregated components. Consequently, only the

seven disaggregated sectoral IP series are used to estimate the factors.

The aggregates not used for estimating the factors include GDP, total consumption,

total employment and, as just stated, total IP. In all, the elimination of aggregates leaves

139 series in the full dataset for estimation of the factors. For the real activity dataset, elim-

inating aggregates leave 58 disaggregate series for estimating the factor. Table 1 provides

the number of series used to estimate the factors by category.

6.2 Real Activity Dataset and Single-Index Model
The first step is to determine the number of static factors in the real activity dataset. Fig. 3

shows three scree plots computed using the 58 disaggregate series in the real activity data-

set: using the full dataset and using subsamples split in 1984, a commonly used estimate of

the Great Moderation break date. Table 2 (panel A) summarizes statistics related to the

number of factors: the marginal R2 of the factors (that is, the numerical values of the first

bar in Fig. 3), the Bai and Ng (2002) ICp2 information criterion, and the Ahn and

Horenstein (2013) eigenvalue ratio.

ee For example, suppose observation t is m<B periods from the end of the sample, where B is the band-

width. Then the estimated trend at date t is
Xm

i¼�B
wixt + i

.Xm

i¼�B
wi, where wi is the weight at lag i of

the unadjusted two-sided filter.
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First consider the full-sample estimates. As seen in Fig. 3, the dominant contribution

to the trace R2 of the 58 subaggregates comes from the first factor which explains fully

38.5% of the variance of the 58 series. Still, there are potentially meaningful contributions

to the trace R2 by the second and possibly higher factors: the marginal R2 for the second

factor over the full sample is 10.3%, for the third is 4.4%, and the total R2 for the first five

is 59.4%, a large increase over the 38.5% explained by the first factor alone. This suggests

at least one, but possibly more, factors in the real activity dataset. The Bai and Ng (2002)

ICp2 criterion estimates three factors, while the Ahn–Horenstein ratio estimates one fac-

tor. Unfortunately, such ambiguity is typical, and in such cases judgment must be exer-

cised, and that judgment depends on the purpose to which the DFM is used.

Fig. 1 (shown in Section 1) plots the four-quarter growth rate of GDP, IP, nonfarm

employment, and manufacturing and trade sales along with their common components

estimated using the single static factor.ff Of these, only manufacturing and trade sales were

used to estimate the factors, the remaining series being aggregates for which component

disaggregated series are in the dataset. Evidently, the full-sample single factor explains the

variation of these series at annual through business cycle frequencies.

Fig. 4 presents estimates of the four-quarter growth in GDP and its common

components computed using the full sample with 1, 3, and 5 factors (the single-factor

common component also appears in Fig. 1). The common component of GDP has

an R2 of 0.73 with a single factor, which increases to 0.88 for five factors. Inspection

Fig. 3 Scree plot for real activity dataset: full sample, pre-1984, and post-1984.

ff The common component of four-quarter growth is the four-quarter growth of the common component

of the series. For the ith series, this common component is Λ̂i F̂ t + F̂ t�1 + F̂ t�2 + F̂ t�3

� 	
, where F̂t and Λ̂i

are, respectively, the principal components estimator of the factors and the ith row of the estimated factor

loadings.
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Table 2 Statistics for estimating the number of static factors
(A) Real activity dataset (N558 disaggregates used for estimating factors)

Number of static factors Trace R2 Marginal trace R2 BN-ICp2 AH-ER

1 0.385 0.385 �0.398 3.739

2 0.489 0.103 �0.493 2.338

3 0.533 0.044 20.494 1.384

4 0.565 0.032 �0.475 1.059

5 0.595 0.030 �0.458 1.082

(B) Full dataset (N5139 disaggregates used for estimating factors)

Number of static factors Trace R2 Marginal trace R2 BN-ICp2 AH-ER

1 0.215 0.215 �0.183 2.662

2 0.296 0.081 �0.233 1.313

3 0.358 0.062 �0.266 1.540

4 0.398 0.040 20.271 1.368

5 0.427 0.029 �0.262 1.127

6 0.453 0.026 �0.249 1.064

7 0.478 0.024 �0.235 1.035

8 0.501 0.024 �0.223 1.151

9 0.522 0.021 �0.205 1.123

10 0.540 0.018 �0.185 1.057

(C) Amenguel-Watson estimate of number of dynamic factors: BN-ICpi values, full dataset (N5139)

No. of
dynamic
factors

Number of static factors

1 2 3 4 5 6 7 8 9 10

1 �0.098 �0.071 �0.072 �0.068 �0.069 �0.065 �0.064 �0.064 �0.064 �0.060

2 20.085 �0.089 �0.087 �0.089 �0.084 �0.084 �0.084 �0.085 �0.080

3 20.090 20.088 20.091 20.088 20.088 20.086 20.086 20.084

4 �0.077 �0.080 �0.075 �0.075 �0.073 �0.072 �0.069

5 �0.064 �0.060 �0.062 �0.057 �0.055 �0.052

6 �0.045 �0.043 �0.040 �0.037 �0.036

7 �0.024 �0.022 �0.020 �0.018

8 �0.002 0.000 0.003

9 0.021 0.023

10 0.044

Notes: BN-ICp2 denotes the Bai and Ng (2002) ICp2 information criterion. AH-ER denotes the Ahn and Horenstein (2013) ratio of (i+1)th to ith eigenvalues. The minimal
BN-ICp2 entry in each column, and themaximal Ahn–Horenstein ratio entry in each column, is the respective estimate of the number of factors and is shown in bold. In panel
C, the BN-ICp2 values are computed using the covariancematrix of the residuals from the regression of the variables onto lagged values of the column number of static factors,
estimated by principal components.



of the fits for all series suggests that the factors beyond the first serve mainly to explain

movements in some of the disaggregate series.

In principle, there are at least three possible reasons why there might be more than

one factor among these real activity series.

The first possible reason is that there could be a single dynamic factor that manifests as

multiple static factors; in the terminology of Section 2, perhaps q¼1, r>1, and G in (7)

has fewer rows than columns. As discussed in Section 2, it is possible to estimate the num-

ber of dynamic factors given the number of static factors, and applying the Amengual and

Watson (2007) test to the real activity dataset, with three static factors, estimates that there

is a single dynamic factor. That said, the contribution to the traceR2 of possible additional

dynamic factors remains large in an economic sense, so the estimate of a single dynamic

factor is suggestive but not conclusive.

The second possible reason is that these series move in response to multiple struc-

tural shocks, and that their responses to those shocks are sufficiently different that the

innovations to their common components span the space of more than one aggregated

shock.

The third reason, discussed in Section 2, is that structural instability could lead to spu-

riously large numbers of static factors; for example, if there is a single factor in both the

first and second subsamples but a large break in the factor loadings, then the full-sample

PC would find two factors, one estimating the first-subsample factor (and being noise in

the second subsample), the other estimating the second-subsample factor.

Fig. 4 Four-quarter GDP growth (black) and its common component based on 1, 3, and 5 static factors:
real activity dataset.

486 Handbook of Macroeconomics



The three scree plots in Fig. 3 does not, however, show evidence of such insta-

bility. The scree plots are remarkably stable over the two subsamples and in particular

the trace R2 of the first factor is essentially the same whether the factor is computed

over the full sample (38.5%), the pre-1984 subsample (41.1%), or the post-1984

subsample (38.7%). Consistent with this stability, the Bai and Ng (2002) criterion esti-

mates two factors in the first subsample, three in the second, and three in the com-

bined sample.

Fig. 5 provides additional evidence on this stability by plotting the four-quarter

growth of the first estimated factor (the first principal component) computed over the

full dataset and computed over the pre- and post-1984 subsamples. These series are nearly

indistinguishable visually and the correlations between the full-sample estimate and the

pre- and post-1984 estimates are high (both exceed 0.99). Thus Figs. 3–5 point to sta-

bility of the single-factor model. We defer formal tests for stability to the analysis of the

larger DFM based on the full dataset.

Taken together, these results suggest that the first estimated factor (first principal com-

ponent) based on the full dataset is a good candidate for an index of quarterly real eco-

nomic activity.

Of course, other variables, such as financial variables, are useful for forecasting and

nowcasting real activity. Moreover, while multiple macro shocks plausibly affect the

movements of these real variables, the series in the real activity dataset provide only

responses to those shocks, not more direct measures, so for an analysis of structural shocks

one would want to expand the dataset so that the space of factor innovations more

Fig. 5 First factor, real activity dataset: full sample, 1959–84, and 1984–2014.
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plausibly spans the space of structural shocks. For example, one would want to include

interest rates, which are responsive to monetary policy shocks, measures of oil prices and

oil production, which are responsive to oil supply shocks, and measures of inflation,

which would respond to both cost and demand shocks.

