Illustrations of Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) is a systematic technique for estimating parameters in a probability model from a data sample. Suppose a sample $x_1, ..., x_n$ has been obtained from a probability model specified by mass or density function $f_X(x; \theta)$ depending on parameter(s) θ lying in parameter space Θ .

The **maximum likelihood estimate** or **MLE** is produced as indicated in the next 4 STEPS;

STEP 1 Write down the likelihood function, $L(\theta)$, where

 $L(\theta) = \prod_{i=1}^{n} f_X(x_i; \theta)$

that is, the product of the *n* mass/density function terms (where the *i*th term is the mass/density function evaluated at x_i) viewed as a function of θ .

STEP 2 Take the natural log of the likelihood, collect terms involving θ .

STEP 3 Find the value of $\theta \in \Theta$, for which $logL(\theta)$ is maximized, for example by differentiation. If θ is a single parameter, find θ by solving

$$\frac{dlogL(\theta)}{d\theta} = 0$$

in the parameter space Θ . If θ is vector-valued, say $\theta = (\theta_1, ..., \theta_k)$, then find $\hat{\theta} = (\hat{\theta}_1, ..., \hat{\theta}_k)$, by simultaneously solving the k equations given by

$$rac{\partial log L(heta)}{\partial heta_j} = 0, \qquad j = 1, ..., k$$

in parameter space Θ . Note that, if parameter space Θ is a bounded interval, then the maximum likelihood estimate may lie on the boundary of Θ .

STEP 4 Check that the estimate θ obtained in **STEP 3** truly corresponds to a maximum in the (log) likelihood function by inspecting the second derivative of $logL(\theta)$ with respect to θ . In the single parameter case, if the second derivative of the log-likelihood is negative at $\theta = \hat{\theta}$, then θ is confirmed as the MLE of θ (other techniques may be used to verify that the likelihood is maximized at θ).

EXAMPLE Suppose a sample $x_1, ..., x_n$ is modelled by a Poisson distribution with parameter denoted λ , so that

$$f_X(x;\theta) \equiv f_X(x;\lambda) = \frac{\lambda^x}{x!}e^{-\lambda}, \qquad x = 0, 1, 2, \dots$$

for some $\lambda > 0$. To estimate λ by maximum likelihood, proceed as follows. **STEP 1** Calculate the likelihood function $L(\lambda)$.

$$L(\lambda) = \prod_{i=1}^{n} f_X(x;\lambda) = \prod_{i=1}^{n} \left[\frac{\lambda^x}{x!} e^{-\lambda} \right] = \frac{\lambda^{x_1 + x_2 + \dots + x_n}}{x_1! \dots x_n!} e^{-n\lambda}$$
for $\lambda \in \Theta = R^+$.

STEP 2 Calculate the log-likelihood function $logL(\lambda)$.

$$logL(\lambda) = \sum_{i=1}^{n} x_i \log \lambda - n\lambda - \sum_{i=1}^{n} log(x_i!)$$

STEP 3 Differentiate $logL(\lambda)$ with respect to λ , and equate the derivative to zero to find the MLE.

$$rac{dlog L(\lambda)}{d\lambda} = 0 \Leftrightarrow$$
 (1)

$$\sum_{i=1}^{n} \frac{x_i}{\lambda} - n = 0 \Leftrightarrow$$
 (2)

$$\hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} x_i = \bar{x}$$
(3)

NOVThus the maximum likelihood estimate of λ is $\hat{\lambda} = \bar{x}$.

ECONOMETRICS

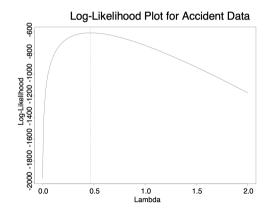
STEP 4 Check that t the second derivative of the log-likelihood $logL(\lambda)$ is negative at $\lambda = \hat{\lambda}$. $\frac{d^2 logL(\theta)}{d\lambda^2} = -\frac{1}{\lambda} \sum_{i=1}^n x_i < 0 \quad \text{at } \lambda = \hat{\lambda}$

The following data are the observed frequencies of occurrence of domestic accidents: we have $n\,=\,647$ data as follows

Number of accidents	Frequency
0	447
1	132
2	42 .
3	21
4	3
5	2

The estimate of λ if a Poisson model is assumed is:

$$\hat{\lambda} = \bar{x} = \frac{(447*0) + (132*1) + (42*2) + (21*3) + (3+4) + (2*5)}{647} = 0.465$$



The (Quasi) Maximum Likelihood Method

- Fisher presented the concept of maximum likelihood (ML) around 1925. Since then, this is the most popular estimation method in the time-series analysis because of its flexibility. The price for this flexibility is having to make an explicit distributional assumption.
- ► The ML estimator is obtained by maximizing the likelihood function of the data. If $x_t \sim iid \ f(x_t, \theta)$, $\theta \in \Theta$, then the likelihood function is the joint density function of the data given θ , *i.e.*,

$$L(\theta; x_1, ..., x_T) = L(\theta; \mathbf{x}) = \prod_{t=1}^T f(x_t; \theta)$$
(4)

