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MAXIMUM LIKELIHOOD ESTIMATION - Examples

Maximum Likelihood Estimation (MLE) is a systematic technique for estimating
parameters in a probability model from a data sample. Suppose a sample x1, ..., xn has
been obtained from a probability model specified by mass or density function fX (x ; θ)
depending on parameter(s) θ lying in parameter space Θ.
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The maximum likelihood estimate or MLE is produced as indicated in the next 4
STEPS;

STEP 1 Write down the likelihood function, L(θ), where

L(θ) = Πn
i=1fX (xi ; θ)

that is, the product of the n mass/density function terms (where the ith term is
the mass/density function evaluated at xi ) viewed as a function of θ.

STEP 2 Take the natural log of the likelihood, collect terms involving θ.
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STEP 3 Find the value of θ ∈ Θ, for which logL(θ) is maximized, for example by
differentiation. If θ is a single parameter, find θ by solving

dlogL(θ)

dθ
= 0

in the parameter space Θ. If θ is vector-valued, say θ = (θ1, ..., θk), then find
θ̂ = (θ̂1, ..., θ̂k), by simultaneously solving the k equations given by

∂logL(θ)

∂θj
= 0, j = 1, ..., k

in parameter space Θ. Note that, if parameter space Θ is a bounded interval,
then the maximum likelihood estimate may lie on the boundary of Θ.
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STEP 4 Check that the estimate θ obtained in STEP 3 truly corresponds to a maximum
in the (log) likelihood function by inspecting the second derivative of logL(θ) with
respect to θ. In the single parameter case, if the second derivative of the
log-likelihood is negative at θ = θ̂, then θ is confirmed as the MLE of θ (other
techniques may be used to verify that the likelihood is maximized at θ).



ECONOMETRICS
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EXAMPLE Suppose a sample x1, ..., xn is modelled by a Poisson distribution with
parameter denoted λ, so that

fX (x ; θ) ≡ fX (x ; λ) =
λx

x !
e−λ, x = 0, 1, 2, ...

for some λ > 0. To estimate λ by maximum likelihood, proceed as follows.

STEP 1 Calculate the likelihood function L(λ).

L(λ) = Πn
i=1fX (x ; λ) = Πn

i=1

[
λx

x !
e−λ

]
=

λx1+x2+...+xn

x1!....xn!
e−nλ

for λ ∈ Θ = R+.
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STEP 2 Calculate the log-likelihood function logL(λ).

logL(λ) =
n

∑
i=1

xi log λ− nλ−
n

∑
i=1

log(xi !)

.

STEP 3 Differentiate logL(λ) with respect to λ, and equate the derivative to zero to find
the MLE.

dlogL(λ)

dλ
= 0⇔ (1)

n

∑
i=1

xi
λ
− n = 0⇔ (2)

λ̂ =
1

n

n

∑
i=1

xi = x̄ (3)

Thus the maximum likelihood estimate of λ is λ̂ = x̄ .
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STEP 4 Check that t the second derivative of the log-likelihood logL(λ) is negative at
λ = λ̂.

d2logL(θ)

dλ2
= − 1

λ

n

∑
i=1

xi < 0 at λ = λ̂

.
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The following data are the observed frequencies of occurrence of domestic accidents:
we have n = 647 data as follows
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The estimate of λ if a Poisson model is assumed is:

λ̂ = x̄ =
(447 ∗ 0) + (132 ∗ 1) + (42 ∗ 2) + (21 ∗ 3) + (3 + 4) + (2 ∗ 5)

647
= 0.465
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The (Quasi) Maximum Likelihood Method
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Likelihood function and the ML estimator

I Fisher presented the concept of maximum likelihood (ML) around 1925. Since
then, this is the most popular estimation method in the time-series analysis
because of its flexibility. The price for this flexibility is having to make an explicit
distributional assumption.

I The ML estimator is obtained by maximizing the likelihood function of the
data. If xt ∼ iid f (xt , θ) , θ ∈ Θ, then the likelihood function is the joint density
function of the data given θ, i .e.,

L(θ; x1, ..., xT ) = L(θ; x) =
T

∏
t=1

f (xt ; θ) (4)

We define

θ̂ML : arg max
θ∈Θ

L(θ; x) = arg max
θ∈Θ

T

∏
t=1

f (xt ; θ) (5)
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I Noting

log

(
T

∏
i=1

ai

)
=

T

∑
i=1

log (ai ) ,

then we define the log-likelihood function as

L(θ; x) ≡ log L(θ; x) =
T

∑
t=1

log f (xt ; θ) (6)

noting that
θ̂ML : arg max

θ∈Θ
L(θ; x)) = arg max

θ∈Θ
L(θ; x) (7)

because the logarithmic function is a monotonic transformation and preserves the
optimum.
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Example

Let {xt}Tt=1 with xt ∼ iidN (µ, σ2) and θ =
(
µ, σ2

)′
. The likelihood function for each

observation is

f (xt , θ) =
(
2πσ2

)−1/2
exp

(
− (xt − µ)2

2σ2

)
. (8)