6.3 The Full Dataset and Multiple-Factor Model
6.3.1 Estimating the Factors and Number of Factors
Fig. 6A is the scree plot for the full dataset with up to 10 factors, and Table 2 (panel B)

reports statistics related to estimating the number of factors. The Bai and Ng (2002) crite-

rion chooses four factors, while the Ahn–Horenstein criterion chooses one factor. Com-

pared to the real activity dataset, the first factor explains less of the variation and the decline

in higher factors is not as sharp: the marginalR2 of the fourth factor is 0.040, dropping only

to 0.024 for the eighth factor. Under the assumption of anywhere between three and eight

static factors, the Amengual and Watson (2007) test selects three dynamic factors (Table 2,

panel C), only one less than the four static factors chosen by the Bai and Ng (2002) crite-

rion. As is the case for the static factors, the decline in the marginal R2 for the dynamic

factors is gradual so the evidence on the number of dynamic factors is not clear cut.

Table 3 presents two different measures of the importance of the factors in explaining

movements in various series. The first statistic, in columns A, is the R2 of the common

component for the models with 1, 4, and 8 factors; this statistic measures the variation in

the series due to contemporaneous variation in the factor. According to the contempo-

raneous measure in columns A, the first factor explains large fractions of the variation in

the growth of GDP and employment, but only small fractions of the variation in prices

and financial variables. The second through fourth factors explain the variation in head-

line inflation, oil prices, housing starts, and some financial variables. The fifth through

eighth factors explain much of the variation in labor productivity, hourly compensation,

the term spread, and exchange rates. Thus, the additional factors that would be chosen by

the Bai and Ng criterion explain substantial fractions of the variation in important classes

of series.

Columns B of Table 3 presents a related measure: the fraction of the four quarters

ahead forecast error variance due to the dynamic factors, for 1, 4, and 8 dynamic factors,

computed under the assumption of eight static factors.gg For some series, including hous-

ing starts, the Ted spread, and stock prices, the fifth through eighth dynamic factors

explain substantial fractions of their variation at the four-quarter horizon. Thus both

gg Use (6) and (7) to write Xt¼ΛΦ(L)�1Gηt+ et. Then the h-period ahead forecast error is

var Λ
Xh�1

i¼0
ΦiGηt�i

� �
+ var et j et�h,et�h�1,…ð Þ, and the fraction of the h-step forecast error variance

explained by the dynamic factors is the ratio of the first term in this expression to the total. The term

var etjet�h,et�h�1,…ð Þ is computed using an AR(4).
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blocks of Table 3 suggest that these higher factors, both static and dynamic, capture com-

mon innovations that are important for explaining some categories of series.

The scree plot in Fig. 6A and the statistics in Tables 2 and 3 point to a relatively small

number of factors—between 4 and 8 factors—describing a large amount of the variation

in these series. This said, a substantial amount of the variation remains, and it is germane

to ask whether that remaining variation is from idiosyncratic disturbances or whether

Fig. 6 (A) Scree plot for full dataset: full sample, pre-1984, and post-1984. (B) Cumulative R2 as a
function of the number of factors, 94-variable balanced panel.
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there are small remaining correlations across series that could be the result of small, higher

factors. Fig. 6B shows the how the trace R2 increases with the number of principal com-

ponents, for up to 60 principal components. The key question is whether these higher fac-

tors represent common but small fluctuations or, alternatively, are simply the consequence

of estimation error, idiosyncratic disturbances, or correlated survey sampling noise because

multiple series are derived in part from the same survey instrument. There is a small amount

of work investigating the information content in the higher factors. De Mol et al. (2008)

find that Bayesian shrinkage methods applied to a large number of series closely approx-

imate principal components forecasts using a small number of factors. Similarly, Stock

and Watson (2012b) use empirical Bayes methods to incorporate information in higher

factors and find that for many series forecasts using this information do not improve on

forecasts using a small number of factors. Carrasco and Rossi (forthcoming) use shrinkage

methods to examine whether the higher factors improve forecasts. Onatski (2009, 2010)

develops theory for factor models with many weak factors. Although the vast bulk of the

literature is consistent with the interpretation that variation in macroeconomic data are

Table 3 Importance of factors for selected series for various numbers of static and dynamic factors: full
dataset DFM

Series

A. R2 of common
component

B. Fraction of four
quarters ahead forecast
error variance due to
common component

Number of static
factors r

Number of dynamic
factors q with r58 static

factors

1 4 8 1 4 8

Real GDP 0.54 0.65 0.81 0.39 0.77 0.83

Employment 0.84 0.92 0.93 0.79 0.86 0.90

Housing starts 0.00 0.52 0.67 0.49 0.51 0.75

Inflation (PCE) 0.05 0.51 0.64 0.34 0.66 0.67

Inflation (core PCE) 0.02 0.13 0.17 0.24 0.34 0.41

Labor productivity (NFB) 0.02 0.30 0.59 0.12 0.46 0.54

Real hourly labor compensation (NFB) 0.00 0.25 0.70 0.19 0.67 0.71

Federal funds rate 0.25 0.41 0.54 0.52 0.54 0.62

Ted-spread 0.26 0.59 0.61 0.18 0.33 0.59

Term spread (10 year–3 month) 0.00 0.36 0.72 0.32 0.38 0.63

Exchange rates 0.01 0.22 0.70 0.05 0.60 0.68

Stock prices (SP500) 0.06 0.49 0.73 0.14 0.29 0.79

Real money supply (MZ) 0.00 0.25 0.34 0.15 0.24 0.29

Business loans 0.11 0.49 0.51 0.13 0.16 0.23

Real oil prices 0.04 0.68 0.70 0.40 0.66 0.71

Oil production 0.09 0.10 0.12 0.01 0.04 0.12
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associated with a small number of factors, the question of the information content of higher

factors remains open and merits additional research.

The choice of the number of factors depends on the application at hand. For fore-

casting real activity, the sampling error associated with additional factors could outweigh

their predictive contribution. In contrast, for the structural DFM analysis in Section 7 we

will use eight factors because it is important that the factor innovations span the space of

the structural shocks and the higher factors capture variation.

6.3.2 Stability
Table 4 summarizes various statistics related to the subsample stability of the four- and

eight-factor models estimated on the full dataset. Table 4 (panel A) summarizes results

for equation-by-equation tests of stability. The Chow test is the Wald statistic testing

the hypothesis that the factor loadings are constant in a given equation, against the alter-

native that they have different values before and after the Great Moderation break date of

1984q4 (Stock andWatson, 2009; Breitung and Eickmeier, 2011, Section 3). The Quandt

likelihood ratio (QLR) version allows for an unknown break date and is the maximum

value of the Chow statistic (the sup-Wald statistic) for potential breaks in the central

70% of the sample, see Breitung and Eickmeier (2011) for additional discussion. In both

the Chow and QLR tests, the full-sample estimate of the factors is used as regressors.

The table reports the fraction of the series that rejects stability at the 1%, 5%, and 10%

significance levels.hh Table 4 (panel B) reports a measure of the magnitude of the break,

the correlation between the common component computed over a subsample and over

the full sample, where the two subsamples considered are the pre- and post-1984 periods.

Table 4 (panel C) breaks down the results in Table 4 (panels A and B) by category of series.

The statistics in Table 4 all point to a substantial amount of instability in the factor

loadings. More than half the series reject stability at the 5% level for a break in 1984

in the four-factor model, and nearly two-thirds reject in the eight-factor model. As seen

in Table 4 (panel C), the finding of a break in the factor loadings in 1984 is widespread

across categories of series. Rejection rates are even higher for the QLR test of stability of

the factor loadings.

A reasonable worry is that these rejection rates are overstated because the tests are over-

sized, and Monte Carlo evidence in Breitung and Tenhofen (2011) suggests that the size

distortions could be large if the idiosyncratic disturbances are highly serially correlated. For

this reason, it is also useful to check if the instability is large in an economic sense.

