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Survey Articles on Factor Models

Stock & Watson (2010)
Best general overview of factor models and applications.

Bai & Ng (2008)
Comprehensive review of large-sample results for high-dimensional
factor models estimated via PCA.

Stock & Watson (2006)
Handbook chapter on forecasting with many predictors. One
section is devoted to dynamic factor models.

Breitung & Eickmeyer (2006)
Brief overview with an application to Euro-area business cycles.
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The Basic Idea

We’re interested in settings with a large number of time series N
and a comparable number of time periods T .
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Example: Stock and Watson Dataset

Monthly Macroeconomic Indicators: N > 200,T > 400
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Why Factor Models?

1. Factors could be intrinsically interesting if they arise from a
theoretical model (e.g. Financial Economics)

2. Many variables without running out of degrees of freedom
I More information could improve forecasts/macro analysis
I Mimic central banks “looking at everything”

3. Eliminate measurement error and idiosyncratic shocks to
provide more reliable information for policy

4. “Remain Agnostic about the Structure of the Economy”
I Advantages over SVARs: don’t have to choose variables to

control degrees of freedom, and can allow fewer underlying
shocks than variables.
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Classical Factor Analysis Model

Assume that Xt has been de-meaned. . .

Xt
(N×1)

= Λ Ft
(r×1)

+ εt

[
Ft

εt

]
iid∼ N

([
0
0

]
,

[
Ir 0
0 Ψ

])

Λ = matrix of factor loadings
Ψ = diagonal matrix of idiosyncratic variances.
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Adding Time-Dependence

Xt
(N×1)

= Λ Ft
(r×1)

+ εt

Ft
(r×1)

= A1Ft−1 + . . .+ ApFt−p + ut

[
ut

εt

]
iid∼ N

([
0
0

]
,

[
Ir 0
0 Ψ

])
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Terminology

Static Xt depends only on Ft

Dynamic Xt depends on lags of Ft as well

Exact Ψ is diagonal and εt independent over time

Approximate Some cross-sectional & temporal dependence in εt

The model I wrote down on the previous slide is sometimes called
an “exact, static factor model” even though Ft has dynamics.
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Some Caveats

1. The difference between “static” and “dynamic” is unclear
I Can write dynamic model as a static one with more factors
I Static representation involves “different” factors, but we may

not care: are the factors “real” or just a data summary?

2. Not really possible to allow cross-sectional dependence in εt
I Unless the off-diagonal elements of Ψ are close to zero we

can’t tell them apart from the common factors
I “Approximate” factor models basically assume conditions

under which the off-diagonal elements of Ψ are negligible
I Similarly, time series dependence in εt can’t be very strong

(stationary ARMA is ok)
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Methods of Estimation for Dynamic Factor Models

1. Bayesian Estimation
2. Maximum Likelihood: EM-Algorithm + Kalman Filter

I Watson & Engle (1983)
I Ghahramani & Hinton (1996)
I Jungbacker & Koopman (2008)
I Doz, Giannone & Reichlin (2012)

3. “Nonparametric” Estimation
I Just carry out PCA on X and ignore the time-series element
I The first r PCs are our estimates F̂t
I Essentially treats Ft as an r -dimensional parameter to be

estimated from an N-dimensional observation Xt
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Estimation by PCA
PCA Normalization
I F ′F/T = Ir where F = (F1, . . . ,FT )′

I Λ′Λ = diag(µ1, . . . , µr ) where µ1 ≥ µ2 ≥ · · · ≥ µr

Assumption I
Factors are pervasive: Λ′Λ/N → DΛ an (r × r) full rank matrix.

Assumption II
max e-value E [εtε′t ] ≤ c ≤ ∞ for all N.

