Financial Econometrics Volatility Exercises

Q.1 Using US annual data 1873 - 2000 on log stock prices, ls_t an ARIMA(1,1,0) model was estimated

$$\Delta ls_t = \mu + \phi \Delta ls_{t-1} + \varepsilon_t$$

and a test for second order ARCH gave a p-value of 0.0434. The equation was re-estimated assuming GARCH(1,1) errors, i.e., assuming that $\varepsilon_t \sim N(0, h_t)$ with

$$h_t = \omega + \alpha \varepsilon_{t-1}^2 + \beta h_{t-1}.$$

The estimates (standard errors in parentheses) are $\mu = 0.043$ (0.016), $\rho = 0.071$ (0.109), $\omega = 0.007$ (0.007), $\alpha = 0.0149$ (0.092), $\beta = 0.625$ (0.0291).

- a) Explain how a test for second order ARCH is conducted.
- b) Explain how the GARCH(1,1) model is estimated.
- c) What are the conditions required for the variances to be non-negative? Are they satisfied in this case.
- d) Consider the following output regarding the estimation of a GARCH, an EGARCH and a GJR model for Japanese bonds:

GARCH				EGARCH				GJR						
Dependent Variable: JAPAN Method: ML - ARCH (Marquardt) Date: 12/09/10 Time: 23:35 Sample(ajusted): 1/09/1990 4/09/1996 Included observations: 327 after adjusting endpoints Convergence achieved after 13 iterations Variance backcast: ON				Dependent Variable: JAPAN Method: ML - ARCH (Marquardt) Date: 1209/10 Time: 23:39 Sample(adjusted): 1/09/1990 4/09/1996 Included observations: 327 after adjusting endpoints Convergence achieved after 7 iterations Variance backcast: ON				Dependent Variable: JAPAN Method: ML - ARCH (Marquardt) Date: 1209/10 Time: 23:38 Sample(adjusted): 1/09/1990 4/09/1996 Included observations: 327 after adjusting endpoints Convergence achieved after 5 iterations Variance backcast: ON						
	Coefficient	Std. Error	z-Statistic	Prob.		Coefficient	Std. Error	z-Statistic	Prob.		Coefficient	Std. Error	z-Statistic	Prob.
C @TREND JAPAN(-1)	0.162783 -0.000298 0.975177	0.073572 0.000162 0.010010	2.212572 -1.843565 97.42092	0.0269 0.0652 0.0000	C @TREND JAPAN(-1)	0.178242 -0.000349 0.973420	0.076203 0.000157 0.010231	2.339047 -2.230184 95.14083	0.0193 0.0257 0.0000	C @TREND JAPAN(-1)	0.183614 -0.000347 0.971913	0.081797 0.000170 0.010911	2.244738 -2.043156 89.07935	0.0248 0.0410 0.0000
Variance Equation				Variance Equation				Variance Equation						
C ARCH(1) GARCH(1)	0.001028 0.082545 0.826457	0.000405 0.031575 0.049896	2.539172 2.614274 16.56350	0.0111 0.0089 0.0000	C RES /SQR[GARCH] RES/SQR[GARCH](1) EGARCH(1)	-0.373594 0.157909 -0.046342 0.943799	0.130750 0.047557 0.023248 0.024775	-2.857317 3.320392 -1.993377 38.09431	0.0043 0.0009 0.0462 0.0000	C ARCH(1) (RESID<0)*ARCH(1) GARCH(1)	0.000436 0.020209 0.099265 0.902551	0.000163 0.017138 0.038378 0.021743	2.674341 1.179198 2.586508 41.50920	0.0075 0.2383 0.0097 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.993228 0.993122 0.112960 4.095920 265.7068 1.848777	Mean depen S.D. depend Akaike info Schwarz crit F-statistic Prob(F-statistic	ident var Jent var criterion terion stic)	4.968621 1.362088 -1.588421 -1.518880 9415.864 0.000000	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.993251 0.993125 0.112941 4.081784 268.8275 1.851877	Mean deper S.D. depen Akaike info Schwarz cri F-statistic Prob(F-stati	ndent var Jent var criterion terion stic)	4.968621 1.362088 -1.601392 -1.520261 7849.384 0.000000	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.993229 0.993102 0.113124 4.095060 268.2644 1.843058	Mean depen S.D. depend Akaike info Schwarz crit F-statistic Prob(F-statistic	dent var lent var criterion terion stic)	4.968621 1.362088 -1.597947 -1.516817 7823.764 0.000000