One such measure of the magnitude of the instability is whether the common compo-

nent estimated over a subsample is similar to the full-sample common component. As

shown in Table 4 (panel B), for at least half the series, the common components estimated

hh Results are reported for the 176 of the 207 series with at least 80 quarterly observations in both the

pre- and post-1984 subsamples.
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Table 4 Stability tests for the four- and eight-factor full dataset DFMs
(A) Fraction of rejections of stability null hypothesis

Level of test Chow test (1984q4 break) QLR test

(i) Four factors

1% 0.39 0.62

5% 0.54 0.77

10% 0.63 0.83

(ii) Eight factors

1% 0.55 0.94

5% 0.65 0.98

10% 0.72 0.98

(B) Distribution of correlations between full- and split-sample common components

Percentile of distribution

5% 25% 50% 75% 5%

(i) Four factors

1959–84 0.65 0.89 0.96 0.99 1.00

1985–2014 0.45 0.83 0.95 0.97 0.99

(ii) Eight factors

1959–84 0.57 0.83 0.92 0.97 0.99

1985–2014 0.43 0.80 0.94 0.97 0.99

(C) Results by category (four factors)

Category
Number
of series

Fraction of Chow test
rejections for 5% test

Median correlation
between full- and

split-sample common
components

1959–84 1985–2014

NIPA 20 0.50 0.98 0.96

Industrial production 10 0.50 0.98 0.97

Employment and

unemployment

40 0.40 0.99 0.99

Orders, inventories, and sales 10 0.80 0.98 0.96

Housing starts and permits 8 0.75 0.96 0.91

Prices 35 0.49 0.88 0.90

Productivity and labor

earnings

10 0.80 0.92 0.67

Interest rates 12 0.33 0.98 0.94

Money and credit 9 0.89 0.93 0.89

International 3 0.00 0.97 0.97

Asset prices, wealth, and

household balance sheets

12 0.58 0.95 0.92

Other 1 1.00 0.95 0.91

Oil market variables 6 0.83 0.79 0.79

Notes: These results are based on the 176 series with data available for at least 80 quarters in both the pre- and post-84
samples. The Chow tests in (A) and (C) test for a break in 1984q4.



using the two subsample factor loadings are highly correlated. For a substantial portion of

the series, however, there is a considerable difference between the full-sample and subsam-

ple estimates of the common components. Indeed, for 5% of the series, the correlation

between the common component estimated post-1984 and the common component

estimated over the full sample is less than 50% for both the four- and eight-factor models.

Interestingly, when broken down by category, for some categories, most of the subsam-

ple and full-sample common components are highly correlated (Table 4 (panel C), final

two columns). This is particularly true for the real activity variables, a finding consistent with

the stability of the common component shown in Fig. 5 for the single factor from the real

activity dataset. However, for some categories the subsample and full-sample common com-

ponents are quite different, with median within-category correlations of less than 0.9 in at

least one subsample for prices, productivity, money and credit, and oil market variables.

On net, Table 4 points to substantial instability in the DFM. One model of this

instability, consistent with the results in the table, is that there was a break around

1984, consistent with empirical results in Stock and Watson (2009), Breitung and

Eickmeier (2011), and Chen et al. (2014). However, the results in Table 4 could also

be consistent with more complicated models of time variation.

6.4 Can the Eight-Factor DFM Be Approximated by a Low-Dimensional VAR?
A key motivation for DFMs is that using many variables improves the ability of the model

to span the space of the structural shocks. But is it possible to approximate the DFM by a

small VARii? If so, those few variables could take the place of the factors for forecasting,

and SVARmethods could be used directly to identify structural shocks without needing

the SDFM apparatus: in effect, the unobserved factors could be replaced by observed

factors in the form of this small number of variables. An approximation to the factors

by observable variables could take two forms. The strong version would be for a small

number of variables to span the space of the factors. A weaker version would be for a

small number of variables to have VAR innovations that span the space of the factor

innovations.jj Bai and Ng (2006b) develop tests for whether observable variables span

the space of the unobserved factors and apply those tests to the Fama-French facots in

portfolio analysis. Following Bai and Ng (2006b), we use canonical correlations to

examine this possibility in our macro data application.

Table 5 examines the ability of four different VARs to approximate theDFMwith eight

static factors. The first twoVARs are representative of small VARs used in empirical work: a

four-variable system(VAR-A)withGDP, total employment, personal consumptionexpen-

diture (PCE) inflation, and the Fed funds rate, and an eight-variable system (VAR-B) that

ii We thank Chris Sims for raising this question.
jj If the observable variables are an invertible contemporaneous linear combination of the factors then the

VAR and the factors will have the same innovations, but having the same innovations do not imply that

the observable variables are linear combinations of contemporaneous values of the factors.
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additionally has the ISMmanufacturing index, the oil price PPI, the corporate paper-90-day

treasury spread, and the 3 month–10 year treasury term spread. The eight variables in the

thirdVAR(VAR-C)were selectedusing a stepwiseprocedure toproduceahigh fit between

VARresiduals andthe innovations in theeight static factors (ie, the residuals in theVARwith

the eight static factors).This procedure led to theVAR-Cvariablesbeing the indexof IP, real

personal consumption expenditures, government spending, thePPI for industrial commod-

ities, unit labor costs for business, the S&P500, the 6 month–3 month term spread, and a

trade-weighted index of exchange rates.kk The final VAR, VAR-O, is used for the SVAR

analysis of the effect of oil shocks in Section 7 and is discussed there.

Table 5 Approximating the eight-factor DFM by a eight-variable VAR
Canonical correlation

1 2 3 4 5 6 7 8

(A) Innovations

VAR-A 0.76 0.64 0.6 0.49

VAR-B 0.83 0.67 0.59 0.56 0.37 0.33 0.18 0.01

VAR-C 0.86 0.81 0.78 0.76 0.73 0.58 0.43 0.35

VAR-O 0.83 0.80 0.69 0.56 0.50 0.26 0.16 0.02

(B) Variables and factors

VAR-A 0.97 0.85 0.79 0.57

VAR-B 0.97 0.95 0.89 0.83 0.61 0.43 0.26 0.10

VAR-C 0.98 0.93 0.90 0.87 0.79 0.78 0.57 0.41

VAR-O 0.98 0.96 0.88 0.84 0.72 0.39 0.18 0.02

Notes:All VARs contain four lags of all variables. The canonical correlations in panel A are between the VAR residuals and
the residuals of a VAR estimated for the eight static factors.
VAR-Awas chosen to be typical of four-variable VARs seen in empirical applications. Variables: GDP, total employment,
PCE inflation, and Fed funds rate.
VAR-B was chosen to be typical of eight-variable VARs seen in empirical applications. Variables: GDP, total employ-
ment, PCE inflation, Fed funds, ISM manufacturing index, real oil prices (PPI-oil), corporate paper-90-day treasury
spread, and 10 year–3 month treasury spread.
VAR-C variables were chosen by stepwise maximization of the canonical correlations between the VAR innovations and
the static factor innovations. Variables: industrial commodities PPI, stock returns (SP500), unit labor cost (NFB), exchange
rates, industrial production, Fed funds, labor compensation per hour (business), and total employment (private).
VAR-O variables: real oil prices (PPI-oil), global oil production, global commodity shipment index, GDP, total employ-
ment (private), PCE inflation, Fed funds rate, and trade-weighted US exchange rate index.
Entries are canonical correlations between (A) factor innovations and VAR residuals and (B) factors and observable
variables.

kk The variables in VAR-C were chosen from the 207 variables so that the ith variable maximizes the ith

canonical correlation between the residuals from the i-variable VAR and the residuals from the eight-

factor VAR. In the first step, the variable yielding the highest canonical correlation between its autore-

gressive residual and the factor VAR residuals was chosen. In the second step, the variable that maximized

the second canonical correlation among all 206 two-variable VAR residuals (given the first VAR variable)

and the factor VAR residuals was chosen. These steps continued until eight variables were chosen.

494 Handbook of Macroeconomics



Table 5 (panel A) examines whether the VAR innovations are linear combinations

of the eight innovations in the static factors by reporting the canonical correlations

between the two sets of residuals. For the four-variable VAR, the first canonical

correlation is large, as are the first several canonical correlations in the eight-variable

VARs, indicating that some linear combinations of the DFM innovations can be con-

structed from linear combinations of the VAR innovations. But the canonical corre-

lations drop off substantially. For the eight-variable VAR-B, the final four canonical

correlations are less than 0.40, indicating that the innovation space of this typical

VAR differs substantially from the innovation space of the factors. Even for VAR-

C, for which the variables were chosen to maximize the stepwise canonical correlations

of the innovations, the final three canonical correlations are less than 0.60, indicating

that there is substantial variation in the factor innovations that is not captured by the

VAR innovations.

Table 5 (panel B) examine whether the observable variables span the space of the

factors, without leads and lags, by reporting the canonical correlations between the

observable variables and the factors for the three VARs. For the four-variable VAR,

the canonical correlations measure the extent to which the observable variables are linear

combinations of the factors; for the eight-variable VARs, the canonical correlations

measure whether the spaces spanned by the observable variables and the factors are

the same, so that the eight latent factors estimated from the full dataset could be replaced

by the eight observable variables. The canonical correlations in panel B indicate that

the observable variables are not good approximations to the factors. In VAR-B, three

of the canonical correlations are less than 0.50, and even in VAR-C two of the canonical

correlations are less than 0.6.

