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MAXIMUM LIKELIHOOD ESTIMATION - Examples

Maximum Likelihood Estimation (MLE) is a systematic technique for estimating
parameters in a probability model from a data sample. Suppose a sample xi, ..., x, has
been obtained from a probability model specified by mass or density function fx(x; )
depending on parameter(s) 6 lying in parameter space ©.
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MAXIMUM LIKELIHOOD ESTIMATION - Examples

The maximum likelihood estimate or MLE is produced as indicated in the next 4
STEPS;

STEP 1 Write down the likelihood function, L(6), where
L(0) = 171 fx (x:; 0)

that is, the product of the n mass/density function terms (where the ith term is
the mass/density function evaluated at x;) viewed as a function of 6.

STEP 2 Take the natural log of the likelihood, collect terms involving 6.
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MAXIMUM LIKELIHOOD ESTIMATION - Examples

STEP 3 Find the value of 6 € ©, for which logL(6) is maximized, for example by
differentiation. If 0 is a single parameter, find 6 by solving

dlogL ()

g0 0

the parameter space ©. If 0 is vector-valued, say 6 = (61, ..., 6x), then find

A

in
0 = (04, ..., ék), by simultaneously solving the k equations given by

dlogL(0)

Tejzo, _j:].,,k

in parameter space ©. Note that, if parameter space O is a bounded interval,
then the maximum likelihood estimate may lie on the boundary of @.
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MAXIMUM LIKELIHOOD ESTIMATION - Examples

STEP 4 Check that the estimate 8 obtained in STEP 3 truly corresponds to a maximum
in the (log) likelihood function by inspecting the second derivative of logL(8) with
respect to 6. In the single parameter case, if the second derivative of the
log-likelihood is negative at @ = @, then 6 is confirmed as the MLE of 6 (other
techniques may be used to verify that the likelihood is maximized at 6).
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MAXIMUM LIKELIHOOD ESTIMATION - Examples

EXAMPLE Suppose a sample x, ..., X, is modelled by a Poisson distribution with
parameter denoted A, so that

X

fx(x;0) = fx(x;A) = A—'ef/\, x=0,12, ..
x!

for some A > 0. To estimate A by maximum likelihood, proceed as follows.
STEP 1 Calculate the likelihood function L(A).

L(A) =TI7_1 fx (x; A) = T17.4 = "

= —e

[)\X —A] B /\X1+XQ+...+><n
forAc©®=RT.
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MAXIMUM LIKELIHOOD ESTIMATION - Examples

STEP 2 Calculate the log-likelihood function logL(A).

n n

logL(A) =) xilog A —nA — ) _ log(x;!)

=1 i=1

STEP 3 Differentiate logL(A) with respect to A, and equate the derivative to zero to find

the MLE.
dlogL(A)
—a 0&
nX’_
——n = 0&

L3

/A\—EZx-—X

= .=

i=1

nOvA hus the maximum likelihood estimate of A is A=x
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MAXIMUM LIKELIHOOD ESTIMATION - Examples

STEP 4 Check that t the second derivative of the log-likelihood logL(A) is negative at
A=A
d?logL(6)

1Z& o
= —— xp<0 atA=A
v ik
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MAXIMUM LIKELIHOOD ESTIMATION - Examples

The following data are the observed frequencies of occurrence of domestic accidents:
we have n = 647 data as follows

Number of accidents Frequency

0 447

132
42 .

21

3

2

T W N =~
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MAXIMUM LIKELIHOOD ESTIMATION - Examples

The estimate of A if a Poisson model is assumed is:

(447 %0) + (1325 1) + (42%2) + (21 %3) + (3+4) + (2%5)
647

A=x=

= 0.465

Log-Likelihood Plot for Accident Data
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Likelihood function and the ML estimator

» Fisher presented the concept of maximum likelihood (ML) around 1925. Since
then, this is the most popular estimation method in the time-series analysis
because of its flexibility. The price for this flexibility is having to make an explicit
distributional assumption.