Upshot of the Assumptions
If we average over the cross-section, the contribution from the
factors persists and the contribution from the idiosyncratic terms
disappears as N →∞.
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Key Result for PCA Estimation

Under the assumptions on the previous slide and some other
technical conditions, the first r PCs of X consistently estimate the
space spanned by the factors as N,T →∞.
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Doz, Giannone & Reichlin (2012)

The arguments for the PCA approach. . .
I Consistent estimation of factors under very weak assumptions
I MLE is computationally infeasible for large N

. . . may be somewhat exaggerated.
I EM-algorithm + Kalman Filter is very efficient – complexity

depends on number of factors, not number of series
I Treat exact, static factor model (the one I wrote out) as a

mis-specified approximating model (Quasi-MLE)
I Identical large-sample results as PC under similar assumptions,

but better finite-sample properties and temporal smoothing
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Choosing the Number of Factors

If we use Likelihood-based or Bayesian estimation, we could try to
resort to the familiar tools from earlier in the semester.There are a
lot of parameters in factor models, however, so the asymptotic
approximations (I’m looking at you, AIC) could be poor.
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Choosing the Number of Factors – Scree Plot
If we use PC estimation, we can look a something called a “scree
plot” to help us decide how many PCs to include:

This figure depicts the eigenvalues for an N = 1148,T = 252
dataset of excess stock returns
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Choosing the Number of Factors – Bai & Ng (2002)

Choose r to minimize an information criterion:

IC(r) = log Vr (Λ̂, F̂ ) + r · g(N,T )

where

Vr (Λ,F ) = 1
NT

T∑
t=1

(Xt − ΛFt)′(Xt − ΛFt)

and g is a penalty function. The paper provides conditions on the
penalty function that guarantee consistent estimation of the true
number of factors.
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What Can We Do with Factors?

Among other possibilities:

1. Use them to construct Forecasts

2. Use them as Instrumental Variables

3. Use them to “Augment” a VAR
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Some Special Problems in High-dimensional Forecasting

Estimation Uncertainty
We’ve already seen that OLS can perform very badly if the number
of regressors is large relative to sample size.

Best Subsets Infeasible
With more than 30 or so regressors, we can’t check all subsets of
predictors making classical model selection problematic.

Noise Accumulation
Large N is supposed to help in factor models: averaging over the
cross-section gives a consistent estimator of factor space. This can
fail in practice, however, since it relies on the assumption that the
factors are pervasive. See Boivin & Ng (2006).
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Main References

Stock & Watson (2006) – “Forecasting with Many Predictors”
Overview of high-dimesional forecasting with a review of forecast
combination, factor models, and Bayesian approaches.

Ng (2013) – “Variable Selection in Predictive Regressions”
Reviews and relates a number of shrinkage & selection methods.

Stock & Watson (2012)
Examines a wide range of shrinkage procedures to see if they can
improve on diffusion index forecasts.

Kim & Nelson (2013)
“Horse Race” of various factor and shrinkage methods for
forecasting.
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Diffusion Index Forecasting – Stock & Watson (2002a,b)
JASA paper has the theory, JBES paper has macro forecasting example.

Basic Setup
Forecast scalar time series yt+1 using N-dimensional collection of
time series Xt where we observe periods t = 1, . . . ,T .

Assumption
Static representation of Dynamic Factor Model:

yt = β′Ft + γ(L)yt + εt+1

Xt = ΛFt + et

“Direct” Multistep Ahead Forecasts
“Iterated” forecast would be linear in Ft , yt and lags:

yh
t+h = αh + βh(L)Ft + γh(L)yt + εht+h

20/ 40



This is really just PCR
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Diffusion Index Forecasting – Stock & Watson (2002a,b)

Estimation Procedure
1. Data Pre-processing

1.1 Transform all series to stationarity (logs or first difference)
1.2 Center and standardize all series
1.3 Remove outliers (ten times IQR from median)
1.4 Optionally augment Xt with lags

2. Estimate the Factors
I No missing observations: PCA on Xt to estimate F̂t
I Missing observations/Mixed-frequency: EM-algorithm

3. Fit the Forecasting Regression
I Regress yt on a constant and lags of F̂t and yt to estimate the

parameters of the “Direct” multistep forecasting regression.
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Diffusion Index Forecasting – Stock & Watson (2002b)

Recall from above that, under certain assumptions, PCA
consistently estimates the space spanned by the factors. Broadly
similar assumptions are at work here.