- i) What characteristic of the data do the EGARCH and GJR model capture that GARCH does not?
- ii) Based on the outputs, indicate which of the models you would chose and whether the characteristics indicated in i) is present in the data.
- e) Explain how the GARCH-in-mean model works and why it may be interesting to consider.
- f) Considering that your sample has 327 observations, of which the last three are 3.103, 3.099, 3.104, and that you saved 5 for forecast evaluation (3.119, 3.291, 3.158, 3.101, 3.26) compute a 5 step ahead forecast and the corresponding Root Mean Forecast Error, using the conditional expectation of the bond given in the GARCH output.
- g) Present the s-step ahead forecast xpression from a GARCH(1,1) such as $\sigma_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2 + \beta \sigma_{t-1}^2$.
- Q.2 Consider the Fama and French two factor model,

$$r_{it} - rf = c + \beta(mkt_t - rf) + \phi_1 SMB_t + \phi_2 HML_t + \varepsilon_t \tag{1}$$

applied to the returns of Apple stocks. Considering a sample of monthly data from 1988:07 - 2007:09 the following least squares estimates where obtained:

Dependent Variable: APPLE_EX Method: Least Squares Date: 12/19/11 Time: 10:52 Sample (adjusted): 1988M07 2007M09 Included observations: 231 after adjustments								
Variable	Coefficient	Std. Error	t-Statistic	Prob.				
C MKT_EX SMB HML	0.017157 1.078052 0.004884 -0.006996	0.008495 0.239547 0.002642 0.003245	2.019733 4.500375 1.848407 -2.155862	0.0446 0.0000 0.0658 0.0321				
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.209433 0.198985 0.126984 3.660353 150.9563 20.04524 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.018314 0.141882 -1.272349 -1.212740 -1.248307 1.914971				

a) Considering the following output, what can you conclude with regards to normality of Apple stocks excess returns?

b) The following two models (GARCH and GJR) where estimated

Dependent Variable: APPLE_EX Method: ML - ARCH (Marquardt) - Normal distribution Date: 12/19/11 Time: 11:01 Sample (adjusted): 1988M07 2007M09 Included observations: 231 after adjustments Convergence achieved after 48 Iterations Presample variance: backcast (parameter = 0.7) GARCH = C(5) + C(6)*RESID(-1)*2 + C(7)*GARCH(-1)					Dependent Variable: APPLE_EX Method: ML - ARCH (Marquardt) - Normal distribution Date: 12/19/11 Time: 11:00 Sample (adjusted): 1988M07 2007M09 Included observations: 231 after adjustments Convergence achieved after 57 iterations Presample variance: backcast (parameter = 0.7) GARCH = C(5) + C(6)*RESID(-1)*2 + C(7)*RESID(-1)*2*(RESID(-1)<0) + C(8)*GARCH(-1)					
Variable	Coefficient	Std. Error	z-Statistic	Prob.		Variable	Coefficient	Std. Error	z-Statistic	Prob.
C MKT_EX SMB HML	0.013557 1.086313 0.006939 -0.007718	0.008697 0.265474 0.002508 0.003583	1.558854 4.091980 2.766787 -2.154091	0.1190 0.0000 0.0057 0.0312		C MKT_EX SMB HML	0.012905 1.109613 0.006457 -0.007963	0.008668 0.263522 0.002533 0.003551	1.488871 4.210698 2.548969 -2.242493	0.1365 0.0000 0.0108 0.0249
	Variance I	Equation					Variance	Equation		
C RESID(-1)^2 GARCH(-1)	0.001152 0.083110 0.846633	0.000818 0.050932 0.090624	1.408033 1.631779 9.342260	0.1591 0.1027 0.0000	I RESID(-	C RESID(-1)^2 1)^2*(RESID(-1)<0) GARCH(-1)	0.001091 0.048374 0.058689 0.856900	0.000848 0.053698 0.070556 0.091539	1.287247 0.900863 0.831805 9.361078	0.1980 0.3677 0.4055 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.205144 0.194639 0.127328 3.680211 157.6429 9.764392 0.000000	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	lent var ent var iterion rion n criter. on stat	0.018314 0.141882 -1.304268 -1.199952 -1.262193 1.921114	R-squar Adjusted S.E. of n Sum sq Log like F-statist Prob(F-s	ed I R-squared egression uared resid lihood ic statistic)	0.205382 0.194881 0.127309 3.679108 158.1272 8.381712 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.018314 0.141882 -1.299803 -1.180585 -1.251718 1.917400