These results have several caveats. Because the factors are estimated, the sample

canonical correlations will be less than one even if in population they equal one, and

no measure of sampling variability is provided. Also, VAR-C was chosen by a stepwise

procedure, and presumably a better approximation would obtain were it possible to

choose the approximating VAR out of all possible eight-variable VARs.ll

Still, these results suggest that while typical VARs capture important aspects of the

variation in the factors, they fail to span the space of the factors and their innovations fail

to span the space of the factor innovations. Overall, these results suggest that the DFM, by

summarizing information from a large number of series and reducing the effect of mea-

surement error and idiosyncratic variation, produces factor innovations that contain

information not contained in small VARs.

ll Other methods for selecting variables, for example stepwise maximization of the ith canonical correlation

between the variable and the factor (instead of between the VAR innovations and the factor innovations)

yielded similar results to those for VAR-C in Table 5.
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7. MACROECONOMIC EFFECTS OF OIL SUPPLY SHOCKS

This section works through an empirical example that extends SVAR identification

schemes to SDFMs. The application is to estimating the macroeconomic effects of oil

market shocks, using identification schemes taken from the literature on oil and the

macroeconomy. For comparison purposes, results are provided using a 207-variable

SDFM with eight factors, a 207-variable FAVAR in which one or more of factors are

treated as observed, and an eight-variable SVAR.

7.1 Oil Prices and the Macroeconomy: Old Questions, New Answers
Oil plays a central role in developed economies, and for much of the past half century the

price of oil has been highly volatile. The oil price increases of the 1970s were closely

linked to events such as the 1973–74 OPEC oil embargo and wars in the Middle East,

as well as to developments in international oil markets (Hamilton, 2013; Baumeister and

Kilian, 2016). The late 1980s through early 2000s were a period of relative quiescence,

interruptedmainly by the spike in oil prices during the Iraqi invasion of Kuwait. Since the

early 2000s oil prices have again been volatile. The nominal price of Brent oil, an inter-

national benchmark, rose from under $30/barrel in 2002 to a peak of approximately

$140/barrel in June 2008. Oil prices collapsed during the financial crisis and ensuing

recession, but by the spring of 2011 recovered to just over $100/barrel. Then, beginning
the summer of 2014, oil prices fell sharply and Brent went below $30 in early 2016, a

decline that was widely seen as stemming in part from the sharp increase in unconven-

tional oil production (hydraulic fracturing). The real oil price over the last three decades is

plotted in Fig. 7A.

Fig. 7B shows fourmeasures of the quarterly percentage change inoil prices, alongwith

its common component estimated using the eight factors from the 207-variable DFM of

Section 6. Fig. 7B reminds us that there is no single price of oil, rather oil is a heterogeneous

commodity differentiated by grade and extraction location. The four measures of real oil

prices (Brent, WTI, US refiners’ acquisition cost of imported oil and the PPI for oil, all

deflated by the core PCE price index) move closely together but are not identical. As dis-

cussed later, in this section these series are restricted to have the samecommoncomponent,

which (as can be seen in Fig. 7B) captures the common movements in these four price

indices.

Economists have attempted to quantify the effect of oil supply shocks on the US econ-

omy ever since the oil supply disruptions of the 1970s. In seminal work, Hamilton (1983)

found that oil price jumps presaged US recessions; see Hamilton (2003, 2009) for updated

extensive discussions. Given the historical context of the 1970s, the first wave of analysis of

the effect of oil supply shocks on the economy generally treated unexpected changes in oil

prices as exogenous and as equivalent to oil supply shocks. In the context of SVAR analysis,
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Quarterly percent change in real oil price: four oil price series and the common component  

Fig. 7 Real oil price (2009 dollars) and its quarterly percent change.
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this equivalent allows treating the innovation in the oil price equation as an exogenous

shock, which in turn corresponds to ordering oil first in a Cholesky decomposition.mm

Recent research, however, has apended this early view that unexpected oil price

movements are solely the result of exogenous oil supply shocks and has argued instead

that much or most movements in oil prices are in fact due to shocks to global demand

or perhaps to demand shocks that are specific to oil (inventory demand). For example,

this view accords with the broad perception that the long climb of oil prices in the mid-

2000s was associated with increasing global demand, including demand from China, in

the face of conventional supply that was growing slowly or even declining before the

boom in unconventional oil production began in the late 2000s and early 2010s.

The potential importance of aggregate demand shocks for determining oil prices was

proposed in the academic literature by Barsky and Kilian (2002) and has been influentially

promoted by Kilian (2008a,b, 2009). Econometric attempts to distinguish oil supply

shocks from demand shocks generally do so using SVARs, broadly relying on three iden-

tification schemes. The first relies on timing restrictions to impose zeros in the H matrix

of Eq. (20). The logic here, due to Kilian (2009), starts by noting that it is difficult to

adjust oil production quickly in response to price changes, so that innovations in the

quantity of oil produced are unresponsive to demand shocks during a sufficiently short

period of time. As is discussed later in more detail, this timing restriction can be used to

identify oil supply shocks.

The second identification scheme uses inequality restrictions: standard supply and

demand reasoning suggest that a positive shock to the supply of oil will push down

oil prices and increase oil consumption, whereas a positive shock to aggregate demand

would push up both oil prices and consumption. This sign restriction approach has been

applied by Peersman and Van Robays (2009), Lippi and Nobili (2012), Kilian and

Murphy (2012, 2014), Baumeister and Peersman (2013), L€utkepohl and Netšunajev

(2014), and Baumeister and Hamilton (2015b) among others.

The third identification approach identifies the response to supply shocks using

instrumental variables. Hamilton (2003) used a list of exogenous oil supply disruptions,

such as the Iraqi invasion of Kuwait, as an instrument in a single-equation estimation of

the effect of oil supply shocks on GDP which Kilian (2008b) extended, also in a single-

equation context. Stock and Watson (2012a) used the method of external instruments in

a SDFM to estimate the impulse responses to oil supply shocks using various instruments,

including (like Hamilton, 2003) a list of oil supply disruptions.

Broadly speaking, a common finding from this secondwave of research is that oil supply

shocks account for a small amount of the variation both in oil prices and in aggregate eco-

nomic activity, at least since the 1970s. Moreover, this research finds that much or most of

mm Papers adopting this approach include Shapiro and Watson (1988) and Blanchard and Galı́ (2010).
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the variation in oil prices (at least through 2014) arises from shifts in demand, mainly aggre-

gate demand or demand more specifically for oil.

This section shows how this recent research on oil supply shocks can be extended

from SVARs to FAVARs and SDFMs. For simplicity, this illustration is restricted to

two contemporaneous identification schemes. The papers closest to the treatment in this

section are Aastveit (2014), who uses a FAVAR with timing restrictions similar to the

ones used here, Charnavoki and Dolado (2014) and Juvenal and Petrella (2015), who

use sign restrictions in a SDFM, and Aastveit et al. (2015), who use a combination of sign

and timing restrictions in a FAVAR. The results of this section are confirmatory of these

papers and more generally of the modern literature that stresses the importance of

demand shocks for determining oil prices, and the small role that oil supply shocks have

played in determining oil production since the early 1980s. Although the purpose of this

section is to illustrate these methods, the work here does contain some novel features and

new results.

7.2 Identification Schemes
We consider two identification schemes based on the contemporaneous zero restrictions

in the H matrix, that is, schemes of the form discussed in Section 4.2. The first identi-

fication scheme, which was used in the early oil shocks literature, treats oil prices as exog-

enous with oil price innovations assumed to be oil price supply shocks. The second

identification scheme follows Kilian (2009) and distinguishes oil supply shocks from

demand shocks by assuming that oil production responds to demand shocks only with

a lag.nn The literature continues to evolve, for example Kilian and Murphy (2014)

include inventory data and use sign restrictions to help to identify oil-specific demand

shocks. The treatment in this section does not aim to push the frontier on this empirical

issue, but rather to illustrate SDFM, FAVAR, and SVARmethods in a simple setting that

is still sufficiently rich to highlight methods and modeling choices.

nn Kilian’s (2009) treatment used monthly data, whereas here we use quarterly data. The timing restrictions,

for example the sluggish response of production to demand, are more appropriate at the monthly than at

the quarterly level. G€untner (2014) used sign restrictions in an oil-macro SVAR to identify demand

shocks and find that oil producers respond negligibly to demand shocks within the month, and that most

producers respond negligibly within a quarter, although Saudi Arabia is estimated to respond after a delay

of 2 months. The recent development of fracking and horizontal drilling technology also could undercut

the validity of the timing restriction, especially at the quarterly level, because new wells are drilled and

fracked relatively quickly (in some cases in a matter of weeks). In addition, because well productivity

declines much more rapidly than for conventional wells, nonconventional production can respond more

quickly to price than can most conventional production. If the restrictions are valid at the monthly fre-

quency but not quarterly, our estimated supply shocks would potentially include demand shocks, biasing

our SIRFs. Despite these caveats, however, the results here are similar to those in Kilian’s (2009) and

Aastveit’s (2014) monthly treatments with the same exclusion restrictions.
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The “oil exogenous” identification scheme is implemented in three related models: a

207-variable SDFM with eight unobserved factors, a 207-variable FAVAR (that is, a

SDFM in which some of the eight factors are treated as observed), and an eight-variable

SVAR. The Kilian (2009) identification scheme is examined in a eight-variable VAR, in

a 207-variable FAVAR with three observed and five unobserved factors, and a 207-

variable FAVAR with one observed and seven unobserved factors. As is discussed later,

this final FAVAR is used instead of a SDFM with all factors unobserved because the oil

production innovation plays such a small macroeconomic role that it appears not to be

spanned (or is weakly spanned) by the space of innovations to the macro factors.