Main Theoretical Result
Moment restrictions on (ε, e,F ) plus a “rank condition” on Λ imply
that the MSE of the procedure on the previous slide converges to
that of the infeasible optimal procedure, provided that N,T →∞.
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Diffusion Index Forecasting – Stock & Watson (2002a)

Forecasting Experiment
I Simulated real-time forecasting of eight monthly macro

variables from 1959:1 to 1998:12
I Forecasting Horizons: 6, 12, and 24 months
I “Training Period” 1959:1 through 1970:1
I Predict h-steps ahead out-of-sample, roll and re-estimate.
I BIC to select lags and # of Factors in forecasting regression
I Compare Diffusion Index Forecasts to Benchmark

I AR only
I Factors only
I AR + Factors
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Diffusion Index Forecasting – Stock & Watson (2002a)

Empirical Results
I Factors provide a substantial improvement over benchmark

forecasts in terms of MSPE
I Six factors explain 39% of the variance in the 215 series;

twelve explain 53%
I Using all 215 series tends to work better than restricting to

balanced panel of 149 (PCA estimation)
I Augmenting Xt with lags isn’t helpful
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Factors as Instruments – Bai & Ng (2010)
Endogenous Regressors xt

yt = x ′tβ + εt E [xtεt ] 6= 0

Unobserved Variables Ft are Strong IVs

xt
(k×1)

= Ψ′ Ft
(r×1)

+ ut E [Ftεt ] = 0

Observe Large Panel (z1t , . . . , zNt)

zit = λ′i Ft + eit
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Factors as Instruments – Bai & Ng (2010)

yt = x ′tβ + εt , xt = Ψ′Ft + ut , zit = λ′i Ft + eit

Procedure
1. Calculate the PCs of Z

2. Calculate F̃t using the first r PCs of Z

3. Use F̃t in place of Ft for IV estimation

Main Result
Under certain assumptions, as (N,T )→∞ “estimation and inference
can proceed as though Ft were known.” The resulting estimator is
consistent and asymptotically normal.
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Factors as Instruments – Bai & Ng (2010)

Why Might This be Helpful?

1. Avoid many instruments bias

2. Avoid bias from irrelevant instruments

3. Allow more observed instruments zit than sample size T

4. Provided that
√

T/N → 0, all of the observed instruments zit

can be endogenous as long as Ft is exogenous

28/ 40



FAVARs – Bernanke, Boivin & Eliasz (2005)

Two Problems with Structural VARs
1. Number of parameters is quadratic in the number of variables.

Unrestricted VAR infeasible unless T is large relative to N.
I You’ve studied one solution to this problem already this

semester: Bayesian Estimation with informative priors

2. To keep estimation tractable we typically use a small number
of variables, but then the VAR innovations “might not span
the space of structural shocks.”
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FAVARs – Bernanke, Boivin & Eliasz (2005)

Factor-Augmented VAR Model

[
Yt

Ft

]
= Φ(L)

[
Ft−1

Yt−1

]
+ vt

Xt = Λf Ft + Λy Yt + et

Yt
(M×1)

= observable variables that “drive dynamics of the economy”

Ft
(K×1)

= Small # of unobserved factors: “additional information”

Xt
(N×1)

= Large # of observed “informational time series”
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FAVARs – Bernanke, Boivin & Eliasz (2005)

[
Yt

Ft

]
= Φ(L)

[
Ft−1

Yt−1

]
+ vt Xt = Λf Ft + Λy Yt + et

Consider Two Estimation Procedures
1. Two-step Procedure:

I Estimate space spanned by factors using first K + M PCs of X
I Estimate VAR with F̂t in place of Ft

2. Full Bayes (Gibbs Sampler)

Empirical Application
Additional information contained in FVAR is “important to
properly identify the monetary transmission mechanism.”
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What about Ridge and Lasso?