- b-i) What restrictions need to be imposed on the parameters each volatility model for it to be valid?
- b-ii) Based on the results presented which model would you choose and why?
- c) Assuming that some of the exogenous variables may impact volatility as well, the alternative volatility model was estimated:

Dependent Variable: APPLE_EX Method: ML - ARCH (Marquardt) - Normal distribution Date: 12/19/11 Time: 11:07 Sample (adjusted): 1988M07 2007M09 Sample (adjusted), 1995im07 2007 M09 Included observations: 221 after adjustments Convergence achieved after 23 iterations Presample variance: backcast (parameter = 0.7) GARCH = C(5) + C(6)*RESID(-1)*2 + C(7)*RESID(-2)*2 + C(8)*RESID(-3)*2 + C(9)*RESID(-4)*2 + C(10)*HML Variable Coefficient Std. Error z-Statistic Prob. 0.017422 0.0310 0.008075 2.157447 C MKT_EX 5.075381 1.086565 0.214085 0.0000 SMB HML 1.901059 0.0573 0.004306 0.002265 -0.004929 0.003046 Variance Equation 0.007955 0.072880 0.026180 0.131750 0.268150 0.002101 0.065350 0.068478 0.098342 3.785678 1.115218 0.382321 1.339716 0.0002 0.2648 0.7022 0.1803 RESID(-1)*2 RESID(-2)*2 RESID(-3)*2 RESID(-4)^2 HML 0.120049 2.233672 0.0255 0.000957 0.000523 1.828955 0.0674 0.206571 0.196085 0.127214 R-squared Adjusted R-squared Mean dependent va 0.018314 S.D. dependent var 0.141882 Adjusted R-square S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Akaike info criterion -1.305466 3.673604 160.7813 6.566660 0.000000 Schwarz criterion Hannan-Quinn criter Durbin-Watson stat -1.156443 -1.245360 1.915436

- c-i) What type of volatility model was estimated.
- c-ii) Compute the unconditional variance.
- Q.3 Consider that for the first difference of the variable SP_t , the following model was estimated:

$Table \ 2.1: \ Model \ for \ DSP_t$ Dependent Variable: DSP Method: ML - ARCH (Marquardt) - Normal distribution Date: 12/14/11 Time: 14:06 Sample (adjusted): 3 1120 Included observations: 1118 after adjustments Convergence achieved after 87 iterations Presample variance: backcast (parameter = 0.7) GARCH = C(3) + C(4)*RESID(-1)^2 + C(5)*RESID(-1)^2*(RESID(-1)<0) + C(6)*GARCH(-1)								
Variable	Coefficient	Std. Error	z-Statistic	Prob.				
C DSP(-1)	-0.011804 -0.152614	0.046149 0.040097	-0.255773 -3.806111	0.7981 0.0001				
Variance Equation								
C RESID(-1)^2 RESID(-1)^2*(RESID(-1)<0) GARCH(-1)	0.539719 0.408318 -0.258921 0.573640	0.049707 0.040682 0.048458 0.029680	10.85803 10.03677 -5.343245 19.32763	0.0000 0.0000 0.0000 0.0000				
R-squared -0.010230 Mean dependent var D Adjusted R-squared -0.011136 S.D. dependent var 1 S.E. of regression 1.761870 Akaike info criterion 3 Sum squared resid 3464.270 Schwarz criterion 3 Log likelihood -2072.600 Hannan-Quinn criter. 3 Durbin-Watson stat 1.783040								

- (a) Indicate what model is estimated in Table 2.1 and write down its functional form.
- (b) What are the parameter restrictions that have to be observed for a model, as the one that was estimated in Table 2.1, to be valid? Do the results presented satisfy those restrictions.
- (c) What is the main difference between the model estimated in Table 2.1 and a pure GARCH(1,1) model.
- (d) Consider the following Figures of the graph of the standardized residuals, the autocorrelations associated with the square of the standardized residuals and the histogram of the standardized residuals.