We define

$$\widehat{\theta}_{ML} : \arg\max_{\theta \in \Theta} L(\theta; \mathbf{x}) = \arg\max_{\theta \in \Theta} \prod_{t=1}^{T} f(x_t; \theta)$$
(5)

► Noting

$$\log\left(\prod_{i=1}^{\mathcal{T}} a_i
ight) = \sum_{i=1}^{\mathcal{T}} \log\left(a_i
ight)$$
 ,

then we define the log-likelihood function as

$$\mathcal{L}(\theta; \mathbf{x}) \equiv \log L(\theta; \mathbf{x}) = \sum_{t=1}^{T} \log f(x_t; \theta)$$
(6)

noting that

$$\widehat{\theta}_{ML} : \arg \max_{\theta \in \Theta} \mathcal{L}(\theta; \mathbf{x})) = \arg \max_{\theta \in \Theta} \mathcal{L}(\theta; \mathbf{x})$$
(7)

because the logarithmic function is a monotonic transformation and preserves the optimum.

Example

Let $\{x_t\}_{t=1}^T$ with $x_t \sim iid \mathcal{N}(\mu, \sigma^2)$ and $\theta = (\mu, \sigma^2)'$. The likelihood function for each observation is

$$f(x_t,\theta) = \left(2\pi\sigma^2\right)^{-1/2} \exp\left(-\frac{(x_t-\mu)^2}{2\sigma^2}\right).$$
(8)

Therefore,

$$L(\mathbf{x};\theta) = \left(2\pi\sigma^2\right)^{-T/2} \exp\left(-\frac{1}{2}\sum_{t=1}^T \frac{\left(x_t - \mu\right)^2}{\sigma^2}\right)$$
(9)

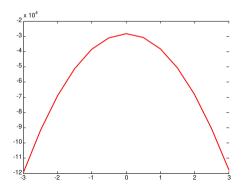
so the Gaussian log-likelihood is

$$\mathcal{L}(\mathbf{x};\theta) = -\frac{T}{2}\ln(2\pi) - \frac{T}{2}\ln(\sigma^2) - \frac{1}{2}\sum_{t=1}^{T}\left(\frac{x_t - \mu}{\sigma}\right)^2$$

(10)

Example

Let $\{x_t\}_{t=1}^T$ with $x_t \sim iid\mathcal{N}(\mu, 1)$. We know $\sigma = 1$ and the (unknown) true mean is $\mu = 0$. The log-likelihood function for μ in the range is [-3, 3] for a random sample with T=20,000 is shown below.



Example

Consider the AR(1) model with Gaussian innovations $Y_t = c + \rho Y_{t-1} + \varepsilon_t, \varepsilon_t \sim iid \mathcal{N}(0, \sigma^2)$. Since $\varepsilon_t = Y_t - c - \rho Y_{t-1}$, the log-likelihood of the AR(1) model can be written as

$$\begin{split} \mathcal{L}(\theta; \mathbf{y}_t) &= -\frac{T}{2} \log \left(2\pi \right) - \frac{T}{2} \log \left(\sigma^2 \right) - \frac{1}{2\sigma^2} \sum_{t=2}^T \varepsilon_t^2 \\ &= -\frac{T}{2} \log \left(2\pi \right) - \frac{T}{2} \log \left(\sigma^2 \right) - \frac{1}{2\sigma^2} \sum_{t=2}^T \left(Y_t - c - \rho Y_{t-1} \right)^2 \end{split}$$

Under suitable regularity conditions, the CLT applies and $\hat{\theta}_{ML}$ has the following asymptotic properties:

► Asymptotically normality. From the CLT,

$$\left(\widehat{\theta}_{ML} - \theta\right) \sim \mathcal{N}\left(0, \mathbf{V}_{\theta}\right)$$
 (11)

where $\mathbf{V}_{ heta} < \infty$ is a well-defined matrix. Hence, we can carry out inference as

$$t_{i}=rac{\left(\widehat{ heta}_{ML,i}- heta_{i}
ight)}{\sqrt{\left[oldsymbol{\mathcal{V}}_{ heta}
ight]_{ii}}}\sim\mathcal{N}\left(0,1
ight)$$

• Efficiency. If the model is correctly specified, and the regularity conditions hold, the covariance matrix V_{θ} equals the inverse of the information matrix , *i.e.*, achieves the Cramer-Rao bound.

$$\mathbf{V}_{\theta} = \underbrace{\begin{bmatrix} -E \left[\frac{\partial^{2} \mathcal{L}(\mathbf{x}; \theta)}{\partial \theta \partial \theta'} \right]}_{\text{Information Matrix}} \equiv \Omega_{\theta} \end{bmatrix}^{-1}_{\text{Cramer-Rao bound}}$$