For the SVAR, identification requires sufficient restrictions on H to identify the

column of H associated with the oil supply shock and, for the second assumption, the

columns associated with the aggregate demand and oil-specific demand shocks.

For the FAVARs in which the relevant factors (oil prices in the “oil price exogenous”

case, and oil production, aggregate demand, and oil prices in the Kilian (2009) case) are all

modeled as observed, no additional identifying restrictions are needed beyond the SVAR

identifying restrictions.

For the SDFM and for the FAVARwith only one of the three factors observed, iden-

tification also entails normalizations on the factor loadings Λ and on the matrixG relating

the dynamic factor innovations to the static factor innovations.

The SDFM and FAVARmodels require determining the number of dynamic factors.

Although Table 2 (panel C) can be interpreted as suggesting fewer dynamic than static

factors, we err on the side of over-specifying the space of innovations so that they span the

space of the reduced number of shocks of interest, and therefore set the number of

dynamic factors equal to the number of static factors, so in turn the dimension of ηt
(the factor innovations) is eight. Thus we adopt the normalization that G is the identity

matrix.

7.2.1 Identification by Treating Oil Prices Innovations as Exogenous
The historical starting point of the oil shock literature holds that any unexpected change

in oil prices is exogenous to developments in the US economy. One motivation for this

assumption is that if unexpected changes in oil prices arise from unexpected develop-

ments in supply—either supply disruptions from geopolitical developments or unex-

pected upticks in production—then those changes are specific to oil supply, and thus

can be thought of as oil supply shocks. A weaker interpretation is that oil prices are deter-

mined in the world market for oil so that unexpected changes in oil prices reflect inter-

national developments in the oil market, and thus are exogenous shocks (although they

could be either oil supply or demand shocks). In either case, an unexpected increase in the

real price of oil is interpreted as an exogenous oil price shock. Because the oil price shock

is identified as the innovation in the (log) price of oil, it is possible to estimate structural

impulse responses with respect to this shock.
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7.2.1.1 SVAR and FAVAR
Without loss of generality, order the oil price first in the list of variables. The assumption

that the oil price shock εt
oil is exogenous, combined with the unit effect normalization,

implies that η1t ¼ εoilt . Thus the relation between ηt and εt in (28) can be written,

ηt ¼ 1 0

H�1 H��

� �
εoilteη�t

� �
, (71)

where eη�t spans the space of ηt orthogonal to η1t. The vectorH•1 is identified as the coef-

ficient in the (population) regression of η•t on η1t.
In practice, this identification scheme is conveniently implemented by ordering oil

first in a Cholesky decomposition; the ordering of the remaining variables does not mat-

ter for the purpose of identifying and estimating the SIRFs with respect to the oil shock.

7.2.1.2 SDFM
In addition to the identification of H in (71), identification in the SDFM requires nor-

malization restrictions on the factor loadings Λ and on G. Because the number of static

and dynamic factors is the same, we follow Section 5.1.2 and setG to the identity matrix.

If the dataset had a single oil price, then the named factor normalization would equate

the innovation in the first factor with the innovations in the common component of oil.

Accordingly, with a single oil price measure ordered first among the DFM variables, the

first row of Λ would be Λ1¼ (1 0… 0). The normalization of the next seven rows (there

are eight static factors) is arbitrary, although some care must be taken so that the inno-

vations of the common components of those seven variables, plus oil prices, spans the

space of the eight factor innovations.

The 207-variable dataset, however, contains not one but four different measures of oil

prices: Brent, WTI, refiners’ acquisition cost, and the producer price of oil. All four

series, specified as percentage changes in price, are used as indicators that measure the

percentage change in the common (unobserved) price of oil, which is identified as

the first factor by applying the named factor normalization to all four series. This

approach entails using the specification of Λ in (60).oo

BecauseG is set to the identity matrix, the innovation to the oil price factor is the oil

price innovation.

oo Figure 7 suggests that real oil prices are I(1), and we use oil price growth rates in the empirical analysis,

ignoring cointegration restrictions. This is the second approach to handling cointegration discussed in

Section 2.1.4. In a fully parametric DFM (Section 2.3.2), imposing cointegration improves efficiency

of the estimates, but the constraint may lead to less efficient estimates in nonparametric (principal com-

ponents) models. This treatment also allows all four oil prices to be used to estimate the loading on the first

factor and therefore to name (identify) the oil price factor.
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7.2.2 Kilian (2009) Identification
Following Kilian (2009), this scheme separately identifies an oil supply shock, an aggregate

world commodity demand shock, and an oil-specific demand shock. This is accomplished

by augmenting the system with a measure of oil production (barrels pumped during the

quarter) and a measure of global real economic activity. The measure of global economic

activity we use here is Kilian’s (2009) global index of bulk dry goods shipments.

7.2.2.1 SVAR and FAVAR
The justification for the exclusion restrictions in theHmatrix is as follows. (i) Because of

technological delays in the ability to adjust production at existing wells, to shut down

wells, and to bring new wells on line, crude oil production responds with a delay to

demand shocks or to any other macro or global shocks. Thus, within a period, an unex-

pected change in oil production is exogenous and is therefore an exogenous supply

shocks (εt
OS). Thus the innovation to oil production equals the oil supply shock.

(ii) Global economic activity can respond immediately to oil supply shocks and responds

to global aggregate demand shocks (εt
GD), but otherwise is sluggish and responds to no

other shocks within the period. (iii) Real oil prices respond to oil supply shocks and

aggregate demand shocks within the period, and to other oil price-specific shocks as well,

but to no other macro or global shocks. Kilian interprets the other oil price-specific

shocks (εt
OD) as shocks to oil demand that are distinct from aggregate demand shocks;

examples are oil inventory demand shocks, perhaps driven by anticipated oil supply

shocks, or speculative demand shocks.

The foregoing logic imparts an upper triangular structure toH and a Cholesky order-

ing to the shocks:

ηoilproductiont

ηglobalactivityt

ηoilpricet

η�t

0BB@
1CCA¼

1 0 0 0

H12 1 0 0

H13 H23 1 0

H1� H2� H3� H��

0BB@
1CCA

εOS
t

εGD
t

εOD
teη�t

0BB@
1CCA, (72)

where the unit coefficients on the diagonal impose the unit effect normalization and the

variables are ordered such that the innovations are to global oil production, global aggre-

gate demand, the price of oil, and the remaining series. The first three rows ofH identify

the three shocks of interest, and the remaining elements of the first, second, and third

rows of H are identified as the population regression coefficients of the innovations

on the shocks.

For convenience, the identification scheme (72) can be implemented by ordering the

first three variables in the order of (72) and adopting a lower triangular ordering

(Cholesky factorization) for the remaining variables, renormalized so that the diagonal

elements of H equal 1. Only the first three shocks are identified, and the SIRFs with

respect to those shocks do not depend on the ordering of the remaining variables.
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7.2.2.2 SDFM
The SDFM is identified by the restrictions on H in (72), the named factor normalization

for Λ, and setting G to be the identity matrix.

As mentioned earlier, the SDFM implementation treats the oil production factor

as observed and the remaining seven factors as unobserved. Of these seven unobserved

factors, we are interested in two linear combinations of the factor innovations that

correspond to the global activity innovation and the oil price innovation. The combina-

tion of one observed factor, two identified unobserved factors, and five unidentified

unobserved factors gives a hybrid FAVAR-SDFM. In this hybrid, the named factor

normalization is,

Oil productiont
Global activityt
pPPI�Oil
t

pBrentt

pWTI
t

pRACt

X7:n, t

2666666664

3777777775
¼

1 0 0 0 � � � 0

0 1 0 0 � � � 0

0 0 1 0 � � � 0

0 0 1 0 � � � 0

0 0 1 0 � � � 0

0 0 1 0 � � � 0

Λ7:n

2666666664

3777777775
F
Oil production
t

F
Global activity
t

F
oil price
t

F4:r, t

2664
3775þ

0

e2t
e3t
e4t
e5t
e6t
e7:n, t

2666666664

3777777775
(73)

where the first variable is OilProductiont, which is treated as an observed factor, the

second variable is the global activity (commodity shipment) index, and the next four

variables are the four oil price measures. The first factor is the observed oil pro-

duction factor. The next two factors, which are unobserved, are the global activity

factor and the oil price factor. The identity matrix normalization of G associates

the innovations with these factors, so that those innovations align with the first three

innovations in (72).