Therefore,

L(x;θ) =
(
2πσ2

)−T/2
exp

(
−1

2

T

∑
t=1

(xt − µ)2

σ2

)
(9)

so the Gaussian log-likelihood is

L(x;θ) = −T

2
ln (2π)− T

2
ln
(
σ2
)
− 1

2

T

∑
t=1

(
xt − µ

σ

)2

(10)
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Likelihood function and the ML estimator

Example

Let {xt}Tt=1 with xt ∼ iidN (µ, 1). We know σ = 1 and the (unknown) true mean is
µ = 0. The log-likelihood function for µ in the range is [−3, 3] for a random sample
with T=20,000 is shown below.
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Example

Consider the AR(1) model with Gaussian innovations
Yt = c + ρYt−1 + εt , εt ∼ iidN

(
0, σ2

)
. Since εt = Yt − c − ρYt−1, the

log-likelihood of the AR(1) model can be written as

L(θ; yt) = −T

2
log (2π)− T

2
log
(
σ2
)
− 1

2σ2

T

∑
t=2

ε2t

= −T

2
log (2π)− T

2
log
(
σ2
)
− 1

2σ2

T

∑
t=2

(Yt − c − ρYt−1)
2
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Asymptotic properties

Under suitable regularity conditions, the CLT applies and θ̂ML has the following
asymptotic properties:

I Asymptotically normality. From the CLT,(
θ̂ML − θ

)
∼ N (0, Vθ) (11)

where Vθ < ∞ is a well-defined matrix. Hence, we can carry out inference as

ti =

(
θ̂ML,i − θi

)
√
[Vθ ]ii

∼ N (0, 1)
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Asymptotic properties

I Efficiency. If the model is correctly specified, and the regularity conditions hold,
the covariance matrix Vθ equals the inverse of the information matrix , i.e.,
achieves the Cramer-Rao bound.

Vθ =

−E
[

∂2L(x;θ)

∂θ∂θ′

]
︸ ︷︷ ︸ ≡ Ωθ

Information Matrix


−1

︸ ︷︷ ︸
Cramer-Rao bound
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Asymptotic properties

I In general terms, we need to estimate the two matrices that define the covariance
matrix in the limit. These matrices are determined numerically and provided by
most statistical packages.

1. (Hessian matrix): Aθ equals (minus) the expectation of the Hessian matrix. We
can estimate this matrix consistently by its sample analog:

Aθ= −E
(

∂L(xt ;θ)

∂θ∂θ′

)
⇒ ÂθT = −

(
1

T

T

∑
t=1

∂L(xt ;θ)

∂θ∂θ′

)
|

θ=θ̂ML
(12)

That is, the (numerical) Hessian evaluated at the estimated value.
2. (Outter product of the score vector) Bθ is the variance of the score vector, which

has zero expectation. Hence, the sample analog of the covariance matrix is:

B̂θT =
1

T

T

∑
t=1

(
∂L(xt ;θ)

∂θ

)(
∂L(xt ;θ)

∂θ

)′
|

θ=θ̂T
(13)
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Asymptotic properties

NOTE I. When the model is correctly specified, it can be shown that

ÂθT
p→ Ω−1θ

and
B̂θT

p→ Ω−1θ ,

where Ωθ denotes the Information matrix. Hence, both estimators are asymptotically
equivalent and hence

Vθ =
[
Â−1θT B̂θT Â−1θT

]
p→ Ω−1θ .

Because B̂θT Â−1θT

p→ I, statistical packages estimate the covariance matrix on the basis

of either the Hessian or the outter product, e.g., V̂θ = Â−1θT . However, it should be
remarked once more that this approximation only holds when the specification is
correctly specified.
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QML estimation

I When the true distribution is NOT normal, then:
I θ̂ML is still consistent and asymptotically normally distributed,
I θ̂ML is no longer efficient, because it has a larger covariance matrix than the inverse

of the information matrix. In particular,

√
T
(
θ̂ML − θ

) d→ N
(

0,
[
A−1θ BθA−1θ

])
(14)

I We can estimate consistently θ =
(

θ′µ, θ′σ

)′
by assuming normality EVEN if the

true distribution is not normal. The resultant estimator is called the Quasi- (or
pseudo-) Maximum Likelihood (QML) estimator: θ̂QML.
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QML estimation

Theorem
Under general regularity conditions, including the cases in which the analyst specifies
the conditional mean of the model, E(Yt |F ) = µ (Xt ; θ) , and
Var(Yt |F ) = σ2 (Xt ; θ) , the quasi-maximum likelihood procedure yields a consistent
estimator of θ0, asymptotically distributed as a normal, if and only if the
quasi-likelihood function is based on a probability density function family in the
quadratic exponential class.

REMARK 1. The primary example of a PDF family encompassed by the quadratic
exponential family is the normal distribution.
REMARK 2. This is a crucial theoretical result for many empirical applications: We
can estimate parameters consistently through QML even if the true distribution is not
normal. The ML and QML parameter estimates are the same, and only differ in the
covariance matrix

V̂θ,QML =
[
Â−1θT B̂θT Â−1θT

]
.