- In general terms, we need to estimate the two matrices that define the covariance matrix in the limit. These matrices are determined numerically and provided by most statistical packages.
 - 1. (Hessian matrix): A_{θ} equals (minus) the expectation of the Hessian matrix. We can estimate this matrix consistently by its sample analog:

$$\mathbf{A}_{\theta} = -E\left(\frac{\partial \mathcal{L}(\mathbf{x}_{t};\theta)}{\partial \theta \partial \theta'}\right) \Rightarrow \mathbf{\hat{A}}_{\theta T} = -\left(\frac{1}{T}\sum_{t=1}^{T}\frac{\partial \mathcal{L}(\mathbf{x}_{t};\theta)}{\partial \theta \partial \theta'}\right)\Big|_{\theta = \hat{\theta}_{ML}}$$
(12)

That is, the (numerical) Hessian evaluated at the estimated value.

2. (Outter product of the score vector) \mathbf{B}_{θ} is the variance of the score vector, which has zero expectation. Hence, the sample analog of the covariance matrix is:

$$\hat{\mathbf{B}}_{\theta T} = \frac{1}{T} \sum_{t=1}^{T} \left(\frac{\partial \mathcal{L}(\mathbf{x}_t; \theta)}{\partial \theta} \right) \left(\frac{\partial \mathcal{L}(\mathbf{x}_t; \theta)}{\partial \theta} \right)' \Big|_{\theta = \hat{\theta}_T}$$
(13)

NOTE I. When the model is correctly specified, it can be shown that

$$\mathbf{\hat{A}}_{ heta\,\mathcal{T}} \stackrel{p}{
ightarrow} \Omega_{ heta}^{-1}$$

and

$$\mathbf{\hat{B}}_{ heta \, \mathcal{T}} \stackrel{p}{
ightarrow} \Omega_{ heta}^{-1}$$
,

where Ω_{θ} denotes the Information matrix. Hence, both estimators are asymptotically equivalent and hence

$$\mathbf{V}_{ heta} = \left[\mathbf{\hat{A}}_{ heta T}^{-1} \mathbf{\hat{B}}_{ heta T} \mathbf{\hat{A}}_{ heta T}^{-1}
ight] \stackrel{p}{
ightarrow} \Omega_{ heta}^{-1}.$$

Because $\hat{\mathbf{B}}_{\theta T} \hat{\mathbf{A}}_{\theta T}^{-1} \xrightarrow{P} \mathbf{I}$, statistical packages estimate the covariance matrix on the basis of either the Hessian or the outter product, *e.g.*, $\hat{\mathbf{V}}_{\theta} = \hat{\mathbf{A}}_{\theta T}^{-1}$. However, it should be remarked once more that this approximation only holds when the specification is correctly specified.

QML estimation

► When the true distribution is NOT normal, then:

- $\hat{\theta}_{ML}$ is still consistent and asymptotically normally distributed,
- $\hat{\theta}_{ML}$ is no longer efficient, because it has a larger covariance matrix than the inverse of the information matrix. In particular,

$$\sqrt{T} \left(\hat{\theta}_{ML} - \theta \right) \stackrel{d}{\to} \mathcal{N} \left(0, \left[\mathbf{A}_{\theta}^{-1} \mathbf{B}_{\theta} \mathbf{A}_{\theta}^{-1} \right] \right)$$
(14)

• We can estimate consistently $\theta = (\theta'_{\mu}, \theta'_{\sigma})'$ by assuming normality EVEN if the true distribution is not normal. The resultant estimator is called the Quasi- (or pseudo-) Maximum Likelihood (QML) estimator: $\hat{\theta}_{QML}$.

QML estimation

Theorem

Under general regularity conditions, including the cases in which the analyst specifies the conditional mean of the model, $E(Y_t | \mathcal{F}) = \mu(X_t; \theta)$, and $Var(Y_t | \mathcal{F}) = \sigma^2(X_t; \theta)$, the quasi-maximum likelihood procedure yields a consistent estimator of θ_0 , asymptotically distributed as a normal, if and only if the quasi-likelihood function is based on a probability density function family in the quadratic exponential class.

REMARK 1. The primary example of a PDF family encompassed by the quadratic exponential family is the normal distribution.

REMARK 2. This is a crucial theoretical result for many empirical applications: We can estimate parameters consistently through QML even if the true distribution is not normal. The ML and QML parameter estimates are the same, and only differ in the covariance matrix

$$\mathbf{\hat{V}}_{ heta, QML} = \left[\mathbf{\hat{A}}_{ heta T}^{-1} \mathbf{\hat{B}}_{ heta T} \mathbf{\hat{A}}_{ heta T}^{-1}
ight]$$