7.3 Comparison SVAR and Estimation Details
7.3.1 Comparison SVAR
Because the SDFM is specified with eight static and dynamic factors, the comparison

SVAR was chosen to have eight variables. Of the eight variables in the SVAR, three

are those in Kilian’s (2009) three-variable SVAR: the real oil price (PPI-oil), global

oil production, and Kilian’s (2009) global activity index (bulk dry shipping activity).

The remaining five variables were chosen to represent different aspects of US aggregate

activity, inflation, and financial markets: GDP, total employment, PCE inflation, the

Federal funds rate, and a trade-weighted index of exchange rates.

Canonical correlations between the factor innovations and the VAR innovations are

summarized in the “VAR-O” row of Table 5 (panel A). While the first few canonical

correlations are large, the final four are 0.50 or less. Evidently, the VAR and factor inno-

vations span substantially different spaces.

503Factor Models and Structural Vector Autoregressions



7.3.2 Summary of SDFM Estimation Steps
7.3.2.1 Summary of Steps
We now summarize the steps entailed in estimating the SIRF for the SDFM of

Section 7.2.2 with one observed factor and three identified shocks. From (58), the SIRF

with respect to the ith shock is,

SIRFi¼ΛΦ Lð Þ�1
GHi, (74)

where Hi is the ith column of H and i¼1, 2, 3. This SIRF is estimated in the following

steps.

1. Order the variables as in (73) and, using the restricted Λ in (73), estimate the seven

unobserved static factors by restricted least-squares minimization of (13) as discussed

in Section 2.3.1.pp Augment these seven factors withOilProductiont so that the vector

of eight factors has one observed factor (ordered first) and the seven estimated factors.

The next five variables in the named factor normalization can be chosen arbitrarily so

long as they are not linearly dependent. This step yields the normalized factors F̂ t and

factor loadings Λ̂.
2. Use F̂ t to estimate the VAR, F̂ t ¼Φ Lð ÞF̂ t�1 + ηt, where the normalization G¼ I is

used and the number of innovations equals the number of factors.qq

3. Use the VAR residuals η̂t to estimate H using the identifying restrictions in (72).

Because of the lower triangular structure of H, this can be done using the Cholesky

factorization of the covariance matrix of η̂t, renormalized so that the diagonal

elements of H equal one.

7.3.2.2 Additional Estimation Details
Because of the evidence discussed in Section 6 that there is a break in the DFM param-

eters, possibly associated with the Great moderation break data of 1984, all models were

estimated over 1985q1–2014q4.
Standard errors are computed by parametric bootstrap as discussed in Section 5.1.3.

7.4 Results: “Oil Price Exogenous” Identification
The focus of this and the next section is on understanding the differences and similarities

among the SDFM, FAVAR, and SVAR results. We begin in this section with the results

for the “oil price exogenous” identification scheme of Section 7.2.1.

Fig. 8 presents SIRFs for selected variables with respect to the oil price shock com-

puted using the SDFM, the FAVAR in which oil is treated as an observed factor, and the

pp If there were only one oil price series then Λ and the factors could be estimated as the renormalized

principal components estimates in (59).
qq If the number of innovations were less than the number of factors, the named factor normalization of G

would be the upper diagonal normalization in (61) and the reduced number of innovations could be

estimated as discussed following (61).
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SVAR. The SVAR SIRFs are available only for the eight variables in the SVAR. The

figure shows SIRFs in the log levels of the indicated variables. For example, according to

the SDFMSIRFs in the upper left panel of Fig. 8, a unit oil price shock increases the level of

oil prices by 1% on impact (this is the unit effect normalization), by additional 0.3% after

one quarter, then the price of oil reverts partially and after four quarters is approximately

Fig. 8 Structural IRFs from the SDFM (blue (dark gray in the print version) solid with �1 standard error
bands), FAVAR (red (gray in the print version) dashed), and SVAR (black dots) for selected variables with
respect to an oil price shock: “oil prices exogenous” identification. Units: standard deviations for Global
Commodity Demand and percentage points for all other variables.
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0.8% above its level before the shock. Equivalently, these SIRFs are cumulative SIRFs in

the first differences of the variables.

The most striking feature of Fig. 8 is that all three sets of SIRFs are quite close, espe-

cially at horizons less than eight quarters. There are two main reasons for this. First, as can

be seen in Fig. 7B (and in Table 3), a large fraction of the variance of the change in oil

prices is explained by its common component, so the innovation in the common com-

ponent in the unobserved factor DFM is similar to the innovation in the observed factor

FAVAR. Second, the forecast errors for one quarter ahead changes in oil prices are similar

whether they are generated using the factors or the eight-variable VAR (changes in oil

prices are difficult to predict). Putting these two facts together, the innovations in oil

prices (or the oil price factor) are quite similar in all three models and, under the oil price

exogenous identification scheme, so are the shocks. Indeed, as shown in Table 8, the oil

price shocks in the three models are similar (the smallest correlation is 0.72). In brief, the

innovations in oil prices are spanned by the space of the factor price innovations.

This said, to the extent that the SDFM, FAVAR, and SVAR SIRFs differ, the

FAVAR and SVAR SIRFs tend to be attenuated relative to the SDFM, that is, the effect

of the oil shock in the SDFM is typically larger. This is consistent with the single observed

factor in the FAVAR being measured with error in the FAVAR and SVAR models,

which use a single oil price, however this effect is minor.

Concerning substantive interpretation, for the SDFM, FAVAR, and SVAR, two of

the SIRFs are puzzling: the oil shock that increases oil prices is estimated to have a small

effect on oil production that is statistically insignificant (negative on impact, slightly pos-

itive after one and two quarters), and a statistically significant positive immediate impact on

global shipping activity. These two puzzling SIRFs raise the question of whether the oil

price shock identified in the oil price exogenous scheme is in fact an oil supply shock,

which (one would think) should be associated with a decline in oil production and either

a neutral or negative impact effect on global shipping activity. These puzzling SIRFs sug-

gest that it is important to distinguish oil price increases that arise from demand from

those that stem from a shock to oil supply.

Table 7 presents six quarters ahead FEVDs for the identified shock; the results for the

“oil price exogenous” identification are given in columns A for the FAVAR and SDFM.

For most series, the FAVAR and SDFM decompositions are very similar, consistent with

the similarity of the FAVAR and SDFM SIRFs in Fig. 8 over six quarters. The results

indicate that, over the six-quarter horizon, the identified oil shocks explain no more than

10% of the variation in US GDP, fixed investment, employment, the unemployment

rate, and core inflation. Curiously, the oil price shock explains a negligible fraction of

the forecast errors in oil production. The series for which the FAVAR and SDFMFEVDs

differ the most is the real oil price: not surprisingly, treating the oil price as the observed

factor, so the innovation to the oil price is the oil shock, explains much more of the oil

price forecast error than does treating the oil price factor as latent.
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7.5 Results: Kilian (2009) Identification
As discussed in Section 7.2, the Kilian (2009) identification scheme identifies an oil sup-

ply shock, a global aggregate demand shock, and an oil-specific demand shock. Because

there are eight innovations total in all the models examined here, this leaves five uniden-

tified shocks (or, more precisely, a five-dimensional subspace of the innovations on

which no identifying restrictions are imposed).

7.5.1 Hybrid FAVAR-SDFM
As indicated in Table 6, the innovations in the first eight principal components explain a

very small fraction of the one step ahead forecast error of oil production, that is, the inno-

vation in oil production is nearly not spanned by the space of factor innovations. Under

the Kilian (2009) identification scheme, the innovation in oil production is the oil supply

shock; but this oil supply shock is effectively not in the space of the eight shocks that

explain the variation in the macro variables. This raises a practical problem for the SDFM

because the identification scheme is asking it to identify a shock from the macro factor

innovations, which is arguably not in the space of those innovations, or nearly is not in

that space. In the extreme case that the common component of oil production is zero, the

estimated innovation to that common component will simply be noise.

For this reason, wemodify the SDFM to have a single observed factor, which is the oil

production factor. The global demand shock and the oil-specific demand shock are,

however, identified from the factor innovations. Thus this hybrid FAVAR–SDFM

has one identified observed factor, two identified unobserved factors, and five unidenti-

fied unobserved factors.

As discussed in Section 7.2, the FAVAR treats the oil price (PPI-oil), global oil

production, and the global activity index as observed factors, with five latent factors.