Basic Idea
Diffusion index forecasts are really just PCR. Why not try Ridge or
Lasso with all predictors rather than estimating factors?

De Mol, Giannone & Reichlin (2008)

I Compare PCA-based factor forecasts to Ridge and Lasso
I In a small out-of-sample experiment, Ridge and Lasso with

appropriate penalty parameters give results comparable to
diffusion index.

I Analyze asymptotics of Ridge under assumptions typically
used to justify PCA
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Other Ways of Extracting Factors

Sparse PCA
Add a Lasso-type penalty to the “regression” formulation of PCA:
encourage the factors to load on small number of variables.

Independent Components Analysis (ICA)
Extract factors that maximize non-Gaussianity

Both of these are considered in Kim & Swanson (2014) and seem
to work very well when combined with second-stage shrinkage.
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To Target or Not to Target?

Problem with PCA and Friends
Completely ignores Y in constructing the factors! Should we take
the forecast target into account when extracting factors?

Some References
I Bai & Ng (2008) – Forecasting Economic Time Series Using

Targeted Predictors
I Kelly & Pruitt (2012) – The Three-pass Regression Filter
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Partial Least Squares (PLS)

As an Optimization Problem
Construct a sequence of linear combinations of X that solve

max
α

Corr 2(y,Xα)Var(Xα)
subject to ||α|| = 1 and the constraint that each PLS “factor” is
orthogonal to the preceding ones.

As a Probabilistic Model
“Shared” factor Ft and X -specific factor Zt

Yt = µY + ΛY Ft + εt

Xt = µX + ΛX Ft + ΠZt + ut

where Ft ⊥ Zt
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Bootstrap Aggregation – “Bagging”

Bagging Algorithm

1. Make a bootstrap draw

2. Carry out selection/shrinkage/estimation using boostrap data

3. Use estimated parameters from to construct a forecast ŷ (b)
T +h

4. Repeat for b = 1, . . . ,B

5. Average to get “Bagged” Forecast: ŷ (Bag)
T +h = 1

B
∑B

b=1 ŷ (b)
T +h

Details
I If the data are dependent, need block bootstrap.
I In step 3, we forecast using the parameters estimated from

the bootstrap data but the predictors from the real dataset.
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Bootstrap Aggregation – “Bagging”

Why Bagging?
I Aims to reduce the forecast error of “unstable” procedures

such as variable selection of Lasso, by reducing their variance.
I Completely portable: you can bag anything provided you have

an appropriate way to carry out the bootstrap.
I May provide a way of attacking the problem of inference

post-model selection. See Efron (JASA, Forthcoming)
“Estimation and Accuracy after Model Selection”
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Bagging in Economics
Inoue & Killian (2008, JASA)
Compares performance of bagged “pre-test” estimator (variable
selection via a t-test) to other methods of forecasting US Inflation.
Bagging is carried out via a block bootstrap.

Stock & Watson (2012)
Among other shrinkage procedures, they consider a large-sample
approximation to bagging pre-test estimators that doesn’t require
making bootstrap draws.

Other Papers That Use Bagging
I Hillebrand & Medeiros (2010): Realized Volatility Forecasts
I Hillebrand et al (2012): Forecasting the Equity Premium
I Kim and Swanson (2013)
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Boosting

Ensemble Methods
Machine learning term for “non-Bayesian model averaging”

What is Boosting?
I Combine large number of “weak learners” (i.e. crappy

predictive models) so that the ensemble predicts well.
I Explicitly designed around predictive loss
I Arbitrarily improve in-sample fit of arbitrarily the weak

learners!

Book-Length Treatment
Shapire & Freund (2012) – Boosting: Foundations and Algorithms
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Boosting

Bai & Ng (2009) – Boosting Diffusion Indices
Use boosting to select which lags of factors to include in a
forecasting regression estimated following PCA.

Buchen & Wohlrabe (2011) – Is Boosting a Viable Alternative?
Boosting performs well compared to other methods in the example
from the 2006 Stock & Watson Handbook Chapter.

Ng (2014) – Boosting Recessions
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