» The ML estimator is obtained by maximizing the likelihood function of the
data. If x; ~ iid f (x¢,0), 0 € ©, then the likelihood function is the joint density
function of the data given 0, i.e.,

;
L(Q;Xl, . T = L = Hf Xtv (4)
t=
We define -
Ot L(6:x) = f(x:: 0 5
mi : argmax L(6; x) = arggﬁeagtlz[l (xt:0) (5)
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Likelihood function and the ML estimator

» Noting
T T
log (H a,-) = Z log (a;)
i=1 i=1

then we define the log-likelihood function as

-
L(0;x) = log L(0;x) Z log f (x¢; 0 (6)
noting that N
: X)) = L(6;
O - arg max L(0;x)) = arg max (0;x) (7)

because the logarithmic function is a monotonic transformation and preserves the
optimum.
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Likelihood function and the ML estimator

Example
Let {xt};l with x¢ ~ iid N (,0?) and 6 = (y,02)/. The likelihood function for each
observation is ,

f(x,0) = (271(72)71/2 exp <—(Xt2;2y)> : (8)
Therefore,

| 2\~ T/2 L (e —p)?
so the Gaussian log-likelihood is
T T o 1& (=)’
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Likelihood function and the ML estimator

Example
Let {xt}thl with x; ~ iidN (u,1). We know ¢ = 1 and the (unknown) true mean is
u = 0. The log-likelihood function for p in the range is [—3, 3] for a random sample

with T=20,000 is shown below.
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Likelihood function and the ML estimator

Example

Consider the AR(1) model with Gaussian innovations

Y =c+pYio1+e €~ iidN (0,02) . Since g¢ = Yy — c — pYi_1, the
log-likelihood of the AR(1) model can be written as

T T 1 &
L(0;y:) = —Elog(27r)—§|og 2—2
T T T

= —Elog(27r)—5|og( 2022 Ye—c—pYio 1)
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Asymptotic properties

Under suitable regularity conditions, the CLT applies and §ML has the following
asymptotic properties:

» Asymptotically normality. From the CLT,
(B — ) ~ N (0, V) (11)

where Vy < oo is a well-defined matrix. Hence, we can carry out inference as

(é\MLJ_GI.)NN(Oyl)

ti =
[Ve]

ii
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Asymptotic properties

» Efficiency. If the model is correctly specified, and the regularity conditions hold,
the covariance matrix Vg equals the inverse of the information matrix , i.e.,
achieves the Cramer-Rao bound.

-1

92L(x;0)
0006’

Information Matrix

vo— | -£| | =0,

Cramer-Rao bound
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Asymptotic properties

» In general terms, we need to estimate the two matrices that define the covariance

matrix in the limit. These matrices are determined numerically and provided by
most statistical packages.

1. (Hessian matrix): Ay equals (minus) the expectation of the Hessian matrix. We
can estimate this matrix consistently by its sample analog:

_ oL (xt;0) A oL (x¢;0
Ro= _E< 36007 )2‘ ( Z 2006’ ) oty (12

That is, the (numerical) Hessian evaluated at the estimated value

(Outter product of the score vector) By is the variance of the score vector, which
has zero expectation. Hence, the sample analog of the covariance matrix is

T

; (E)E x¢;0 ) (aﬁ(a);t;e))bgT 13)
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Asymptotic properties

NOTE I. When the model is correctly specified, it can be shown that

A P ~—1
Agr — 09

and
Bor 5 O,
where )y denotes the Information matrix. Hence, both estimators are asymptotically

equivalent and hence
PP
Vo = |AjFBorAgt] B Ot

Because égTA;Tl B 1, statistical packages estimate the covariance matrix on the basis
of either the Hessian or the outter product, e.g., \79 = Ag.,l- However, it should be
remarked once more that this approximation only holds when the specification is
correctly specified.
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QML estimation

» When the true distribution is NOT normal, then:

> QM,_ is still consistent and asymptotically normally distributed,
» 0Oy is no longer efficient, because it has a larger covariance matrix than the inverse
of the information matrix. In particular,

VT (éML — 9) i) N (0, [A;lBgAgl}) (14)

/
» We can estimate consistently 6 = ((9;4 9(’,) by assuming normality EVEN if the

true distribution is not normal. The resultant estimator is called the Quasi- (or
pseudo-) Maximum Likelihood (QML) estimator: O .
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QML estimation

Theorem
Under general regularity conditions, including the cases in which the analyst specifies

the conditional mean of the model, E(Y{|F) = u (Xt;0), and
Var(Y:|F) = 02 (X;0) , the quasi-maximum likelihood procedure yields a consistent
estimator of 8y, asymptotically distributed as a normal, if and only if the
quasi-likelihood function is based on a probability density function family in the
quadratic exponential class.
REMARK 1. The primary example of a PDF family encompassed by the quadratic
exponential family is the normal distribution.
REMARK 2. This is a crucial theoretical result for many empirical applications: We
can estimate parameters consistently through QML even if the true distribution is not
normal. The ML and QML parameter estimates are the same, and only differ in the
covariance matrix

Vo omL = [AQ%EGTAE%} :
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