Table 6 Fraction of the variance explained by the eight factors at horizons
h¼1 and h¼6 for selected variables: 1985:Q1–2014:Q4
Variable h51 h56

GDP 0.60 0.80

Consumption 0.37 0.76

Fixed investment 0.38 0.76

Employment (non-ag) 0.56 0.94

Unemployment rate 0.44 0.90

PCE inflation 0.70 0.63

PCE inflation—core 0.10 0.34

Fed funds rate 0.48 0.71

Real oil price 0.74 0.78

Oil production 0.06 0.27

Global commodity shipment index 0.39 0.51

Real gasoline price 0.72 0.80
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7.5.2 Results
Figs. 9–11 present SIRFs for the three identified shocks and Table 7, columns B, presents

variance decompositions for six quarters ahead forecast errors. It is useful to discuss these

results one shock at a time.

First consider the oil supply shock (Fig. 9). All threemodels identify the oil supply shock

in the same way, as the one step ahead forecast error for oil supply. This variable is hard to

Fig. 9 Structural IRFs from the SDFM (blue (dark gray in the print version) solid with �1 standard error
bands), FAVAR (red (gray in the print version) dashed), and SVAR (black dots) for selected variables with
respect to an oil supply shock: Kilian (2009) identification. Units: standard deviations for Global
Commodity Demand and percentage points for all other variables.
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forecast and the forecasts, and thus forecast errors, do not substantially depend on the

choice of conditioning set (lags of observed variables in the SVAR vs lags of factors in

the FAVAR and SDFM). Thus the identified shocks are highly correlated (Table 8) and

the SIRFs are quite similar across the three models. On a substantive note, the fraction

of the variance of major macroeconomic variables explained by oil supply shocks is quite

small (Table 7).

Fig. 10 Structural IRFs from the SDFM (blue (dark gray in the print version) solidwith�1 standard error
bands), FAVAR (red (gray in the print version) dashed), and SVAR (black dots) for selected variables with
respect to a global demand shock: Kilian (2009) identification. Units: standard deviations for Global
Commodity Demand and percentage points for all other variables.
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In contrast, there are notable differences between the SDFM SIRFs for global

demand shocks and the corresponding SIRFs for the FAVAR and SVAR, however

the FAVAR SIRFs are quite similar to the SVAR SIRFs (Fig. 10). Broadly, the FAVAR

and SVAR SIRFs are attenuated relative to the SDFM SIRFs. These features are con-

sistent with (a) the global demand shocks—unlike the oil production shocks—being

Fig. 11 Structural IRFs from the SDFM (blue (dark gray in the print version) solidwith�1 standard error
bands), FAVAR (red (gray in the print version) dashed), and SVAR (black dash–dot) for selected variables
with respect to an oil-specific demand shock: Kilian (2009) identification. Units: standard deviations for
Global Commodity Demand and percentage points for all other variables.
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spanned by the space of the factor innovations, (b) the innovations in the commodity

index being a noisy measure of the unobserved global factor innovations, and (c) the

one step ahead forecast errors for the commodity index being close using either the fac-

tors or SVAR variables as conditioning sets. Evidence for (a) is the large fraction of the

one step ahead forecast error variance of the global commodity index that is explained by

the factor innovations (Table 6). But because the global commodity index is just one

noisy measure of global demand, it follows from the general discussion of Section 5 that

the innovations in the global commodity index in the FAVAR and SVARmodels will be

noisy measures of—that is, an imperfect proxy for—the innovation in global economic

activity (this is point (b)). Evidence for (c) is the high correlation (0.82) between the

SVAR and FAVAR estimates of the global demand shocks in Table 8.

For the oil-specific demand shock (Fig. 11), the FAVAR and SVAR SIRFs are also

attenuated relative to the SDFM SIRFs. The issues associated with interpreting these dif-

ferences are subtle. In addition to the oil supply and aggregate demand shocks discussed

earlier, the hybrid SDFM allows for two oil price-specific shocks: one that explains some

of the comovements of other macro variables, and one that is purely idiosyncratic (actu-

ally, an idiosyncratic disturbance for each oil price) which has no effect on other macro

Table 7 Forecast error variance decompositions for six periods ahead forecasts of selected variables:
FAVARs and SDFMs

B. Kilian (2009) identification

A. Oil price
exogenous Oil supply

Global
demand

Oil spec.
demand

Variable F D F D(O) F D(U) F D(U)

GDP 0.07 0.07 0.04 0.01 0.02 0.04 0.09 0.04

Consumption 0.19 0.22 0.09 0.08 0.02 0.22 0.11 0.01

Fixed investment 0.04 0.04 0.05 0.04 0.03 0.04 0.03 0.01

Employment (non-ag) 0.03 0.02 0.04 0.01 0.02 0.01 0.03 0.01

Unemployment rate 0.04 0.03 0.04 0.03 0.02 0.03 0.04 0.01

PCE inflation 0.28 0.40 0.02 0.04 0.09 0.16 0.17 0.29

PCE inflation—core 0.05 0.04 0.01 0.02 0.03 0.05 0.02 0.02

Fed funds rate 0.02 0.04 0.00 0.01 0.05 0.11 0.03 0.02

Real oil price 0.81 0.53 0.14 0.10 0.22 0.44 0.42 0.09

Oil production 0.03 0.01 0.75 0.78 0.07 0.02 0.03 0.01

Global commodity

shipment index

0.11 0.23 0.05 0.07 0.79 0.33 0.03 0.02

Real gasoline price 0.61 0.48 0.05 0.06 0.25 0.43 0.34 0.08

Notes: Entries are the fractions of the six periods ahead forecast error of the row variable explained by the column shock,
for the “oil price exogenous” identification results (columns A) and the Kilian identification scheme (columns B). For each
shock, “F” refers to the FAVAR treatment in which the factor is treated as observed and “D” refers to the SDFM treat-
ment. In the hybrid SDFM using the Kilian (2009) identification scheme, the oil supply factor is treated as observed (the oil
production variable) (D(O)) while the global demand and oil-specific demand factors are treated as unobserved (D(U)).
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Table 8 Correlations between identified shocks
Oil price exogenous Kilian (2009) identification

Oil price shock Oil supply Global demand Oil-specific demand

D F V D F V D F V D F V

Oil price

exogenous

Oil

price

shock

D 1.00

F 0.86 1.00

V 0.72 0.84 1.00

Kilian (2009)

identification

Oil

supply

D �0.22 �0.24 �0.22 1.00

F �0.21 �0.23 �0.23 0.95 1.00

V �0.18 �0.22 �0.22 0.88 0.88 1.00

Global

demand

D 0.70 0.63 0.56 0.00 0.06 0.07 1.00

F 0.45 0.35 0.31 �0.02 0.00 �0.06 0.37 1.00

V 0.37 0.28 0.37 0.00 �0.01 0.00 0.40 0.82 1.00

Oil-

specific

demand

D 0.63 0.50 0.43 0.00 �0.05 �0.04 0.00 0.30 0.17 1.00

F 0.66 0.83 0.79 0.00 0.00 0.03 0.54 0.00 0.02 0.44 1.00

V 0.60 0.76 0.91 �0.03 �0.04 0.00 0.48 0.00 0.00 0.39 0.88 1.00

Notes: Entries are correlations between the identified shocks. D¼SDFM or hybrid SDFM, F¼FAVAR, and V¼SVAR.



variables. According to the FEVDs in Table 7, the oil-specific demand shock spanned by

the factor innovations explains only a small amount of the forecast error in oil prices, and

virtually none of the variation in major macroeconomic variables. Thus the SDFM rel-

egates the residual variation in oil prices to the idiosyncratic disturbance, which has no

effect on variables other than the oil price itself (and on PCE inflation, presumably

through the oil price). In contrast, the FAVAR and SVAR have a single oil price-specific

shock instead of the two in the SDFM. The single shock in the FAVAR and SVAR mix

the purely idiosyncratic movements in oil prices with the oil-specific demand shock that

could have broader consequences, so that this shock explains half of the six quarters ahead

forecast error variance for oil prices, and one-third of that for gasoline prices, but very

small amounts of the variation in other macro variables.

7.6 Discussion and Lessons
The two identification schemes provide two contrasting examples. In the “oil price

exogenous” identification scheme, the oil price innovation is effectively spanned by

the space of factor innovations, so it makes little difference whether oil prices are treated

as an unobserved factor in a SDFM or an observed factor in a FAVAR. Moreover,

because it is difficult to predict oil price changes, using the factors for that prediction

or using the eight-variable VAR makes little difference. Thus, in all the models, the

oil price shock is essentially the same, so the SIRFs and variance decompositions are

essentially the same. For this scheme, it turns out that it matters little whether a SDFM,

FAVAR, or SVAR is used.