is: 1118				
Partial Correlation	AC	PAC	Q-Stat	Prob
	1 -0.016 2 -0.014 3 0.013 4 -0.006 5 -0.015 6 -0.015 7 -0.032 8 -0.019 9 0.036 10 0.012 11 -0.022 12 -0.013 13 0.019 14 0.032	-0.016 -0.014 0.013 -0.006 -0.015 -0.016 -0.033 -0.020 0.034 0.013 -0.022 -0.016 0.017 0.032	0.2812 0.4922 0.6801 0.7241 0.9930 1.2620 2.4340 2.8372 4.2795 4.4352 5.0063 5.2101 5.6296 6.7669	0.596 0.782 0.878 0.963 0.974 0.932 0.944 0.892 0.926 0.926 0.931 0.951 0.959 0.943
I 'I'	110 -0.004	-0.002	0.7010	0.905
	s: 1118 Partial Correlation	s: 1118 Partial Correlation AC 01 1 -0.016 01 2 -0.014 01 3 0.013 01 4 -0.006 01 5 -0.015 01 6 -0.015 01 6 -0.015 01 8 -0.019 01 0 0.012 01 10 0.012 01 10 0.012 01 11 -0.022 01 12 -0.013 01 13 0.019 01 14 0.322 01 13 0.019 01 14 0.322 01 13 0.019 01 15 -0.004	s: 1118 Partial Correlation AC PAC 0 1 -0.016 -0.016 0 2 -0.014 -0.014 0 3 0.013 0.013 0 4 -0.006 -0.006 0 5 -0.015 -0.016 0 6 -0.015 -0.016 0 7 -0.032 -0.033 0 8 -0.019 -0.020 0 9 0.036 0.034 0 011 -0.022 -0.022 0 11 -0.022 -0.022 0 13 0.019 0.017 0 14 0.032 0.032 15 -0.004 -0.002	s: 1118 Partial Correlation AC PAC Q-Stat 0 1 -0.016 -0.016 0.2812 0 2 -0.014 -0.016 0.2812 0 3 0.013 0.013 0.6801 1 4 -0.006 -0.006 0.7241 0 5 -0.015 -0.015 0.9930 0 6 -0.015 -0.032 2.4340 1 8 -0.019 -0.022 2.8372 1 9 0.036 0.034 4.2795 10 0.012 -0.013 4.4352 11 -0.022 -0.022 5.0063 11 2 -0.013 -0.016 5.2101 13 0.019 0.017 5.6206 11 13 0.019 0.017 5.6206 11 13 0.019 0.017 5.6206 11 15 -0.004 -0.002 6.7816

Figure 2.3:Histogram of Standardized Residual

What do these plots tell you about whether or not the model estimated in Table 2.1 appears to fit volatility well.

- (e) What do these plots tell you about the validity of the conditional Normality?
- (f) Given the following output and the output in Table 2.1 indicate whether the model provided in Table 2.1 is more suitable by testing the joint significance of the additional regressors.

Dependent Variable: DSP Method: ML - ARCH (Marquardt) - Normal distribution Date: 12/14/11 Time: 16:16 Sample (adjusted): 3 1120 included observations: 1118 after adjustments Convergence achieved after 59 iterations Presample variance: backcast (parameter = 0.7) GARCH = C(3) + C(4)*RESID(-1)*2 + C(5)*RESID(-1)*2*(RESID(-1)<0) + C(6)*RESID(-2)*2 + C(7)*RESID(-3)*2 + C(8)*GARCH(-1)							
Variable	Coefficient	Std. Error	z-Statistic	Prob.			
C DSP(-1)	-0.062782 -0.140252	0.038157 0.020860	-1.645381 -6.723359	0.0999 0.0000			
	Variance I	Equation					
C RESID(-1)^2 RESID(-1)^2*(RESID(-1)<0) RESID(-2)^2 RESID(-2)^2 GARCH(-1)	0.095339 0.095322 0.028688 0.416507 0.453752 0.912969	0.033057 0.032885 0.019307 0.050980 0.032579 0.030993	2.884079 2.898641 1.485898 8.169975 -13.92760 29.45744	0.0039 0.0037 0.1373 0.0000 0.0000 0.0000			
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.010497 -0.011403 1.762103 3465.186 -2065.959 1.802219	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin	0.040250 1.752141 3.710124 3.746040 3.723700				

(g) Assuming that the last three volatility estimates where $\sigma_{T-2}^2 = 1.63$, $\sigma_{T-1}^2 = 3.13$ and $\sigma_T^2 = 3.04$, and that $\hat{u}_T^2 = 0.7$, compute forecasts for σ_{T+1}^2 , σ_{T+2}^2 and σ_{T+3}^2 . How would you evaluate the quality of these forecasts?

Figure 2.2:Correlogram of Standardized Residuals Squared Date: 12/14/11 Time: 14:24