In contrast, in the Kilian (2009) identification scheme, the results depend more sen-

sitively on which model is used for the factors that are treated as unobserved in the

SDFM. Moreover, there is the additional feature that the forecast error in oil production

seems not to be spanned by the macro factor innovations, indicating both that it has little

effect on the macro variables and that an attempt to treat oil production as an unobserved

factor will have problems with estimation error so that it is preferable to treat oil produc-

tion as an observed factor. The dependence of the results for the global activity factor and

the oil-specific demand factor are consistent with the theoretical discussion in Section 5:

treating those global demand and oil-specific demand as observed in a FAVAR, or as

variables in a SVAR, arguably leads to measurement error in those innovations, and thus

to measurement error in the IRFs. For these two shocks, it is preferable to recognize that

the observed variables measure the shocks with error and thus to rely on SDFM estimates

of the IRFs.

Finally, on substance, these results are consistent with the modern literature that oil

supply shocks explain little of the variation of US aggregate activity since the early 1980s.

Indeed, this result comes through even in the “oil price exogenous” identification

scheme estimated post-1984. Instead, aggregate demand shocks are an important force
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in oil price movements: as estimated using the SDFM, 44% of the variance of six-quarter

horizon forecast errors in oil prices is explained by global demand shocks, larger than the

FAVAR estimate of 22%, consistent with the measurement error discussion earlier.

8. CRITICAL ASSESSMENT AND OUTLOOK

This section starts with some practical recommendations for empirical use of DFMs,

drawn both from the literature and our own experience with these models. It then turns

to a broader assessment of lessons learned from the large literature on DFMs, including

touching on some remaining open methodological issues.

8.1 Some Recommendations for Empirical Practice
8.1.1 Variable Selection and Data Processing
Selection of the variables in the DFM should be guided by the purpose of the empirical

application and knowledge of the data series. For the purposes of index construction, the

series should have comparable scope, for example the real activity index constructed in

Section 6 used the subset of real activity variables, not the full dataset. For the purposes

of nowcasting, forecasting, and factor estimation, a guiding principle is that the factor

innovations should span the space of the most important shocks that in turn affect the

evolution of the variables of most interest.

The methods described in this chapter apply to variables that are integrated of order

zero; in practice, this can require preprocessing the data to remove long-run dependence

and trends. In most applications, this is done by transforming the variables to growth rates

or more generally using first or second differences of the variables as appropriate. For the

application in this chapter, we additionally removed remaining low-frequency swings by

subtracting off a trend estimated using a lowpass filter designed to capture changes in

mean growth rates at periodicities of a decade and longer. Although this step is uncom-

mon in the literature, we believe it is important when working with US macro data

because the drivers of the long-term trends in the data, such as multidecadal demographic

swings, confound the short- and medium-term modeling in the DFM.

8.1.2 Parametric vs Nonparametric Methods
The parametric approach of formulating and estimating the DFM in state space has

theoretical advantages: it produces the MLE and is amenable to Bayesian analysis under

correct specification and it handles data irregularities such as missing observations and

mixed-frequency data. But our reading of the literature and our own experience suggest

that in practice the differences between parametric implementations and nonparametric

implementations (principal components or other least-squares methods for estimating the

factors) are slim in most applications. As discussed in Section 2.3.3, like the parametric

approach, nonparametric methods can handle missing data, mixed data frequencies, and
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other data irregularities. The nonparametric methods have the added advantage of

computational simplicity and do not require specifying a parametric dynamic model

for the key step of estimating the factors. For these reasons, we therefore consider the

nonparametric methods to be the appropriate default.

8.1.3 Instability
There is mounting empirical evidence that DFMs, like other time series models, can

exhibit instability. This is not a surprise, for example it is well documented that changes

associated with the Great Moderation go beyond reduction in variances to include

changes in dynamics and reduction in predictability. Thus it is important to check for

stability in DFMs, just as it is in other models with time series data. The stability tests

used in this chapter are simple to implement and entail applying textbook single-equation

stability tests to regressions of a single variable on the factors (other stability tests are

discussed in Section 2.5.2).

One subtlety is that the PC estimator of the factors has some desirable robustness to

modest amounts of time variation (see the discussion in Section 2.5.1). As a result, if there

is a break in the factor loadings of some but not all of the variables, it can be appropriate to

use the full sample for estimating the factors but a split sample for estimating the factor

loadings, although whether this is warranted depends on the application.

8.1.4 Additional Considerations for Structural Analysis
Four sets of issues are worth stressing when a goal of the analysis is to estimate the effect of

structural shocks.

The first, which is a central point of this chapter, is that identification methods devel-

oped for SVAR analysis carry over directly to SDFMswith the assistance of the unit effect

normalization (32) and the named factor normalization (12).

The second concerns the potential for weak identification. This concern applies

equally to SVARs, FAVARs, and SDFMs. One theme of Section 4 is that the various

methods used to identify structural shocks and their IRFs in SVARs can all be interpreted

as GMM, or in some cases simple instrumental variables, methods. As a result, the pos-

sibility arises that the structural parameters (the parameters of theHmatrix in (20)) might

be weakly identified. If so, SIRFs will in general be biased and confidence intervals will

be unreliable. As of this writing, some methods for identification–robust inference in

SVARs have been explored but there is not yet a comprehensive suite of tools available.

Third, inference with sign-identified SVARs, FAVARs, and SDFMs has its own

challenges. As discussed in Section 4.6.2, nonlinearities in the mapping from the prior

to the posterior imply that seemingly uninformative priors induce informative priors over

the unidentified set. Resolving this problem is an active area of research.

The fourth issue, which arises for SDFMs but not for SVARs or FAVARs, is the pos-

sibility that the identified shock might not be spanned by the innovations of the factor
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loadings. This could arise either because the variables chosen for the DFM have too nar-

row a scope, or because the shock of interest simply has little or no macro consequence.

This latter situation arose in the empirical application of Section 7, in which the factor

innovations explained almost none of the forecast error in global oil production. In this

case, the named factor normalization breaks down (because the latent macro factors do

not include a global oil production factor so there is effectively no common component

of global oil production) so the SDFM approach is not reliable. In Section 7, we addressed

this problem by adopting a hybrid SDFM in which global oil production was an observed

factor, which was estimated to explain very little of the post-1984 variation in US macro

variables.

8.2 Assessment
We conclude by stepping back and returning to three high-level questions about whether

DFMs have achieved their promise. First, has the early indication that the comovements

of macro variables are well described by a small number of factors held up to scrutiny?

Second, have DFMs—the first and still leading tool for “big data” analysis in

macroeconomics—improved forecasts and nowcasts of macroeconomic variables? And

third, do structural DFMs provide improvements over SVARs and, if so, how?

8.2.1 Do a Small Number of Factors Describe the Comovements of Macro Variables?
The repeated finding in the empirical DFM literature is that the answer is a strong yes. In

the 207-variable dataset, the averageR2 of the regression of 207 variables against the eight

factors is 51%. For major macroeconomic aggregates, which were not used to estimate

the factors, this fraction is higher: 81% for GDP growth and 93% for the growth of non-

farm employment. This R2 is large for other macro variables as well: 64% for the PCE

deflator, 72% for the 10 year–3 month treasury spread, and 73% for the S&P 500. This

high fit, for different DFMs and different variables, is evident Figs. 4, 5, and 7B in this

chapter, and in many applications in this literature. This general affirmative answer does

not mean that every variable is well fit by the few common factors, nor does it imply that

there is no remaining common structure. But the stylized fact from Sargent and Sims

(1977) of a few factors explaining a large fraction of the variation of many macro series

is robust.

8.2.2 Do DFMs Improve Forecasts and Nowcasts?
Our answer is a nuanced yes. Broadly speaking, DFM forecasts are competitive with

other methods, and for certain problems, such as forecasting real economic activity,

DFM forecasts are in many cases the best available forecasts. For nowcasts, DFMs provide

a structured and internally consistent way to handle the “ragged edge” problemwith large

datasets. For nowcasts, mixed-frequency methods using small datasets have proven com-

petitive in some applications. As a practical matter, in macro forecasting and nowcasting
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applications DFMs are typically in the mix, sometimes provide the best forecasts, and at a

minimum belong in the suite of models considered.

8.2.3 Do SDFMs Provide Improvements Over SVARs?
From the perspective of structural shock analysis, DFMs have two substantial advantages

over SVARs and, in many cases, over FAVARs. First, by using many variables, they are

better able to span the space of structural shocks than a low-dimensional VAR. As dis-

cussed in Section 6.4, in the US quarterly dataset the space of innovations of low-

dimensional VARs does not well approximate the space of factor innovations, consistent

with the individual series in the VAR having measurement error and idiosyncratic var-

iation. This finding suggests that a method to identify shocks could fail in a SVAR

because of measurement error or idiosyncratic variation, but succeed in identifying

the shock in a SDFM, a general point that is consistent with the empirical results in

Section 7.4.

Second, a side benefit of using many variables is that it the SDFM generates internally

consistent SIRFs for a large number of variables. The SDFM separates the tasks of iden-

tifying the structural shock and estimating a SIRF for variables of interest.
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